Lecture 17

A standard method in analysis, going back to Hilbert and Schmidt, and much earlier to Green, for studying operators is to find a larger commuting family of operators. A simple example is the Laplacian, an unbounded self-adjoint operator. This commutes with the integral operators $F \longmapsto F * \phi$, where $\phi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, which are Hilbert-Schmidt operators, hence compact. This method is used extensively in the theory of automorphic forms, for example in the Selberg trace formula.

Baxter's approach to the six- and eight-vertex models was to embed the row transfer matrix into a larger commuting family of row transfer matrices. Another application of the same idea led to the solution of a problem in one-dimensional quantum mechanics, his analysis of the Heisenberg spin chains, a model of ferromagnetism [5]. Baxter was able to introduce the theory of elliptic functions by finding a commuting family of row transfer matrices from the eight-vertex model.

Baxter [1, 2] knew that two operators arising from physical problems were related to each other. (This fact was also observed by Sutherland [6].) The operators are:

- The row transfer matrices from the field-free 6 or 8 vertex models
- Hamiltonians for Heisenberg spin chains, called the XXZ and XYZ Hamiltonians.

Using the Yang-Baxter equation, the row transfer matrices can be organized into commuting families. This means that the row transfer matrix contains a parameter that can be differentiated, and roughly the Hamiltonian is the logarithmic derivative of the row transfer matrix. Equivalently, the row transfer matrix is an exponentiated Hamiltonian. As a consequence, the Hamiltonian also commutes with this family of row transfer matrices.

The field-free eight vertex model can be solved similarly to the six vertex model, using a parametrized Yang-Baxter equation. Let a, b, c, d be the Boltzmann weights, thus:

a	a	b	b	c	c	${ }^{\text {d }}$	${ }^{\text {d }}$
${ }^{\oplus}{ }_{\oplus}^{\oplus}$	$\theta{ }_{\ominus}^{\ominus} \ominus$	${ }_{\ominus}^{\ominus}{ }_{\ominus}^{\ominus}$	$\ominus_{\ominus}^{\oplus} \ominus$	$\ominus_{\ominus}^{\oplus}{ }_{\ominus}^{\oplus}$	$\oplus_{\oplus}^{\ominus} \ominus$	$\ominus{ }_{\ominus}^{\ominus} \oplus$	${ }_{\ominus}^{\oplus}{ }_{\ominus}^{\ominus}$

Define

$$
\begin{equation*}
\Delta=\frac{a^{2}+b^{2}-c^{2}-d^{2}}{a b+c d}, \quad \Gamma=\frac{a b-c d}{a b+c d} \tag{1}
\end{equation*}
$$

If $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ are another set of Boltzmann weights, and $\Delta^{\prime}, \Gamma^{\prime}$ are defined like Δ, Γ, the condition for the Yang-Baxter equation to have a solution is

$$
\Delta=\Delta^{\prime}, \quad \Gamma=\Gamma^{\prime}
$$

(See [2], Chapter 10.) Now with Γ and Δ fixed, the solutions $a: b: c: d$ to (1) form an elliptic curve, and indeed, the relevant Yang-Baxter equation is a parametrized Yang-Baxter equation with this curve as its parameter group. The relevant quantum group is an elliptic quantum group ([4]).

Baxter's work solving the eight-vertex model was carried out on a ship, where he took over the chart room for his calculations. Baxter [2] wrote in Chapter 10:

Sutherland (1970) showed directly that the transfer matrix of any zero-field eight-vertex model commutes with an XYZ operator X. They therefore have the same eigenvectors. I was not aware of Sutherland's result when I solved the eightvertex model (I did much of the work in the writing room of the $\mathrm{P} \& \mathrm{O}$ liner Arcadia, in the Atlantic and Indian Oceans. This was good for concentration, but not for communication). It should be obvious from Sections 10.4-10.6 that such commutation relations are closely linked with the solution of the problem.

This theory is outside the scope of these lectures, but we will consider the simpler case where $d=0$, where the field-free six-vertex model is related to the XXZ Hamiltonian. As we know, the relevant quantum group is $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$.

For the free-fermionic six vertex model (where the quantum group is $\left.U_{q}(\widehat{\mathfrak{g} l}(1 \mid 1))\right)$ a similar result was obtained by Brubaker and Schultz [3]. See also [7].

1 Heisenberg Spin Chains

In classical mechanics, observables are functions A on the phase space, which is a parameter space representing the state of a physical system, including the positions and momenta of all particles. Given a state of the system, every observable thus has a definite value.

