
Lecture 17

A standard method in analysis, going back to Hilbert and Schmidt, and much earlier to
Green, for studying operators is to find a larger commuting family of operators. A simple
example is the Laplacian, an unbounded self-adjoint operator. This commutes with the
integral operators F 7−→ F ∗ φ, where φ ∈ C∞c (Rn), which are Hilbert-Schmidt operators,
hence compact. This method is used extensively in the theory of automorphic forms, for
example in the Selberg trace formula.

Baxter’s approach to the six- and eight-vertex models was to embed the row transfer
matrix into a larger commuting family of row transfer matrices. Another application of
the same idea led to the solution of a problem in one-dimensional quantum mechanics, his
analysis of the Heisenberg spin chains, a model of ferromagnetism [5]. Baxter was able to
introduce the theory of elliptic functions by finding a commuting family of row transfer
matrices from the eight-vertex model.

Baxter [1, 2] knew that two operators arising from physical problems were related to each
other. (This fact was also observed by Sutherland [6].) The operators are:

• The row transfer matrices from the field-free 6 or 8 vertex models

• Hamiltonians for Heisenberg spin chains, called the XXZ and XYZ Hamiltonians.

Using the Yang-Baxter equation, the row transfer matrices can be organized into commuting
families. This means that the row transfer matrix contains a parameter that can be differen-
tiated, and roughly the Hamiltonian is the logarithmic derivative of the row transfer matrix.
Equivalently, the row transfer matrix is an exponentiated Hamiltonian. As a consequence,
the Hamiltonian also commutes with this family of row transfer matrices.

The field-free eight vertex model can be solved similarly to the six vertex model, using a
parametrized Yang-Baxter equation. Let a, b, c, d be the Boltzmann weights, thus:
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Define

∆ =
a2 + b2 − c2 − d2

ab+ cd
, Γ =

ab− cd
ab+ cd

. (1)

If a′, b′, c′, d′ are another set of Boltzmann weights, and ∆′, Γ′ are defined like ∆,Γ, the
condition for the Yang-Baxter equation to have a solution is

∆ = ∆′, Γ = Γ′.
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(See [2], Chapter 10.) Now with Γ and ∆ fixed, the solutions a : b : c : d to (1) form an
elliptic curve, and indeed, the relevant Yang-Baxter equation is a parametrized Yang-Baxter
equation with this curve as its parameter group. The relevant quantum group is an elliptic
quantum group ([4]).

Baxter’s work solving the eight-vertex model was carried out on a ship, where he took
over the chart room for his calculations. Baxter [2] wrote in Chapter 10:

Sutherland (1970) showed directly that the transfer matrix of any zero-field
eight-vertex model commutes with an XYZ operator X. They therefore have the
same eigenvectors. I was not aware of Sutherland’s result when I solved the eight-
vertex model (I did much of the work in the writing room of the P & O liner
Arcadia, in the Atlantic and Indian Oceans. This was good for concentration,
but not for communication). It should be obvious from Sections 10.4-10.6 that
such commutation relations are closely linked with the solution of the problem.

This theory is outside the scope of these lectures, but we will consider the simpler case
where d = 0, where the field-free six-vertex model is related to the XXZ Hamiltonian. As
we know, the relevant quantum group is Uq(ŝl2).

For the free-fermionic six vertex model (where the quantum group is Uq(ĝl(1|1))) a similar
result was obtained by Brubaker and Schultz [3]. See also [7].

1 Heisenberg Spin Chains

In classical mechanics, observables are functions A on the phase space, which is a parameter
space representing the state of a physical system, including the positions and momenta of
all particles. Given a state of the system, every observable thus has a definite value.

In quantum mechanics, by contrast, it is possible for the system to be in a state where a
given observable does not have a definite value. The state of the system is represented by a
vector in a Hilbert space H, and the classical observable A is replaced by a Hermitian (self-
adjoint) operator Â : H −→ H (or an unbounded operator defined on a dense subspace). If
Ψ ∈ H represents the state of the system, the observable A has a definite value λ if ÂΨ = λΨ.

For simplicity let us assume that Â has a discrete spectrum. By the spectral theorem,
the state Ψ may be expanded as a “Fourier series”

Ψ =
∑

aiΨi

where Ψi are eigenfunctions of Â. If we normalize Ψ so that |Ψ| = 1, then the “amplitudes”
ai have a probabilistic interpretation: if the observable f is measured, a definite value λi
is returned, and the “wave function” Ψ collapses to the state Ψi. The probability of this
happening is |ai|2. By the Plancherel theorem

∑
i |ai|2 = 1, and so this scheme gives a

probability distribution on the spectrum of Â.
In quantum mechanics, two observables A and B can be measured simultaneously if and

only if the corresponding operators Â and B̂ commute. In this case, the eigenfunctions Ψi

can be chosen to be simultaneous eigenfunctions of Â and B̂.
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A particular observable is energy , and the corresponding operator is the Hamiltonian. It
determines the evolution of the system in time, through Schrödinger’s equation.

