
Lecture 20

This lecture contains the proof of Theorem 6.1 of Lecture 19, expressing the row transfer
matrix T∆(z; q) as the exponential of the Hamiltonian

H+(z; q) =
∑
k=1

1

k
(1− qk)zkJk.

There is a corresponding result for TΓ and H+ but we will omit that. (It can be deduced
from the T∆ case by taking adjoints, as at the end of Section 4 in [1].)

1 Fermionic operators

We introduce fermionic creation operators ψ∗n (n ∈ Z) on F that create particles by

ψ∗n(η) = un ∧ η.

If η is a basis vector of Fm, say

η = |j〉 = ujm ∧ ujm−1 ∧ · · · ,

then ψ∗(η) = 0 if n is among the indices jm, jm−1, · · · . Otherwise, ψ∗n(η) can be calculated
by moving un to its proper place among the indices. This can involve interchanging some uj,
which can introduce sign changes and so ψ∗n(η) is either zero or ±|j′〉, where j′ is obtained
by sorting {n, jm, jm−1, · · · } into descending order. We see that ψ∗n : Fm −→ Fm+1.

Dual to the creation operators ψ∗n are their adjoints ψn : Fm+1 −→ Fm. The operator ψn
deletes un from the semi-infinite monomial if n ∈ {jm, jm−1, · · · }, which can result in a sign
change. If n /∈ {jm, jm−1, · · · } then ψn|j〉 = 0.

Lemma 1.1. We have
[Jk, ψ

∗
j ] = ψ∗j−k.

Proof. From the Leibnitz rule, if η ∈ F, then

Jkψ
∗
j η = Jk(uj ∧ η) = Jk(uj) ∧ η + uj ∧ Jk(η) = uj−k ∧ η + ψ∗j (Jkη).

Rearranging,
[Jk, ψ

∗
j ]η = uj−k ∧ η = ψ∗j−k(η).
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Now let us introduce the fermion field

ψ(x) =
∑
j∈Z

ψ∗jx
j.

For our purposes this is just a formal expression that we can use to do a calculation. (The
“field” terminology comes from quantum field theory.)

Proposition 1.2. We have

[H+(z; q), ψ∗(x)] = log

(
1− qxz
1− xz

)
ψ∗(x). (1)

Proof. Note that by Lemma 1.1 we have

[Jk, ψ
∗(x)] =

∑
j

xj[Jk, ψ
∗
j ] =

∑
j

xj[Jk, ψ
∗
j ] =

∑
j

xjψ∗j−k = xkψ∗(x).

Now the left-hand side of (1) equals∑
k

1

k
(1− qk)zk[Jk, ψ∗(x)] =

∑ 1

k
(1− qk)(xz)kψ∗(x) = − log(1− xz) + log(1− qxz)

from the identity

− log(1− t) =
∞∑
k=1

tk

k
.

Lemma 1.3. Suppose that xa− ax = ca, where c ∈ C×. Then

exae−x = eca.

Proof. This is a special case of the Baker-Campbell-Hausdorff formula. We treat this as a
formal identity, disregarding convergence. We need the following identity, for k > 0:∑

j

(
k

j

)
(−1)jxk−jaxj = cka (2)

To avoid some bookkeeping we sum over all j ∈ Z but regard
(
k
j

)
as zero unless 0 6 j 6 k,

so most terms are zero. Assuming this true for k − 1, we may establish (2) by induction,
writing

(
k
j

)
=
(
k−1
j−1

)
+
(
k−1
j

)
. The left-hand side equals

x ·

[∑
j

(
k − 1

j − 1

)
(−1)jxk−1−jaxj

]
−

[∑
j

(
k − 1

j − 1

)
(−1)j−1xk−jaxj−1

]
· x.

Both terms in brackets equal ck−1a by induction, so we obtain ck−1[x, a] = cka. This
proves (2).

Now expand the exponentials and collect terms of degree k to write

exae−x =
∑
k

1

k!

∑
j

(
k

j

)
(−1)jxk−jaxj =

∑
k

1

k!
cka = eca,

as required.
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Proposition 1.4. Let H = H+(z; q). We have

eHψ∗(x)e−H =
1− qxz
1− xz

ψ∗(x). (3)

Proof. This follows from our Proposition 1.2 by exponentiating (using Lemma 1.3).

