
Lecture 3

1 Gelfand-Tsetlin Patterns and States

Remark 1.1. This section mentions some facts about Lie group representations and Schur
polynomials. These are included since they may be helpful to some readers, but may be
skipped. Schur polynomials will be properly introduced later and we will prove their principal
properties using lattice models.

Let λ = (λ1, λ2, · · · , λn) be a sequence of nonnegative integers. We say λ is a partition
of length 6 n if it is weakly decreasing:

λ1 > λ2 > · · · > λn > 0.

(Note that we say the length is 6 n. The actual length is the number of nonzero entries.)
We say λ is a partition of k, and write λ ` k if

∑
λi = k. The partition is strict if

λ1 > λ2 > · · · > λn > 0.

A strict partition is the same as a partition into unequal parts.
A closely related notion is that of a dominant weight for GL(n). Assuming some Lie the-

ory, we may identify Zn with the GL(n) weight lattice Λ. Then the weight λ = (λ1, · · · , λn)
is dominant if

λ1 > λ2 > · · · > λn.

If λ is a dominant weight, then by results of Schur and Weyl, there is a unique irreducible
representation π

GL(n)
λ of GL(n,C) with highest weight λ. Its character χλ is essentially the

Schur polynomial sλ. This is a symmetric polyomial such that

χλ(g) = sλ(z1, · · · , zn)

where zi are the eigenvalues of g ∈ GL(n,C).
Thus a partition of length 6 n is a dominant weight for GL(n). A dominant weight λ is

a partition only if λn > 0.
Gelfand-Tsetlin patterns are triangular arrays of integers satisfying certain inequalities.

We may express this by saying that the rows are weakly decreasing, and adjacent rows
interleave. This means the following. Suppose that λ = (λ1, · · · , λn) and µ = (µ1, · · · , µn−1)
are partitions or more generally dominant weights. The condition for λ and µ to interleave
is that

λ1 > µ1 > λ2 > µ2 > · · · > µn−1 > λn.
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Note: λ and µ interleave if and only if π
GL(n−1)
µ appears in the restriction of π

GL(n)
λ to

GL(n− 1,C). Indeed we will later prove (using lattice models) that

sλ(z1, · · · , zn−1, 1) =
∑

dominant µ interleaving λ

sµ(z1, · · · , zn−1),

which is called the GL(n)⇒ GL(n− 1) branching rule.
We may now define a Gelfand-Tsetlin pattern of size n. This is a triangular array

A =



a11 a12 a13 · · · a1n
a21 a22 · · · a2,n−1

. . . . . .

an0


with n+ 1 rows such that each row is a partition, and the rows interleave.

For example, there are 8 Gelfand-Tsetlin patterns with top row (2, 1, 0). These are:
2 1 0

1 0
0

 ,


2 1 0

1 0
1




2 1 0
1 1

1

,


2 1 0
2 0

0




2 1 0
2 0

1

 ,


2 1 0

2 0
2




2 1 0
2 1

1

 ,


2 1 0

2 1
2

 .

These patterns are all strict, except the third one, which we have marked in red.
Strict Gelfand-Tsetlin patterns with top row (n − 1, n − 2, · · · , 0) are in bijection with

another type of mathematical entity called alternating sign matrices. We will not discuss
alternating sign matrices much, preferring to work with Gelfand-Tsetlin patterns. But due
to the historical importance of alternating sign matrices, here is the rundown.

An alternating sign matrix of size n is a square matrix whose entries are all 0, 1 or −1.
It is assumed that in every row and column, the nonzero entries alternate between 1 and
−1, strating and ending with 1, so there are an odd number of nonzero entries in each row
and column. For example, a permutation matrix is an alternating sign matrix.

Lemma 1.2. There is a bijection between strict Gelfand-Tsetlin patterns with top row (n−
1, n− 2, · · · , 0) and alternating sign matrices of size n.

Proof. We will explain the bijection with an example. Consider the alternating sign matrix

A =


0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

 .
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We “accumulate” the rows from the bottom up into annother matrix:

B =


13 12 11 10

1 0 1 1
0 1 1 0
0 1 0 0


Thus the bottom row of B is the bottom row of A, the second-from-bottom row of B is the
sum of the last two rows of A, and so forth. The little numbers indicate that we have labeled
the columns of this n− 1, n− 2, · · · , 0 from right to left, with n = 4 in the example.

Now we read off the columns of B that have nonzero entries (all equal to 1) and these
form a strict Gelfand-Tsetlin pattern:

3 2 1 0
3 1 0

2 1
2

 .

We leave it to the reader to convince themselves that this is a bijection.