An examples of a collection of observables that cannot be measured simultaneously are
electron spin in different directions. A 2 dimensional Hilbert space H = C2 is sufficient to
represent a particle such as the electron with spin 1

2
. If the spin is measured along the z axis,

it will be found in one of two states, up or down. The spin operator is therefore represented
by the matrix

σz =

(
1
−1

)
.

On the other hand, if the spin is measured along the x or y axes, it will again be found in
one of two possible states. The corresponding operators do not commute with σz, and with
respect to the same basis, are represented by the matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
.

The three matrices σx, σy, σz are called the Pauli spin matrices . They are both Hermitian
and unitary. We have an alternative labeling

σ1 = σx, σ2 = σy, σ3 = σz, σ4 = I2. (2)

Heisenberg [5] proposed a quantum mechanical model of ferromagnetism. We consider
a sequence of N magnetic atoms such as iron at adjacent sites. We will assume that the
sites of the spin chain are arranged in a ring. Consequently the boundary conditions for the
six-vertex model will also be periodic, as in Lecture 2.

Each atom is a magnetic dipole whose dipole moment is proportional to the spin. Since
the spin module is 2-dimensional, it is represented by a vector in a 2-dimensional space. The
Hilbert space of a single magnetic atom is C2. Therefore the Hilbert space H of N atoms is
⊗NC2. We let σxj , σyj and σzj denote the Pauli matrices acting on the j-th site, and as the
identity operator on all other sites.

To give the simplest formulation, we will assume that the chain is periodic, so σxN+1 = σx1
etc. Adjacent dipoles tend to align in the same direction, which partly explains the form of
the Hamiltonian

H =
1

2

N∑
j=1

(Jxσ
x
j ⊗ σxj+1 + Jyσ

y
j ⊗ σ

y
j+1 + Jzσ

z
j ⊗ σzj+1), (3)

for suitable positive constants Jx, Jy, Jz. Due to the assumed periodicity, σN+1 = σN . If
Jx = Jy, this is called the XXZ Hamiltonian. It is an endomorphism of ⊗NC2.

On the other hand, we can fix Boltzmann weights a, b, c, d and consider the row transfer
matrix Ta,b,c,d(α, β) as follows. We will denote the standard basis of C2 as

v+ =

(
1
0

)
, v− =

(
0
1

)
.

A basis of ⊗NC2 consists of vectors vα where α = (α1, · · · , αN) ∈ {+,−}N , where

vα = vα1 ⊗ · · · ⊗ vαN
.
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We may thus regard both the Hamiltonian H and the row transfer matrices for the 8 vertex
model as endomorphisms of the same Hilbert space, ⊗NC2. Baxter proved:

• The XXZ Hamiltonian commutes with a family of 6-vertex model row transfer matrices.

• The XYZ Hamiltonian commutes with a family of 8-vertex model row transfer matrices.

We will review the relationship of the XXZ Hamiltonian with the row transfer matrices for
the field-free 6-vertex model. We will partly investigate the 8-vertex model, but we will
specialize to the 6-vertex model before long, and prove the second statement. See Baxter [1]
for the 8-vertex model case, which requires some elliptic and theta functions.

2 Preliminaries

We will make use of the Pauli spin matrices with respect to this basis, and if α, β ∈ {+,−},
and if σ is one of the Paul spin matrices, we will denote by σα,β the corresponding matrix
entry. Thus σy−+ = i and σy+− = −i. Let

p1 =
1

2
(b+ d), p2 =

1

2
(b− d), p3 =

1

2
(a− c), p4 =

1

2
(a+ c). (4)

Let v be a vertex type. We will denote by Rγδ
αβ(v) the Boltzmann weight

α

β

γ

δ

v
or

α

β γ

δ

v

Lemma 2.1. Let α, β, γ, δ ∈ {+,−}. Then

Rγδ
αβ =

4∑
k=1

pkσ
k
βγσ

k
αδ. (5)

Proof. This can be checked by case-by-case consideration. There are 16 choices for α, β, γ, δ,
but only eight give a nonzero result. Let us consider for example (α, β, γ, δ) = (+,−,+,−).
Since σk−+ and σk+− are nonzero only for k = 1, 2, there are two terms:

1

2
(b+ d)σ1

βγσ
1
αδ +

1

2
(b− d)σ2

βγσ
2
αδ = b.

The remaining cases are similar.

There is a similar identity

Rγδ
αβ =

4∑
k=1

wkσ
k
βδσ

k
γα

where

w1 =
1

2
(c+ d), w2 =

1

2
(−c+ d), w3 =

1

2
(a− b), w4 =

1

2
(a+ b).

