Lecture 7

1 The general free-fermionic six-vertex model

In this section we will consider a very remarkable parametrized Yang-Baxter equation with a nonabelian parameter group $\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})$ which includes the Tokuyama weights as a special case. More typical parameter groups are usually abelian: $\mathbb{C}^{\times}, \mathbb{C}$ or an elliptic curve.

The Tokuyama weights are examples of free-fermionic weights. Label the the Boltzmann weights at a vertex R as follows:

or alternatively:

We call the weights free-fermionic if

$$
a_{1}(R) a_{2}(R)+b_{1}(R) b_{2}(R)=c_{1}(R) c_{2}(R)
$$

and $c_{1}(R), c_{2}(R)$ are both nonvanishing.
It turns out that all free-fermionic weights fit into a parametrized Yang-Baxter equation with parameter group $\Gamma=\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$. This parametrized Yang-Baxter equation was discovered by Korepin (see [3] page 126, and rediscovered by Brubaker, Bump and Friedberg [1]). Let

$$
\rho: \mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C}) \longrightarrow\{\text { free-fermionic vertices }\}
$$

be the map that sends the matrix

$$
\gamma=\left(\begin{array}{cccc}
c_{1} & & & \\
& a_{1} & b_{2} & \\
& -b_{1} & a_{2} & \\
& & & c_{2}
\end{array}\right)
$$

to the vertex with those Boltzmann weights.
Theorem 1.1. The map R is a parametrized Yang-Baxter equation with parameter group $\mathrm{GL}(2, \mathbb{C}) \times \mathrm{GL}(1, \mathbb{C})$.

The parametrized Yang-Baxter equation can be either of the two forms from Lecture 4: we ask that for all a, b, c, d, e, f the two following partition functions are equal:

Alternatively:

Proof. Let $R=\rho(\gamma), T=R(\delta)$ and $S=R(\gamma \delta)$, where the product $\gamma \delta$ is just matrix multiplication. Thus

$$
\gamma=\left(\begin{array}{cccc}
c_{1}(R) & & & \\
& a_{1}(R) & b_{2}(R) & \\
& -b_{1}(R) & a_{2}(R) & \\
& & & c_{2}(R)
\end{array}\right), \quad \delta=\left(\begin{array}{cccc}
c_{1}(T) & & & \\
& a_{1}(T) & b_{2}(T) & \\
& -b_{1}(T) & a_{2}(T) & \\
& & & c_{2}(T)
\end{array}\right)
$$

Multiplying the matrices γ and δ and remembering that $S=R(\gamma \delta)$, the S Boltzmann weights are:

$$
\begin{array}{rc}
c_{1}(S)=c_{1}(R) c_{1}(T), & c_{2}(S)=c_{2}(R) c_{2}(T) \\
a_{1}(S)=a_{1}(R) a_{1}(T)-b_{2}(R) b_{1}(T), & a_{2}(S)=-b_{1}(R) b_{2}(T)+a_{2}(R) a_{2}(T) \\
b_{1}(S)=b_{1}(R) a_{1}(T)+a_{2}(R) b_{1}(T), & b_{2}(S)=a_{1}(R) b_{2}(T)+b_{2}(R) a_{2}(T)
\end{array}
$$

With these values, and taking the values

$$
\begin{aligned}
& c_{2}(R)=\left(a_{1}(R) a_{2}(R)+b_{1}(R) b_{2}(R)\right) / c_{1}(R), \\
& c_{2}(T)=\left(a_{1}(T) a_{2}(T)+b_{1}(T) b_{2}(T)\right) / c_{1}(T),
\end{aligned}
$$

it is straightforward to check all cases of the Yang-Baxter equation. This is done in a computer program called free-fermionic1.sage, posted on the class web page.

2 Column parameters

In the Tokuyama models, the Boltzmann weights depended on the rows but not the columns. We may use the parametrized Yang-Baxter equation to predict another model in which the weights do depend on the columns. But let us ask for free-fermionic models that do show column dependence. Such models exist and give for example factorial Schur functions ??.

