
Lecture 19

1 Introduction

In Lecture 17 we saw that in the field-free six-vertex model there is a Hamiltonian H and
also a commuting family of six-vertex model row transfer matrices Tθ acting on a Hilbert
space, which in that case was H = ⊗NC2. The main theorem is that H commutes with Tθ,
which was proved by showing that H = (T−1

θ T ′θ)|θ=χ + cIH for a suitable constant c. This
result was proved by Baxter, in the greater generality of the 8 vertex model.

For the free-fermionic six-vertex model, there is a similar result, due to Brubaker and
Schultz [2]. In the proof (Lecture 20) we will follow [1], where a more general result is proved.
(The models in [1] may be regarded as generalizations of the result in [2] to a colored model.)
In this free-fermionic case there is a Hamiltonian operator H and a row transfer matrix T ,
and the result is now in the form eH = T . But the conclusion is the same: the Hamiltonian
H commutes with the row transfer matrix T .

The identity eH = T can be thought of as an expansion of T in terms of operators Jk
which move particles right or left to lower or higher energy levels. If k > 0, then Jk moves the
particle right to a lower energy level, and if k < 0 it moves the particle to the left. There are
correspondingly two versions of both the Hamiltonian, and two versions of the row transfer
matrix.

2 The Fermionic Fock space

The fermionic Fock space was invented by Dirac in the theory of the electron. The electron
is described by the Dirac equation, which we will not discuss, except to mention that the
energy levels are quantized, and there are solutions of arbitrary negative energy. This seems
unphysical, since a particle could radiate an arbitrarily large amount of energy by falling to
lower and lower energy levels.

But Dirac proposed a solution to this. Since the Dirac equation is linear, solutions can
exist in superposition. The electron is a fermion, subject to the Pauli exclusion principle,
meaning that no two electrons can occupy the same state. Dirac’s proposal was that all
sufficiently large negative energy level states are occupied, and all sufficiently large positive
energy levels are unoccupied.

Mathematically, the states are vectors in a Hilbert space that is now called the fermionic
Fock space F, which we will now describe. This is based on another Hilbert space that
we will call V , with basis vectors ui (i ∈ Z). Each ui represents a particle with a definite
energy level equal to i. Let us fix m ∈ Z and consider a sequence j = (jm, jm−1, · · · ) where
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jm > jm−1 > · · · and jk = k for k sufficiently negative. Define the charge m fermionic Fock
space, denoted Fm to be the free vector space on formal symbols

|j〉 := |j〉m = ujm ∧ ujm−1 ∧ · · · , j = (jm, jm−1, jm−2, · · · ). (1)

The Fock space F resembles the exterior algebra
∧
V , except that the basis vectors are

infinite wedges (called semi-infinite monomials).
We extend the notation ξj to sequences j = (jm, jm−1, · · · ) where jk = k for k sufficiently

negative, dropping the assumption that the sequence is strictly decreasing, by the usual
rules for ∧ in the exterior algebra. Thus |j〉 = 0 if jk = jl for any distinct k, l < m. And
interchanging two adjacent indices changes the sign of |j〉.

We can visualize the vector |j〉 by a Maya diagram in which sites numbered by integers
are filled with stones. If the site n equals jk for some k, the site is occupied , otherwise it is
unoccupied . We put a black stone at the occupied sites, and a white stone at the unoccupied
sites.

For example, if j = (4, 2,−1,−2,−3,−4, · · · ), so

|j〉 = u4 ∧ u2 ∧ u−1 ∧ u−2 ∧ u−3 ∧ u−4 ∧ · · ·

then the Maya diagram looks like this:

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·

· · · · · ·

The main point is that every sufficiently negative site is occupied, and every sufficiently
positive site is unoccupied. Although Maya diagrams are traditional (originating in soliton
theory with M. Sato and his collaborators), because we want to relate this story to the six
vertex model as we have been we prefer to use − and + for the occupied and unoccupied
sites respectively, so the Maya diagram looks like this:

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·

+ + + ++ − − − − − −· · · · · ·

For this state the charge m = 1.
If jk = k for all k 6 m then we obtain the charge m vacuum vector for which we have

an alternative notation
|∅〉m = um ∧ um−1 ∧ · · · .