Now the key point is to show that the row transfer matrices T∆(z; q) satisfy the same
identity in Proposition 4. Let us introduce the operator ρk(z) : Fm −→ Fm+1 defined by:

ρk(z) = ψ∗k − zψ∗k−1

Lemma 1.5. Granted the invertibility of eH , the identity (3) is equivalent to

eHρk(z) = ρk(qz)eH . (4)

for k ∈ Z.

Proof. We rewrite (3) in the form

(1− xz)eHψ∗(x) = (1− qxz)ψ∗(x)eH .

This is a formal identity that can be expanded in powers of x. Comparing the coefficient of
xk gives exactly the identity (4).

Our goal is to show that the row T = T∆(z; q) satisfies the same identity Tρk(z) = ρk(qz)T
as eH . Let us represent ρk graphically as a “gate” that can be attached to the lattice model.
Remembering that ψk creates a particle in the k-th column, and that + denotes the absence
of a particle, − its presence, we see that we have the following Boltzmann weights:

z

+ −

− −

z

+ +

− +

z

− +

− −

z

+ +

+ −

1 1 −z −z

For reference, here are the Delta Boltzmann weights:

a1 a2 b1 b2 c1 c2

∆-ice +

+

+

+

z,q −

−

−

−

z,q
+

−

+

−

z,q −

+

−

+

z,q −

+

+

−

z,q
+

−

−

+

z,q

1 −qz 1 z (1− q)z 1
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Proposition 1.6. The row transfer matrix

Tρk(z) = ρk(qz)T.

Proof. Graphically this means that we must show the equivalence of the two following par-
tition functions:

z

ik+2 ik+1

ik ik−1

ik−2 ik−3

jk+2 jk+1 jk jk−1 jk−2 jk−3

z,q z,q z,q z,q z,q z,q· · · · · ·

and

qz

ik+2 ik+1 ik ik−1 ik−2 ik−3

jk+2 jk+1

jk jk−1

jk−2 jk−3

z,q z,q z,q z,q z,q z,q· · · · · ·
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We can clip out the middle part and just prove the equivalence of these systems:

z

a

b c

d

ef

z,q z,q

qz

a

b c

d

ef

z,q z,q

This can be thought of as a kind of a Yang-Baxter equation, but of the sort mentioned
in Lecture 16 Section 1, where the R-matrix changes as it moves past the vertices. This
verification is now subject to case by case verification. Let us check just one case. Suppose
that the boundary values are (a, b, c, d, e, f) = (+,+,+,+,−,+). On the left-hand side there
are two admissible states:

z

+

+ +

+

−+

−

−

+

z

+

+ +

+

−+

+

+

−

Their Boltzmann weights are, respectively (1 − q)z and −z, for a total of −qz. On the

5



right-hand side there is only one admissible state:

qz

+

+ +

+

−+

+

+

+

The Boltzmann weight is −qz. Since (1−q)z+(−z) = −qz, the required identity is satisfied
in this case, and the remaining cases are similar.

2 Proof of Theorem 6.1 of Lecture 19

We will only prove that eH+(z;q) = T∆(z; q). The identity eH−(z;q) = TΓ(z; q) can be deduced
using adjointness considerations, as in [1].

As in the last section, we abbreviate H = H+(z; q) and T = T∆(z; q). We have proved
that both operators eH and T both satisfy the same identities

eHρk(z) = ρk(qz)eH , Tρk(z) = ρk(qz)T.

We need to show that there is enough information in this fact to deduce that T |j〉 = eH |j〉
for every semi-infinite monomial |j〉 ∈ F.

Recall that the energy of |j〉, with j = (jm, jm−1, · · · ) ∈ Fm is
∑

k(jk−k). This is actually
a finite sum. The unique basis vector in Fm of energy 0 is the vacuum

|∅〉m = um ∧ um−1 ∧ · · · .

The identity
eH−(z;q)|∅〉m = T∆(z; q)|∅〉m

is clear since both sides are |∅〉m.
So assume that |j〉m is not the vacuum. Then it has positive energy. This means jm > m.