Alternating sign matrices originated in a method of computing determinants due to
Charles Dodgson (Lewis Carroll). In the 1980’s, Mills, Robbins and Rumsey investigated
the number of alternating sign matrices of size n and conjectured that the number of ASM
of size n

n−1∏
i=0

(3i+ 1)!

(n+ i)!
. (1)

Here are some values:
n 1 2 3 4 5 6∏n−1

i=0
(3i+1)!
(n+i)!

1 2 7 42 429 7436

The number 7 when n = 3 we have already seen is the number of strict Gelfand-Tsetlin
patterns with top row (2, 1, 0).

Robbins and Rumsey consulted with Richard Stanley, who did not know how to prove
the conjecture, but told them that the same numbers had appeared in another context in
work of Andrews. They equal the number of “totally symmetric self-complementary plane
partitions,” a seemingly unrelated combinatorial number. The precise number remained only
conjectural.

The number (1), conjectured by Mills, Robbins and Rumsey for the number of alternating
sign matrices of size n, was proved correct by Zeilberger in difficult work that did not really
give insight. Kuperberg then gave another proof using solvable lattice models that gave
deep insight. We will eventually cover Kuperberg’s proof, and the related Korepin-Izergin
determinant formula.

Let λ = (λ1, λ2, · · · , λn) be a partition. We consider a model with domain wall boundary
conditions as follows. We need a grid with N + 1 columns, which we label from 0 to N from
right to left, and n rows, labeled 1, 2, · · · , n from top to bottom. We need N > λ1. We have
boundary edges on the left, right, top and bottom. On the left and bottom we put + spins,
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and on the right we put − spins. On the top, the Lemma from Lecture 2 shows that we
need n edges with − spins, and the rest must be +. We put the − spins at columns labeled
λ1, λ2, · · · , λn.

Thus for example of λ = (5, 2, 0) we need six columns and 3 rows, and we arrive at the
following boundary conditions:

+ + + + + +

+ −

+ −

+ −

− − −+ + +

012345

1

2

3

Lemma 1.3. There is a bijection between the states of this system and the strict Gelfand-
Tsetlin patterns with top row λ.

Proof. We will describe the bijection algorithmically (with an example) and leave it to the
reader to convince themselves that the states described are admissible.

First, for each row ai1, · · · , ai,n+1−i in the given strict Gelfand-Tsetlin pattern, assign a
− spin to the vertical edges above the i-th row, and + to the remaining vertical edges. Note
that since λ = (a11, · · · , a1n), this is consistent with the way we assigned the boundary spins
at the top.

For example suppose that the Gelfand-Tsetlin pattern is:
5 2 0

3 2
2


This assigns spins as follows:

+ + + + + +

+ −

+ −

+ −

− − −+ + +

− −

−

+ + + +

+ + + + +

012345

1

2

3
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It remains to be assigned spins to the horizontal edges. We may do this in each row by
making use of the fact that the number of − spins adjacent to every vertex is even, to figure
out the rows.

+ + + + + +

+ −

+ −

+ −

− − −+ + +

− −

−

+ + + +

+ + + + +

− − + + +

+ + − − −

+ + + − −

012345

1

2

3

This gives the configuration, and it must be checked that it is admissible for the six-vertex
model.

Now let us consider the free-fermionic six-vertex model taking a = b = c = 1. Clearly
the Boltzmann weight of each state is 1, so the partition function is equal to the number of
states. Thus if we can evaluate the partition function we will have counted the number of
states. In the special case where λ = (n − 1, n − 2, · · · , 0), this is equal to the number of
alternating sign matrices.

This is the case where the lattice is square, with domain-wall boundary conditions,
putting + on the left and bottom boundary edges, and − in the top and right bound-
ary edges. In this case, there is a formula for the partition function as a determinant,
due to Korepin and Izergin. This was Kuperberg’s approach to the alternating sign matrix
conjecture.

The proof of the Korepin-Izergin determinant formula depends again on the Yang-Baxter
equation, which we will need to formulate more precisely than before. For the proof of the
commutativity of the row-transfer matrices, all we needed to know about the R-matrix was
its existence, but for other applications we will need to know its values, a topic that we will
come to soon.

2 Vector Yang-Baxter Equation

We will give another notion of the Yang-Baxter equation. Soon we will connect it with the
familiar one that we used in the last two lectures.