In quantum mechanics, by contrast, it is possible for the system to be in a state where a given observable does not have a definite value. The state of the system is represented by a vector in a Hilbert space \mathfrak{H}, and the classical observable A is replaced by a Hermitian (selfadjoint) operator $\hat{A}: \mathfrak{H} \longrightarrow \mathfrak{H}$ (or an unbounded operator defined on a dense subspace). If $\Psi \in \mathfrak{H}$ represents the state of the system, the observable A has a definite value λ if $\hat{A} \Psi=\lambda \Psi$.

For simplicity let us assume that \hat{A} has a discrete spectrum. By the spectral theorem, the state Ψ may be expanded as a "Fourier series"

$$
\Psi=\sum a_{i} \Psi_{i}
$$

where Ψ_{i} are eigenfunctions of \hat{A}. If we normalize Ψ so that $|\Psi|=1$, then the "amplitudes" a_{i} have a probabilistic interpretation: if the observable f is measured, a definite value λ_{i} is returned, and the "wave function" Ψ collapses to the state Ψ_{i}. The probability of this happening is $\left|a_{i}\right|^{2}$. By the Plancherel theorem $\sum_{i}\left|a_{i}\right|^{2}=1$, and so this scheme gives a probability distribution on the spectrum of \hat{A}.

In quantum mechanics, two observables A and B can be measured simultaneously if and only if the corresponding operators \hat{A} and \hat{B} commute. In this case, the eigenfunctions Ψ_{i} can be chosen to be simultaneous eigenfunctions of \hat{A} and \hat{B}.

A particular observable is energy, and the corresponding operator is the Hamiltonian. It determines the evolution of the system in time, through Schrödinger's equation.

An examples of a collection of observables that cannot be measured simultaneously are electron spin in different directions. A 2 dimensional Hilbert space $\mathfrak{H}=\mathbb{C}^{2}$ is sufficient to represent a particle such as the electron with spin $\frac{1}{2}$. If the spin is measured along the z axis, it will be found in one of two states, up or down. The spin operator is therefore represented by the matrix

$$
\sigma^{z}=\left(\begin{array}{ll}
1 & \\
& -1
\end{array}\right)
$$

On the other hand, if the spin is measured along the x or y axes, it will again be found in one of two possible states. The corresponding operators do not commute with σ^{z}, and with respect to the same basis, are represented by the matrices

$$
\sigma^{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma^{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) .
$$

The three matrices $\sigma^{x}, \sigma^{y}, \sigma^{z}$ are called the Pauli spin matrices. They are both Hermitian and unitary. We have an alternative labeling

$$
\begin{equation*}
\sigma^{1}=\sigma^{x}, \quad \sigma^{2}=\sigma^{y}, \quad \sigma^{3}=\sigma^{z}, \quad \sigma^{4}=I_{2} \tag{2}
\end{equation*}
$$

Heisenberg [5] proposed a quantum mechanical model of ferromagnetism. We consider a sequence of N magnetic atoms such as iron at adjacent sites. We will assume that the sites of the spin chain are arranged in a ring. Consequently the boundary conditions for the six-vertex model will also be periodic, as in Lecture 2.

Each atom is a magnetic dipole whose dipole moment is proportional to the spin. Since the spin module is 2-dimensional, it is represented by a vector in a 2-dimensional space. The Hilbert space of a single magnetic atom is \mathbb{C}^{2}. Therefore the Hilbert space \mathfrak{H} of N atoms is $\otimes^{N} \mathbb{C}^{2}$. We let σ_{j}^{x}, σ_{j}^{y} and σ_{j}^{z} denote the Pauli matrices acting on the j-th site, and as the identity operator on all other sites.

To give the simplest formulation, we will assume that the chain is periodic, so $\sigma_{N+1}^{x}=\sigma_{1}^{x}$ etc. Adjacent dipoles tend to align in the same direction, which partly explains the form of the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2} \sum_{j=1}^{N}\left(J_{x} \sigma_{j}^{x} \otimes \sigma_{j+1}^{x}+J_{y} \sigma_{j}^{y} \otimes \sigma_{j+1}^{y}+J_{z} \sigma_{j}^{z} \otimes \sigma_{j+1}^{z}\right), \tag{3}
\end{equation*}
$$

for suitable positive constants J_{x}, J_{y}, J_{z}. Due to the assumed periodicity, $\sigma_{N+1}=\sigma_{N}$. If $J_{x}=J_{y}$, this is called the XXZ Hamiltonian. It is an endomorphism of $\otimes^{N} \mathbb{C}^{2}$.