In general we may define the energy of |j〉m to be
∑

k6m(jk − k). This is a finite sum. The
vacuum is the unique semi-infinite monomial in Fm of energy 0.
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3 The Row Transfer matrix T∆(z; q)

We will describe a kind of free-fermionic six-vertex model that we will call Delta ice. The
grid will now be of infinite width, and the Boltzmann weights in each row will depend on a
parameter z ∈ C×.

Remark 1. The ∆ here is different from Baxter’s ∆, which is (a1a2 + b1b2 − c1c2)/2a1b1.
Baxter’s ∆ is zero here, since all weights in this lecture are free-fermionic.

Now let i = (im, im−1, · · · ) and j = (jm, jm−1, · · · ) be two sequences such that im >
im−1 > · · · and jm > jm−1 > · · · and ii = jk = k for k sufficiently negative. We will define a
simple system consisting of a single row, and either no states or a single state. We consider a
grid with only one row that is infinite in both directions. As boundary conditions, the spins
of the vertical edges at the top will be given by the Maya diagram for ξi, and for the vertical
edges at the bottom, by the Maya diagram for ξj. There is also a “boundary condition” for
the horizontal edges, that there are only finitely many + spins. We use these Boltzmann
weights:

a1 a2 b1 b2 c1 c2

∆-ice +

+

+

+

z,q −

−

−

−

z,q
+

−

+

−

z,q −

+

−

+

z,q −

+

+

−

z,q
+

−

−

+

z,q

1 −qz 1 z (1− q)z 1

Since as part of the boundary conditions there are only finitely many horizontal edges
with + spins, all but finitely factors in the Boltzmann weight of a state are of type b1 (for
vertices far to the left) or of type a1 (for vertices far to the right). Therefore the Boltzmann
weight of a state is an infinite product with only finitely many terms not equal to 1, and so
has a well-defined finite value.

Lemma 3.1. The condition for the partition function to have a state (which is therefore
unique) is that

im > jm > im−1 > jm−2 > · · · . (2)

We express equation (2) by saying that the sequences i and j interleave.

Proof. This may be seen by consideration of the paths, which we recall from Lecture 2
Section 2 are obtained by joining edges with spin −. Because of our boundary condition,
that there are only finitely many horizontal edges with spin −, each path must begin at the
top and exit at the bottom for this system. For example, suppose that m = 1 and

i = (4, 2, 1,−2,−3,−4, · · · ), j = (3, 1,−1,−2,−3,−4, · · · ).
Then we have the following state.

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·
− − − − − −+ + + + +· · · · · ·

− − − − − −+ + + + +· · · · · ·
+ + + − + − − − + + + +
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Every path must start in the ik column and end in the jk column. Call this the k-th path.
We must have ik > jk since the paths move down and to the right. We also need jk > ik−1

since otherwise two paths will overlap between the ik−1 column and the jk column.

We quickly review Dirac notation for operators. Let H be a Hilbert space. A vector
in v ∈ H is denoted alternatively as |v〉, and called a ket . On the other hand, a vector w
gives rise to a linear functional v → (v, w) using the inner product on H, and we denote this
linear functional as 〈w|. The notation works well in quantum mechanics due to the emphasis
on Hermitian (self-adjoint) operators. If T is Hermitian, then (Tv, w) = (v, Tw), which we
denote 〈w|T |v〉. We can either think of this as either the linear functional 〈w| applied to the
vector T |v〉, or as the linear functional 〈w|T applied to the vector v.

As a special case, the partition function of the monostatic system above will be denoted

〈j|T∆(z; q)|i〉,

and we are now thinking of T∆(z; q) as being an operator on H.

Theorem 3.2. The operators T∆(z; q) all commute. That is, if w and v are other parameters,
we have

T∆(z; q)T∆(w, v) = T∆(w; v)T∆(z, q).