Let U, V and W be vector spaces. Suppose that we are given three linear transformations:

R : U ⊗ V −→ V ⊗ U,

S : U ⊗W −→ W ⊗ U,
T : V ⊗W −→ W ⊗ V.
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We will consider two homomorphisms U⊗V ⊗W −→ W⊗V ⊗U . The first is the composition

U ⊗ V ⊗W R12−→V ⊗ U ⊗W S23−→V ⊗W ⊗ U T12−→W ⊗ V ⊗ U

where the notation is that Rij means R applied to the i and j components of a tensor. Thus
R12 = R⊗ IW , S23 = IV ⊗ S and T12 = T ⊗ IU . (The subscript notation is popular in Hopf
algebra and quantum group literature.) The other homomoprhism is

U ⊗ V ⊗W T23−→U ⊗W ⊗ V S12−→W ⊗ U ⊗ V R23−→W ⊗ V ⊗ U.

We can diagram the homomorphisms graphically as follows.

TR

S

U

V

W

V

U

W

V

W

U

W

V

U

R12 S23 T12
U ⊗ V ⊗W V ⊗ U ⊗W V ⊗W ⊗ U W ⊗ V ⊗ U

Alternative
orientation:

U

V

W

U

V

W

U

W

V

R

S

T

and

RT

S

U

V

W

U

W

V

W

U

V

W

V

U

T23 S12 R23
U ⊗ V ⊗W U ⊗W ⊗ V W ⊗ U ⊗ V W ⊗ V ⊗ U

Alternative
orientation:

U

V

W

U

V

W

V

W

U

R

T

S

If these two homomorphisms U ⊗ V ⊗W −→ W ⊗ V ⊗ U are equal, we will say that
R, S, T give an instance of the Yang-Baxter equation. We will of course have to explain
how this is related to the Yang-Baxter equations we have previously described in terms of
Boltzmann weights.

For the six- or eight-vertex models, the vector spaces U, V and W can be taken to be
two-dimensional, with bases indexed by the possible spins. Thus U is spanned by u+, u−
and similarly we have bases v+, v− and w+, w− for V and W . Let us start with a vertex
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R with chosen Boltzmann weights a1(R), a2(R), etc. and encode these weights in a linear
transformation R : U ⊗ V −→ V ⊗ U by the following rule. If a, b, c, d ∈ {±} then the
Boltzmann weight of the state

a

b c

d

R

is to be the coefficient of vd⊗uc in R(ua⊗vb). We will write this coefficient in Dirac notation
as 〈vd ⊗ uc|R|ua ⊗ vb〉, or if we are thinking of it as a Boltzmann weight as

βR

(
b c
a d

)
.

So

R|ua ⊗ vb〉 := R(ua ⊗ vb) =
∑
c,d

βR

(
b c
a d

)
|vd ⊗ uc〉.

Lemma 2.1. The partition function of the systems

TR

S

a

b

c

g

h

i

f

e

d

RT

S

a

b

c

j k

l

f

e

d

equal 〈wf ⊗ ve ⊗ ud|T12S23R12|ua ⊗ vb ⊗ wc〉 and 〈wf ⊗ ve ⊗ ud|R13S23R12|ua ⊗ vb ⊗ wc〉.
Proof. We compute

T12S23R12|ua ⊗ vb ⊗ wc〉 =
∑
g,h

βR

(
b g
a h

)
T12S23|vh ⊗ ug ⊗ wc〉

=
∑
g,h

∑
i,d

βR

(
b g
a h

)
βS

(
c d
g i

)
T12|vh ⊗ wi ⊗ ud〉

=
∑
g,h

∑
d,i

∑
e,f

βR

(
b g
a h

)
βS

(
c d
g i

)
βT

(
i e
h f

)
|wf ⊗ ve ⊗ ud〉.

Therefore

〈wf ⊗ ve⊗ ud|T12S23R12|ua⊗ vb⊗wc〉 =
∑
g,h

∑
d,i

∑
e,f

βR

(
b g
a h

)
βS

(
c d
g i

)
βT

(
i e
h f

)
.

The right hand side is the partition function of the left-side of the Yang-Baxter equation
system. As usual, the boundary spins a, b, c, d, e, f are fixed, and the spins of the interior
edges g, h, i or j, k, l are summed over in the partition function. We leave the reader to check
the other side.
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Therefore:

Theorem 2.2. Let R, S, T be vertex types, and let U , V , W be as above, and define homo-
morphisms R : U ⊗ V −→ V ⊗ U as above. If for all choices of boindary spins the partition
functions of the systems

TR

S

a

b

c

g

h

i

f

e

d

RT

S

a

b

c

j k

l

f

e

d

agree, then the vector Yang-Baxter equation is satisfied.

One may also reorient the edges and work instead with the systems:

a

b

c

d

e

f

g

i

h

R

S

T
a

b

c

d

e

f

j

k

l

R

T

S
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