
Lecture 8

We will continue looking at some examples that introduce new concepts. In this Chapter
we will look (briefly) at some bosonic models before turning to a new major topic, colored
models. In this lecture we will look at perhaps the simplest colored models, and take the
theory up to the point were we see Demazure operators emerging from the Yang-Baxter
equation. In Lecture 9 we will take this theory further. The appearance of Demazure
operators gives us a point of contact with representation theory, since they generate a Hecke
algebra.

1 Bosonic Models

The paths in lattice models can be thought of as the trajectories of particles. In the six-vertex
model as we have been treating it, these move downwards and to the right.

In physics, there is a distinction between particles which are called bosons and particles
called fermions . The distinction is that no two fermions are allowed to occupy the same
state: this is called the Pauli exclusion principle. Bosons, on the other hand, are allowed to
occupy the same state.

The spinset for all edges in the six-vertex model just consists of {+,−} where we interpret
+ to be the absence of a particle, and − to be the presence. An alternative spinset consist
of the nonnegative integers {0, 1, 2, · · · } where the integer value indicates the number of
identical particles.

We consider a simple type of model, invented by Kulish [6], with the partition functions
computed by Korff [5]. We will call these models the bosonic Hall-Littlewood models.

The horizontal edges will have the fermionic spinset {+,−}, but the vertical edges will
have the bosonic spinset {0, 1, 2, · · · }.

Paths are still relevant but now a single vertical edge can carry more than one path.
The fermionic horizontal edges can only carry a single path. We thus arrive at the following
vertex types, for which we have assigned Boltzmann weights:
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The R-matrix is:

a1 a2 b1 b2 c1 c2
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For comparison, the R-matrix for the Tokuyama model is identical except for the a1
weight. The parameter t is analogous to the parameter we have been calling q in other
models we have been looking at.

Now for the boundary conditions, these are similar to the Tokuyama models, with one
exception. We choose a partition λ. As in the Tokuyama models, the columns are labeled 0
to N from right to left, for sufficiently large N , and the rows are labeled 1 to n from top to
bottom.

Now we put the following spins on boundary edges, same as the Tokuyama models, with
one exception. We put + on the left (horizontal) boundary edges, − on the right boundary
edges, 0 on the bottom (vertical boundary edges). For the top vertical edge in column j, we
put spin k, where k is the number of parts λi equal to j. This last choice differs from the
Tokuyama models where we put the spins in the columns λi + n − i. That had the effect
of preventing two spins from landing on the same edge. Since this model is bosonic, it is
unnecessary to do that. The i-th row of the pattern is labeled by z = zi, and we use the
above Boltzmann weights.

Theorem 1.1 (Korff [5]). The partition function of this model equals the Hall-Littlewood
symmetric polynomial Pλ(z1, · · · , zn; t).

We will not digress now to define the Hall-Littlewood polynomials, but see Macdonald [7]
Chapter 3 for their definitions and properties. We will point out that the information that
we get from the Yang-Baxter equation is precisely a symmetric function, and in contrast
with the Tokuyama models, that information does not seem to be enough to evaluate the
partition function.

Similarly to the Tokuyama case, we parametrize the states by Gelfand-Tsetlin patterns
of size n with top row λ. For example, suppose that:

λ =


5 2 2 0

3 2 1
2 1

2


The entries of this Gelfand-Tsetlin pattern are precisely the vertical edges that carry paths,
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and we easily arrive at the following state:
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The paths are seen to double up in Column 2.
The quantum group underlying thes bosonic models is Uq(ŝl2). The vertical edges cor-

respond to “Verma modules”, which are infinite-dimensional representations of sl2 (or its
affine quantization) that do not lift to representations of SL2(C).

2 The Symmetric group

A Coxeter group is a group W with generators s1, · · · , sr subject to relations s2i = 1, and
braid relations which have the form

sisjsi · · · = sjsisj · · ·

where for some ni,j depending on i and j there are exactly ni,j terms on both sides. For
example if ni,j = 3 then

sisjsi = sjsisj

and if ni,j = 2, then si and sj commute. It is assumed in the definition of the Coxeter group
that these relations are a presentation of W .

In discussing the colored models we will start to need some properties of the GL(r,C)
Weyl group, which is the symmetric group Sr. Let s1, · · · , sr−1 be the simple reflections , so
si is the transposition (i, i+ 1).