Proof. We make use of the general free-fermionic Yang-Baxter equation from Lecture 7. By
Theorem 1.1 of Lecture 7, there exists an R-matrix R depending on z, q, w, v such that we
have a Yang-Baxter equation in the form

a

b

c

d

e

f

R

z,q

w,v

a

b

c

d

e

f

R

w,v

z,v

It is of course not hard to compute the Boltzmann weights but we do not need them for this
proof. We only need that the a2 weight of R is nonzero. We fix i and k and will show that

〈k|T∆(w; v)T∆(z, q)|i〉 = 〈k|T∆(z; q)T∆(w, v)|i〉. (3)

The left-hand side is the partition function of a 2-rowed infinite grid, but we may truncate
this to a finite grid such that all sites of |i〉 and |k〉 to the right are occupied, and all sites
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to the left are unoccupied. This partition function looks like this:

−

−

−

−z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

− − −+ + +

− − −+ + +

i

k

All vertices outside this finite grid have type a1 or b1, and Boltzmann weight 1, so discarding
them does not change the partition function. So the partition function of this system is

〈k|T∆(w; v)T∆(z; q)|i〉.
Now we attach the R-matrix, which multiplies the Boltzmann weight by a2(R). We apply
the train argument, and discard the R-matrix on the right, which divides the Boltzmann
weight by the same constant a2(R). The resulting system has the rows switched, proving
(3). Since this is true for all i and k, the row transfer matrices are proved to commute.

We can define T∆(z; q) as an operator on F by

T∆(z; q)|i〉 =
∑
j

〈j|T∆(z; q)|i〉 |j〉. (4)

The sum on the right is finite, so this defines an element of F. However T∆(z; q) is not
a bounded operator. That is, if we make F into a Hilbert space where the semi-infinite
monomials |i〉 are an orthonormal basis, since the number of terms on the right side of
(4) can be arbitrarily large, the map T∆(z; q) defined on basis elements does extend to an
operator with bounded operator norm.

4 The Row Transfer Matrix TΓ(z)

There is another type of six-vertex model that is in a sense dual to the models in Section 3.
For these we use the following Boltzmann weights:

a1 a2 b1 b2 c1 c2
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+
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−

−

−
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−

+

−
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−
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z,q −

+

+

−

z,q
+
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−

+
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z−1 1 −qz−1 1 1− q z−1
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Remark 2. These are the same as the weights Tokuyama models introduced in Lecture 5,
Section 2, divided by z. Since every weight is divided by the same constant, we could
use these weights in the Tokuyama model, and the partition functions would be essentially
unchanged, altered only be a constant monomial. However our boundary conditions will be
different from the Tokuyama models.

Now we change the boundary conditions. We will requre all but finitely many horizontal
spins to be −. This guarantees that the row transfer matrix will be an essentially finite
product, since all but finitely many spins will be of type a2 or b2.

We can define 〈j|T∆(z; q)|i〉 as before, but now the condition for this to be nonzero is
changed: now we require

jm > im > jm−1 > im−1 > · · · . (5)

Here is a sample state with i = (3, 1,−1,−2,−3, · · · ) and j = (4, 2, 1,−2,−3, · · · ). We
modify the rule for describing the paths: now the paths follow the − spins on vertical edges,
and + spins on the horizontal edges. This means that the paths move down and to the left,
so the row transfer matrix is energy raising, in accordance with (5).

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·
− − − − − −+ + + + +

− − − − − −+ + + + +

− − − + − + + + − − − −
· · · · · ·· · · · · ·

We can try to define TΓ(z; q) as an operator,

TΓ(z; q)|i〉 =
∑
j

〈j|TΓ(z; q)|i〉 |j〉.

However (in contrast with ∆-ice) the sum on the right-hand side is no longer finite.

5 The Heisenberg Lie Algebra

We now come to a representation of the Heisenberg Lie algebra s with generators

{jk|k ∈ Z} and 1,

with 1 central, and

[jk, jl] =

{
k if k = −l,
0 otherwise.

The center of s is spanned by 1 and j0. This representation is at the heart of the boson-
fermion correspondence. This is a relationship between the fermionic Fock space and the
bosonic Fock space which originated in mathematical physics, and has important applications
to representation theory and algebraic combinatorics ([4, 7, 9]).

We remind the reader that we have defined

ujm ∧ ujm−1 ∧ · · ·
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even if we do not have jm > jm−1 > · · · . It is only necessary that jk = k for k sufficiently
negative. However this monomial might be zero (if some index is repeated) or the negative
of a basis element if putting the vectors in order produces an odd number of sign changes.
If jm > jm−1 > · · · we will denote this vector as |j〉. Otherwise we will avoid this notation.

