
Lecture 4

We will start by surveying the origin of solutions to the Yang-Baxter equation in the
notions of braided monoidal categories and (sketchily) quantum groups. Then we will look
again at the notion of a parametrized Yang-Baxter equation, in which the vertex types are
indexed by a group or groupoid. We will give one example, coming from the field-free
Yang-Baxter equation in Lecture 1, obtaining a clearer picture.

1 Review of Lecture 3

Let U, V and W be vector spaces. Suppose that we are given three linear transformations:

R : U ⊗ V −→ V ⊗ U,

S : U ⊗W −→ W ⊗ U,

T : V ⊗W −→ W ⊗ V.

We will consider two homomorphisms U⊗V ⊗W −→ W⊗V ⊗U . The first is the composition

U ⊗ V ⊗W
R12−→V ⊗ U ⊗W

S23−→V ⊗W ⊗ U
T12−→W ⊗ V ⊗ U

where the notation is that Rij means R applied to the i and j components of a tensor. Thus
R12 = R⊗ IW , S23 = IV ⊗ S and T12 = T ⊗ IU . (The subscript notation is popular in Hopf
algebra and quantum group literature.) The other homomoprhism is

U ⊗ V ⊗W
T23−→U ⊗W ⊗ V

S12−→W ⊗ U ⊗ V
R23−→W ⊗ V ⊗ U.

We can diagram the homomorphisms graphically as follows.
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and
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To understand these pictures, they diagram homomorphisms from inputs U ⊗ V ⊗ W (in
blue, read from bottom to top) to W ⊗ V ⊗ U (in red, read from bottom to top). The
alternative orientations are supplied since those will often occur in practice.

The vector space version of the Yang-Baxter equation is that these two homomorphisms
U ⊗ V ⊗W → W ⊗ V ⊗ U are equal, in other words we want a commutative diagram:

U ⊗ V ⊗W

V ⊗ U ⊗W U ⊗W ⊗ V

V ⊗W ⊗ U W ⊗ U ⊗ V

W ⊗ V ⊗ U

R12 T23

S23 S12

T12 R23

It turns out that the “natural habitat” for the Yang-Baxter equation is a braided monoidal
category. In the next sectionm we digress to introduce this notion.

2 Braided Monoidal Categories

This section is optional and can be skipped or postponed on first reading.
The axioms for a braided monoidal category are due to Joyal and Street [2] in the 1980’s.

It is surprising that such an important concept was not formulated until so late. But there
weren’t many obvious examples of braided monoidal categories until quantum groups. But it
turns out that the modules of a quantum group form a braided category, giving a tremendous
fount of examples of the Yang-Baxter equation. We digress to introduce this notion.

Wikipedia link
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A monoidal category is a category C with a bifunctor ⊗ satisfying certain natural axioms.
There is a unit object I with natural isomorphisms

A⊗ I ∼= I ⊗ A ∼= A

for A any object in the category, and for three objects A,B,C a natural isomorphism

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C

satisfying Maclane’s pentagon axiom

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D)

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D)

Maclane’s coherence theorem asserts that all similar identities (perhaps involving many ten-
sors) can be deduced from this one.

Let C be a monoidal category. We recall that if A,B,C are objects in C then there are
natural isomorphisms (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C). We will not distinguish between these
objects and just denote either as A⊗B ⊗ C.

In a braided category there are explicit braid isomorphisms cA,B : A ⊗ B → B ⊗ A but
now we must be careful. For example the composition cB,AcA,B is not assumed to be the
identity. So cA,B and c−1

B,A are distinct isomorphisms A → B.
We will notate the morphism cA,B by an over crossing and cB,A by an under crossing.

B A

A B

cA,B : A⊗B → B ⊗ A

B A

A B

c−1
B,A : A⊗B → B ⊗ A

We review the important notion of a natural transformation. We used this implicitly
when we defined a monoidal category in Lecture 1, where we said that the isomorphisms

(A⊗B)⊗ C ∼= A⊗ (B ⊗ C)

are required to be natural.
This means, explicitly, the following. Since ⊗ is a bifunctor, if α : A → A′, β : B → B′

and γ : C → C ′ are morphisms then we have on the left and right of the following diagram.