We won’t need this but mention it for completeness.
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3 Six-vertex model and the XXZ Hamiltonian

Now we specialize to the six-vertex model, referring to [1] for the general case. Thus now
d = 0, and as a consequence of this simplification we will have Jx = Jy in the Hamiltonian.
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Let Ta,b,c(α, β) be the corresponding row transfer matrix.
We saw in Lecture 4 that if ∆ is fixed, then we have a parametrized Yang-Baxter equation

involving a, b, c such that
a2 + b2 − c2

2ab
= ∆.

Let q be such that ∆ = 1
2
(q + q−1). We may parametrize the solutions by a map

R∆ : C× −→ {field free Boltzmann weights a, b, c}

given by

R∆(x) = (a, b, c) =

(
xq − (xq)−1

q − q−1
,
x− x−1

q − q−1
, 1

)
.

These are the Boltzmann weights from Theorem 5.2 in Lecture 4, divided by the constant
1
2
(q − q−1). We saw that this gives a parametrized Yang-Baxter equation. (Dividing by a

constant does not affect this since both sides of the Yang-Baxter equation are divided by the
same constant.)

Then by Theorem 1.1 of Lecture 2, the row transfer matrices Ta,b,c(α, β) form a commuting
family. We choose fixed χ so that eiχ = q. Then we choose variable θ so that eiθ = xq. We
slightly modify the notation, omitting ∆ from the notation R∆ because it is fixed, and
regarding R as a function of θ instead of x. We will use the notation R(θ)γδαβ as explained in
Section 2.

Lemma 3.1. When θ = χ, we have

R(χ)γδαβ =

{
1 if α = δ and β = γ,
0 otherwise.

Proof. Note that when θ = χ we have (a, b, c) = (1, 0, 1). So this follows from the definition
of the Boltzmann weights.

Let Tθ(α, β) be the row transfer matrix Ta,b,c(α, β) with this parametrization.

Remark 1. At the special point θ = χ, since b = 0, we are in a 5-vertex model case in which
the particles are allowed to move to the right but not straight down. In fact Tχ(α, β) is the
right shift operator, moving each particle one step to the right. Obviously Tχ is invertible,
the inverse being the left shift operator.
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We may differentiate the operator Tθ with respect to θ. The derivative T ′θ commutes with
Tθ, and we may consider the logarithmic derivative at θ = χ.

L =
1

2
T−1
χ T ′χ.

It is at this point θ = χ that there is a relationship between the XXZ Hamiltonian and the
six-vertex model. Regard the pi in (4) as functions of θ.

Jx =
1

2
p′1(χ), Jy =

1

2
p′2(χ), Jz =

1

2
p′3(χ). (6)

Since d = 0, we have Jx = Jy. Let H be the XXZ Hamiltonian (3).

Theorem 3.2. With these notations, we have

L = H + cI⊗NC2 ,

where c is an explicit constant. The operator H commutes with the 6-vertex row transfer
matrices Tθ.

Proof. We will label the interior edges of the single-layer grid whose partition function is Tθ
by λ1, · · · , λN , thus:

β1

α1

β2

α2

β3

α3

βN−1

αN−1

βN

αN

λ1 λ2 λ3 λN λ1. . .

Due to the periodic boundary conditions, λN+1 = λ1. Thus

Tθ(α, β) =
∑
λ

N∏
i=1

R(θ)
λi+1βi
λiαi

.

Differentiating with respect to θ and setting θ = χ,

T ′χ(α, β) =
N∑
j=1

∑
λ

[
d

dθ
R(θ)

λj+1βj
λjαj

]
θ=χ

∏
i 6=j

R(χ)
λi+1βi
λiαi

.

By Lemma 3.1, if i 6= j then R(χ)
λi+1βi
λiαj

= 1 provided λi = βi and αi = λi+1, and is zero
otherwise. Therefore the j-th term only contributes if βi = αi−1 when i 6= j, j+1. Assuming
this, since we are summing over λ, we may omit these factors and take λj = αj−1, λj+1 = βj+1

to obtain

T ′χ(α, β) =
N∑
j=1

d

dθ
R(θ)βj+1βj

αj−1αj
|θ=χ .
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Now we substitute (5) to obtain

T ′χ(α, β) =
4∑

k=1

p′k(χ)
N∑
j=1

σkαjβj+1
σkαj−1βj

.

But now we remember that it is not T ′χ that we are trying to compute, but 1
2
T−1
χ T ′χ, and

T−1
χ is the left-shift operator by Remark 1. Thus

L =
1

2

4∑
k=1

p′k(χ)
N∑
j=1

σkαjβj
σkαj−1βj−1

.

The first three terms produce the XXZ Hamiltonian, with Jx = Jy = p′1(χ) and Jz = p′3(χ).
The last term produces cI⊗NC2 with the constant c = 1

2
Np′4(χ).
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