Let k ∈ Z. For the time being assume that k 6= 0. We define an operator Jk on V by
Jk(un) = un−k. Then we transport Jk to acting on F by the Leibnitz rule, so that

Jk|j〉 = (ujm−k ∧ ujm−1 ∧ · · · ) + (ujm ∧ ujm−1−k ∧ · · · ) + · · · .

In other words, to apply Jk, we pick one occupied location, and move the particle at that
location k steps lower or higher (depending on the sign of k) to an unoccupied location. We
also define J0 to have eigenvalue m on Fm.

Theorem 5.1. The operators Jk on Fm satisfy

[Jk, Jl] =

{
k · 1Fm if k = −l,
0 otherwise.

Hence jk 7→ Jk defines a representation of the Heisenberg Lie algebra.

Proof. Let us first show that

JkJ−k|j〉 − J−kJk|j〉 = k|j〉. (6)

We may assume k > 0 since the statements for k and −k are trivially equivalent.
First suppose that |j〉 = |∅〉m is the vacuum. Then Jk|∅〉m = 0. On the other hand,

J−k|∅〉 is a sum of k terms, and applying Jk to each of these produces a copy of |∅〉m. Now
we prove (6) for general j. If |j〉 = |j〉m is not the vacuum may write |j〉m = uj ∧ η where
j = jm and

η = ujm−1 ∧ ujm−1 ∧ · · ·

has strictly smaller energy than |j〉m. By induction on enery we may assume that (6) is true
for η. Now we have J−k = uj+k ∧ η + uj ∧ J−kη and so

JkJ−k|j〉m = uj ∧ η + uj+k ∧ Jkη + uj−k ∧ J−kη + uj ∧ JkJ−kη.

Similarly
J−kJk|j〉m = uj ∧ η + uj−k ∧ J−kη + uj+k ∧ Jkη + uj ∧ J−kJkη.

Subtracting,

JkJ−k|j〉m − J−kJk|j〉m = uj ∧ (JkJ−kη − J−kJkη) = uj ∧ kη = k|j〉m,

where we have used our induction hypothesis.
We leave it to the reader to show that Jk and Jl commute unless k = −l.

7



6 Row Transfer Matrices as Vertex Operators

We emphasize that the Jk with k > 0 all commute, and the J−k with −k < 0 all commute, so
we have two large commuting families of “operators” on F or Fm. The J−k are not operators
in the usual sense, since each turns each basis vector into an infinite sum of basis vectors,
which is not in F. Still, the two-point functions

〈i|Jk|j〉

do make sense for all k, and as long as we couch our results in terms of these, there are no
difficulties.

Now let us introduce two “Hamiltonians”

H+(z; q) =
∞∑
k=1

1

k
(1− qk)zkJk, H−(z; q) =

∞∑
k=1

1

k
(1− qk)z−kJ−k

Theorem 6.1 ([2]). We have

eH+(z;q) = T∆(z; q), eH−(z;q) = TΓ(z; q), (7)

The operator H+(z; q) commutes with T∆(w; v) for all w,v, and the operator H−(z; q) com-
mutes with TΓ(w; v) for all w,v.

Proof. We will take this up in Lecture 20. For now we point out that the identities (7) imply
the commutativity statements, since for example the operators T∆(w; v) and the operator
H+(z; q) are all seen to be expressible in terms of the Jk with k > 0, which commute with
each other. We also obtain a new proof of the commutativity statement in Theorem 3.2 from
this observation.

“Operators” such as eH+(z;q) and eH−(z;q), particularly in combinations such as:

eH−(z;q)eH+(z;q) = exp

(
∞∑
k=1

1

k
(1− qk)z−kJ−k

)
exp

(
∞∑
k=1

1

k
(1− qk)zkJk

)
(8)

are called vertex operators. Here “operators” is in quotation marks since there is a nontrivial
problem in making sense of this. Similar expressions appear in conformal field theory and in
soliton theory. A purely algebraic and rigorous axiomatization of the underlying mathematics
may be found in the theory of vertex algebras. In this context, expressions such as (8) appear
in lattice vertex algebras ([3] Chapter 5 or [6] Section 5.4). See also [8] and [5].
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