(A⊗B)⊗ C A⊗ (B ⊗ C)

(A′ ⊗B′)⊗ C ′ A′ ⊗ (B′ ⊗ C ′)

∼=

(α⊗β)⊗γ α⊗(β⊗γ)

∼=
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The first axiom of a braided category is that the morphisms cA,B : A⊗ B → B ⊗ A are
to be natural. This means that if α : A → A′ and β : B → B′ are morphisms, then

(β ⊗ α) ◦ cA,B = cA′,B′ ◦ (α⊗ β)

A

B

B′

A′

α

β

=

A

B

B′

A′

β

α

(We are representing the morphisms α, β by dots.)
The braid morphism cA,B : A⊗B → B⊗A is sometimes called an R-matrix. It is subject

to a couple of axioms. First, it is assumed to satisfy:

A⊗B ⊗ C B ⊗ C ⊗ A

B ⊗ A⊗ C

cA,B⊗C

cA,B⊗1C 1B⊗cA,C

We can diagram this as follows.

A

B

C

C

B

A

=

A

B⊗C A

B⊗C

The dual axiom is also needed:

A⊗B ⊗ C C ⊗ A⊗B

A⊗ C ⊗B

cA×B,C

1A⊗cB,C cA,C⊗1B

This completes the definition of a braided monoidal category.
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Theorem 2.1. The Yang-Baxter equation is true in a braided monoidal category. This
means we have to show the equivalence of the two following morphisms A⊗B⊗C → C⊗B⊗A:

A

B

C

C

B

A

A

B

C

C

B

A

Proof. Using one of the axioms for the braided category, the first diagram agrees with:

A⊗B

C B⊗A

CcA,B

Using naturality, this agrees with

A⊗B

C B⊗A

C

cA,B

Now using the other axiom, this is equivalent to the morphism in the second diagram.

3 Quantum Groups

We see that objects in a braided category, particularly if they can be realized as vector spaces,
are a potential source of instances of the Yang-Baxter equation. These have applications (as
we know) to solvable lattice models, but also to other areas, such as knot invariants (e.g. the
Jones polynomial).

Around the same time that Joyal and Street formulated the notion of a braided category,
Drinfeld [1] invented the notion of a quasitriangular Hopf algebra.

IfH is an associative algebra, one might hope that the modules form a monoidal category.
However if A,B are modules then A⊗B is not naturally a module for H, but for the tensor
product algebra H⊗H. A Hopf algebra is an associative algebra H together with an algebra
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homomorphism ∆ : H → H ⊗ H called the comultiplication and some other structure
(antipode, counit, various axioms). Using ∆, A ⊗ B becomes a module for H, and so the
modules become a monoidal category.

A quasitriangular Hopf algebra has some further extra structure, a universal R-matrix
R ∈ H ⊗ H satisfying certain axioms that we will not state here. (See [1, 4, 3].) What is
important is that using R we may define a braiding cA,B : A ⊗ B → B ⊗ A, and Drinfeld’s
axioms for a quasitriangular Hopf algebra are exactly what is needed for the module category
to be braided.

Drinfeld then constructed quasitriangular Hopf algebras called quantum groups as de-
formations of more familiar Hopf algebras. If g is a Lie algebra, the universal enveloping
algebra of g is an associative algebra U(g) whose modules are the same as the modules of
g. If g is the Lie algebra of a Lie group, or more generally a Kac-Moody Lie algebra or
superalgebra, then it is possible to deform U(g) and obtain a family of Hopf algebras Uq(g)
called quantized enveloping algebras. If g is a finite-dimensional simple Lie algebra, it has an
affinization ĝ which is infinite-dimensional. If V is a module for g, then ĝ has a family Vz of
modules indexed by z ∈ C×.

There are two choices of g that have two-dimensional modules: g = sl2 (or almost the
same thing for this purpose, gl2) or the Lie superalgebra g = gl(1|1). Both are related to the

six-vertex model: ĝl2 is related to the field-free models we have started with, while gl(1|1)
is related to the free-fermionic models that we will discuss later.