Theorem 2.1. The group Sr is a Coxeter group with generators si. This means that the si
generate Sr and satisfy the quadratic relations

s2i = 1
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and the braid relations

sisi+1si = si+1sisi+1, sisj = sjsi if |i− j| > 1,

and that moreover these relations give a presentation of Sr.

You can find proofs of this in many places such as my Lie groups book (second edition)
Theorem 25.1.

3 Open Colored Models

Borodin and Wheeler [2] instigated the current mania for colored models. Their models
were bosonic, but fermionic models are also possible. We will look at the two very simplest
examples, which we call the open and closed models.

Formulated in terms of paths, the idea behind the colored models is very simple: instead
of one type of path there will be m types, where m is some sufficiently large number.
These different types are called colors . It is important that they have an order, so let
c1 > c2 > · · · > cm be the m colors. Actually the largest number of colors that we can make
use of is the number of rows of the grid, so we can take m to be the number r of rows in the
grid. If there are more than m colors, there is no harm in taking m = r.

There is a feeling that if we have an uncolored model (e.g. six-vertex model) that we
should be able to find a colorized version. The relationship between colored model and the
uncolored model often shed light on the uncolored model

We could start with the Tokuyama model for this, but to get the simplest possible theory,
we will start with the crystal limit 5-vertex model, which we encountered in Lecture 6. There
are two theories which we will call open and closed . The open model was studied in [3], and
we will look at it in this section.
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Let us specify boundary conditions. Let λ = (λ1, · · · , λr) be a partition. The model will
be similar to the Tokuyama model with columns labeled 0, · · · , N from right to left and rows
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labeled 1 to N from top to bottom. We put + spins on the top and bottom edges. For the
top edge, we will put color ci in column λi + n− i.

Note that this implies that the colors on the top edge are in decreasing order from right
to left. For the right edge, we choose a flag d = (d1, · · · , dr) where d1, · · · , dr are the colors
c1, · · · , cr that we use on the top edge, in some order. We will denote by c0 = (c1, · · · , cr)
where, we remind the reader, we have ordered c1 > · · · > cr. Then there is a permutation
w ∈ W such that d = wc0.

Here is an example. The three colors are ordered

red (•) > blue (•) > green (•)

So if w = (123) = s1s2 then c = s1s2c0 = (•, •, •). Then if λ is the partition (3, 1, 0), so
λ+ ρ = (5, 2, 0). Here are the boundary conditions as we have described them:
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Let Zλ(z;d) or Zλ(z;w) denote the partition function.
Now let us define an operator δ◦i on functions f(z) by:

δ◦i f(z) =
zi+1f(z)− zif(siz)

zi − zi+1

.

This is a divided difference operator , of a type used by Demazure [4] and Bernstein-Gelfand-
Gelfand [1] in algebraic geometry. They are also important in algebraic combinatorics.

Lemma 3.1. If f is holomorphic as a function of z, so is δ◦i f .

Proof. We need to show that the numerator is divisible by the denominator. The numerator
vanishes where the denominator does, because if zi = zi+1 then z = siz. The vanishing of the
numerator zi+1f(z)− zif(siz) along the hyperplane zi = zi+1 implies that the denominator
divides the numerator.

Proposition 3.2. Suppose that di > di+1. Then the partition function Zλ(z; sid) satisfies

Zλ(z; sid) = δ◦iZλ(z;d).
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Proof. Let us attach the R-matrix to the left:
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Given the spins +, + on the left edge the spins on the R-matrix can only be all +, so we
may assume that the configuration is as follow:
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the partition function of this system is Zλ(z;d) times the value zi+1 of the R-matrix.
Running the train argument, it turns out there are two possible configurations on the right-
hand side, namely
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Consulting the Boltzmann weights for the R-matrix, the partition functions for these con-
figurations are

ziZλ(siz;d)

and (since the colors get switched for the second one):

(zi − zi+1)Zλ(siz; sid).

Hence we obtain the identity

zi+1Zλ(z;d) = ziZλ(siz;d) + (zi − zi+1)Zλ(siz; siz).

We want to interchange zi and zi+1, so replace z by siz. Then

ziZλ(siz;d) = zi+1Zλ(z;d) + (zi+1 − zi)Zλ(z; sid).

Reorganizing this gives

Zλ(z; sid) =
zi+1Zλ(z;d)− ziZλ(siz;d)

zi − zi+1

as required.
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