However we want to predict their existence by thinking about the GL $(2) \times \mathrm{GL}(1)$ parametriczed free-fermionic Yang-Baxter equation. Let us postulate a grid, with free-fermionic vertices. We start with two rows of free-fermionic vertices $S=R(\gamma)$ and $T=R(\delta)$. If $R=R(\rho)$ where $\rho \delta=\gamma$, then by Theorem 1.1 we may have the Yang-Baxter equation that we need and can do the train argument. So we want $\rho=\gamma \delta^{-1}$:

Note that γ and δ could be arbitrary free-fermionic vertex types.
Now let us show that Theorem 1.1 allows us to modify the weights S and T so that they are dependent on the columns, not just the rows. This procedure will not affect the R-matrix $R=R(\rho)$. Let $\gamma_{1}, \gamma_{2}, \cdots$ be the elements of the parameter group $G=\operatorname{GL}(2, \mathbb{C}) \times \operatorname{GL}(1, \mathbb{C})$ such that $R\left(\gamma_{i}\right)$ and $R\left(\delta_{i}\right)$ are to be the row weights in the modified system. We want to be able to attach ths same matrix $R=R(\rho)$ for the train argument.

Now we need $\gamma_{1}=\rho \delta_{1}$ so $\rho=\gamma_{1} \delta_{1}^{-1}$. Assuming this we can do the Yang-Baxter equation:

But now to do the next step, we need $\delta_{2} \rho=\gamma_{2}$. To complete the train argument, we clearly need $\delta_{j}^{-1} \gamma_{j}=\rho$ for all j.

To summarize, a necessary and sufficient condition to be able to do the train argument is that $\delta_{j}^{-1} \gamma_{j}=\rho$ for all j, and we already have γ and δ such that $\delta^{-1} \gamma=\rho$.

Now to arrange this, let us fix an element $\alpha_{j} \in G$ for every column j, and we define $\gamma_{j}=\gamma \alpha_{j}$ and $\delta_{j}=\delta \alpha_{j}$. Then the conditions are satisfied.

Let us do an example. We want γ to correspond to Tokuyama weights at the vertex S with parameter z. This means that the weights of γ are given by the following table:

$a_{1}(S)$	$a_{2}(S)$	$b_{1}(S)$	$b_{2}(S)$	$c_{1}(S)$	$c_{2}(S)$
1	z	$-q$	z	$(1-q) z$	1

Therefore

$$
\gamma=\left(\begin{array}{cccc}
c_{1}(S) & & & \\
& a_{1}(S) & b_{2}(S) & \\
& -b_{1}(S) & a_{2}(S) & \\
& & & c_{2}(S)
\end{array}\right)=\left(\begin{array}{cccc}
(1-q) z & & & \\
& 1 & z & \\
& q & z & \\
& & & 1
\end{array}\right)
$$

Similarly let δ correspond to Tokuyama weights with parameter w, so

$$
\delta=\left(\begin{array}{cccc}
(1-q) w & & & \\
& 1 & w & \\
& q & w & \\
& & & 1
\end{array}\right)
$$

Now to choose the perturbing matrices α_{j}, let a_{1}, a_{2}, \cdots be an arbitrary sequence of integers and take

$$
\alpha_{j}=\left(\begin{array}{cccc}
1 & & & \\
& 1 & a_{j} & \\
& & 1 & \\
& & & 1
\end{array}\right) .
$$

Note that this matrix satisfies the free-fermionic condition. Now

$$
\gamma \alpha_{j}=\left(\begin{array}{cccc}
(1-q) z & & & \\
& 1 & z & \\
& q & z & \\
& & & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & & & \\
& 1 & a_{j} & \\
& & 1 & \\
& & & 1
\end{array}\right)=\left(\begin{array}{cccc}
(1-q) z & & & \\
& 1 & z+a_{j} & \\
& q & z+q a_{j} & \\
& & & \\
& & & 1
\end{array}\right)
$$

This leads to the following modification of the Tokuyama weights:

$a_{1}(S)$	$a_{2}(S)$	$b_{1}(S)$	$b_{2}(S)$	$c_{1}(S)$	$c_{2}(S)$
1	$z+q a_{j}$	$-q$	$z+a_{j}$	$(1-q) z$	1

The partition functions of the modified models replace the Schur functions of the Tokuyama model with factorial Schur functions. See [2] for more information, and [4] for more general free-fermionic models that generalize Schur functions.

References

[1] B. Brubaker, D. Bump, and S. Friedberg. Schur polynomials and the Yang-Baxter equation. Comm. Math. Phys., 308(2):281-301, 2011, https://arxiv.org/abs/0912.0911.
[2] D. Bump, P. J. McNamara, and M. Nakasuji. Factorial Schur functions and the Yang-Baxter equation. Comment. Math. Univ. St. Pauli, 63(1-2):23-45, 2014, arXiv:arXiv:1108.3087.
[3] V. E. Korepin, N. M. Bogoliubov, and A. G. Izergin. Quantum inverse scattering method and correlation functions. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1993.
[4] S. Naprienko. Free fermionic Schur functions, 2023, arXiv:2301.12110.