We will show
eH−(z;q)|j〉m = T∆(z; q)|j〉m. (5)

We are assuming inductively that the identity is known for states of lower energy.
Let |j′〉 = ujm−1 ∧ ujm−2 ∧ · · · ∈ Fm, so |j〉m = ψ∗jm |j

′〉m−1. We have

|j〉m = ρjm(z)|j′〉m−1 + zξ, (6)
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where
ξ = ujm−1 ∧ |j′〉.

Now both terms on the right-hand side of (6) have lower energy than |j〉m. It is possible
that ξ = 0 (if jm−1 = jm− 1) but if ξ 6= 0 it has lower energy than |j〉m. So by our induction
hypothesis

eH |j′〉m−1 = T |j′〉m−1, eHξ = ξ.

Now we have

eH |j〉m = eHρjm(z)|j′〉m−1 + zeHξ = ρjm(qz)eH |j′〉m−1 + zeHξ,

T |j〉m = Tρjm(z)|j′〉m−1 + zTξ = ρjm(qz)T |j′〉m−1 + zTξ,

and using (2) we obtain (5). So the theorem is proved.

3 Delta Ice and U-Turn models

Delta ice, which we introduced in Lecture 19, plays well with Gamma ice, and they often
appear together. The distinction between them is in the horizontal edges, not the vertical.
This situation persists in the colored case.

The Yang-Baxter equation can be used to prove:

• The row transfer matrices TΓ(z) commute with each other for varying z.

• The row transfer matrices T∆(z) commute with each other for varying z.

(There are versions of these statements for both infinite and finite grids.)
But the row transfer matrices TΓ(z) and T∆(w) do not commute, though

TΓ(z)T∆(w) = const×T∆(w)TΓ(z),

for a computable constant. This can be proved using the Yang-Baxer equation. For the
infinite grids, it can also be deduced from the TΓ(z) = eH−(z;q) and T∆(w) = eH+(z;q) using
the technique of the first section of this lecture.

Gamma ice and Delta ice appeared in [3]. (Use the arxiv version of this paper.) We
considered Gamma ice in Lectures 5 and 6, and computed the partition function as

sλ(z)
∏
i<j

xi − qxj.

There is a similar Tokuyama result for Delta ice.
Ivanov [9] gave a Tokuyama result for characters of symplectic groups. The lattice models

had been considered previously by Hamel and King [8], but we prefer Ivanov’s treatment
since Hamel and King do not use the Yang-Baxter equation, but instead combinatorial
arguments based on jeu de taquin. (They also preceded [3] in reinterpreting the formula of
Tokuyama [13] in terms of lattice models.)
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The models look like this, with alternating rows of Gamma and Delta ice:

+

+

+

+

+

+

+ + + + + + +

+ − + + − + −

Boltzmann weights at the “cap” vertices on the right edge must be specified, resulting in
what is sometimes called “U-turn models.” We are changing the Boltzmann weights from
Ivanov by switching + and − on the Delta ice. With this convention, the “paths” switch
from + and − when they cross a cap. Paths move right on the Delta rows (marked ◦) along
the − horizontal edges, and left along the Gamma rows (marked •) eventually exiting on
the left.

Changing just the cap weights results in another interesting model [2] related to meta-
plectic Whittaker functions. Both the models of [9, 2] were vastly generalized in [7], which
can now be understood as colored variants of the original model. U-turn models are also
employed in [11, 5, 14]

U-turn models and other exotic variations of the standard grid go back to [10]. In [12, 4],
many of these exotic variations of the grid are used in interesting models that are deforma-
tions of the Weyl character formula. However they are different from the results of [8], [3]
and [9]. In those papers, models are exhibited whose partition functions are of the form∏

α∈Φ+

(1− qz−λ)χλ(z),

where χλ is either a character of GL(n,C) (that is, a Schur function) or in Ivanov’s case of
Sp(2n,C). The character itself is undeformed. We will call such a result a Tokuyama formula.
These are significant because of the similarity to the Casselman-Shalika formula [6]. The
models of Tabony, Brubaker and Schultz are not Tokuyama results since the character itself
is also deformed. Finding a Tokuyama formula for orthogonal groups is an open problem.
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