4 Parametrized Yang-Baxter equations

Let Γ be a group, and let V be a vector space. Let R : Γ −→ GL(V ⊗ V ) be a map such
that for every γ, δ ∈ Γ, we have a vector Yang-Baxter equation:

V ⊗ V ⊗ V

V ⊗ V ⊗ V V ⊗ V ⊗ V

V ⊗ V ⊗ V V ⊗ V ⊗ V

V ⊗ V ⊗ V

R12(γ) R23(δ)

R23(γδ) R12(γδ)

R12(δ) R23(γ)

Then we say that we have a parametrized Yang-Baxter equation with parameter group Γ.
Alternatively, we could let Σ be a set and for every γ ∈ Γ let there be a vertex type,

where all edges have the spinset Γ. We will use the notation R(γ) for this vertex type. Then
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we ask that for all a, b, c, d, e, f the two following partition functions are equal:

R(δ)R(γ)

R(γδ)

a

b

c

f

e

d

R(γ)R(δ)

R(γδ)

a

b

c

f

e

d

We can obtain a parametrized Yang-Baxter equation taking V to be the free vector-space
on Σ and following the construction of the last section. We could alternatively orient the
edges as follows:

a

b

c

d

e

f

R(γ)

R(δ)

R(γδ)
a

b

c

d

e

f

R(γ)

R(δ)

R(γδ)

In either case, the procedure in Lecture 3 produces a vector Yang-Baxter equation, with V
being the free vector space on the spinset Σ.

We will show in the next section that the field-free Yang-Baxter equation of Section 1
gives an example of a parametrized Yang-Baxter equation.

5 Parametrized Field-Free Yang-Baxter equation

Let ∆ ∈ C be fixed. We assume ∆ ̸= 0, 1,−1. Let q be found such that 1
2
(q+ q−1) = ∆. We

will use the notation R(a, b, c) for the vertex with Boltzmann weights a, b, c, as before. Let
G∆ be the set of (a, b, c) with a, b ̸= 0 such that

a2 + b2 − c2

2ab
= ∆,

together with two additional elements (±∆, 0,∆). Eventually we will give G∆ the structure
of a group.
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In Lecture 1 we showed that if (a1, b1, c1) and (a2, b2, c2) are in G∆ then there exists a third
(a0, b0, c0) ∈ G∆ such that if (in the notation of Lecture 1) R = v(a0, b0, c0), S = v(a1, b1, c1)
and T = v(a2, b2, c2), then we have a Yang-Baxter equation:

a

b

c

d

e

f

R

S

T
a

b

c

d

e

f

R

S

T

(1)

We note that the Yang-Baxter equation is homogeneous in the sense that if any one of
(ai, bi, ci) is multiplied by a nonzero constant then the validity of the equation is unchanged.
So while R is usually determined by S and T , it is only determined up to constant multiple.

Now we want to start with R and T and compute S. This will give us our first example
of a parametrized Yang-Baxter equation. We begin by noting that G∆ can be parametrized
as follows.

Lemma 5.1. Let x ∈ C× and let

(a, b, c) =
(
1
2
(xq − (xq)−1), 1

2
(x− x−1), 1

2
(q − q−1)

)
.

Then (a, b, c) ∈ G∆.

Proof. This is a straightforward calculation.

Theorem 5.2. The mapping

R∆ : C× −→ {field-free Boltzmann weights (a, b, c)}

is a parametrized Yang-Baxter equation with parameter group C×.

Proof. The Boltzmann weights are

β∆(R) =

(
1

2
((xq)− (xq)−1),

1

2
(x− x−1),

1

2
(q − q−1)

)
,

β∆(S) =

(
1

2
(xyq − (xyq)−1),

1

2
(xy − (xy)−1),

1

2
(q − q−1)

)
,

β∆(T ) =

(
1

2
(yq − (yq)−1),

1

2
(y − y−1),

1

2
(q − q−1)

)
.

Checking the parametrized Yang-Baxter equation is now a matter of computation. There are
12 cases of boundary Boltzmann weights that give nontrivial identities, but acually these are
reduandant and there are only 4 distinct indentities that need to be checked. I have posted
a computer program called field-free1.sage at the class web page that checks this.
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