On the other hand, we can fix Boltzmann weights a, b, c, d and consider the row transfer matrix $T_{a, b, c, d}(\alpha, \beta)$ as follows. We will denote the standard basis of \mathbb{C}^{2} as

$$
v_{+}=\binom{1}{0}, \quad v_{-}=\binom{0}{1} .
$$

A basis of $\otimes^{N} \mathbb{C}^{2}$ consists of vectors v_{α} where $\alpha=\left(\alpha_{1}, \cdots, \alpha_{N}\right) \in\{+,-\}^{N}$, where

$$
v_{\alpha}=v_{\alpha_{1}} \otimes \cdots \otimes v_{\alpha_{N}} .
$$

We may thus regard both the Hamiltonian H and the row transfer matrices for the 8 vertex model as endomorphisms of the same Hilbert space, $\otimes^{N} \mathbb{C}^{2}$. Baxter proved:

- The XXZ Hamiltonian commutes with a family of 6 -vertex model row transfer matrices.
- The XYZ Hamiltonian commutes with a family of 8-vertex model row transfer matrices.

We will review the relationship of the XXZ Hamiltonian with the row transfer matrices for the field-free 6 -vertex model. We will partly investigate the 8 -vertex model, but we will specialize to the 6 -vertex model before long, and prove the second statement. See Baxter [1] for the 8 -vertex model case, which requires some elliptic and theta functions.

2 Preliminaries

We will make use of the Pauli spin matrices with respect to this basis, and if $\alpha, \beta \in\{+,-\}$, and if σ is one of the Paul spin matrices, we will denote by $\sigma_{\alpha, \beta}$ the corresponding matrix entry. Thus $\sigma_{-+}^{y}=i$ and $\sigma_{+-}^{y}=-i$. Let

$$
\begin{equation*}
p_{1}=\frac{1}{2}(b+d), \quad p_{2}=\frac{1}{2}(b-d), \quad p_{3}=\frac{1}{2}(a-c), \quad p_{4}=\frac{1}{2}(a+c) . \tag{4}
\end{equation*}
$$

Let v be a vertex type. We will denote by $R_{\alpha \beta}^{\gamma \delta}(v)$ the Boltzmann weight

Lemma 2.1. Let $\alpha, \beta, \gamma, \delta \in\{+,-\}$. Then

$$
\begin{equation*}
R_{\alpha \beta}^{\gamma \delta}=\sum_{k=1}^{4} p_{k} \sigma_{\beta \gamma}^{k} \sigma_{\alpha \delta}^{k} . \tag{5}
\end{equation*}
$$

Proof. This can be checked by case-by-case consideration. There are 16 choices for $\alpha, \beta, \gamma, \delta$, but only eight give a nonzero result. Let us consider for example $(\alpha, \beta, \gamma, \delta)=(+,-,+,-)$. Since σ_{-+}^{k} and σ_{+-}^{k} are nonzero only for $k=1,2$, there are two terms:

$$
\frac{1}{2}(b+d) \sigma_{\beta \gamma}^{1} \sigma_{\alpha \delta}^{1}+\frac{1}{2}(b-d) \sigma_{\beta \gamma}^{2} \sigma_{\alpha \delta}^{2}=b .
$$

The remaining cases are similar.
There is a similar identity

$$
R_{\alpha \beta}^{\gamma \delta}=\sum_{k=1}^{4} w_{k} \sigma_{\beta \delta}^{k} \sigma_{\gamma \alpha}^{k}
$$

where

$$
w_{1}=\frac{1}{2}(c+d), \quad w_{2}=\frac{1}{2}(-c+d), \quad w_{3}=\frac{1}{2}(a-b), \quad w_{4}=\frac{1}{2}(a+b) .
$$

We won't need this but mention it for completeness.

3 Six-vertex model and the XXZ Hamiltonian

Now we specialize to the six-vertex model, referring to [1] for the general case. Thus now $d=0$, and as a consequence of this simplification we will have $J_{x}=J_{y}$ in the Hamiltonian.

Let $T_{a, b, c}(\alpha, \beta)$ be the corresponding row transfer matrix.
We saw in Lecture 4 that if Δ is fixed, then we have a parametrized Yang-Baxter equation involving a, b, c such that

$$
\frac{a^{2}+b^{2}-c^{2}}{2 a b}=\Delta
$$

Let q be such that $\Delta=\frac{1}{2}\left(q+q^{-1}\right)$. We may parametrize the solutions by a map

$$
R_{\Delta}: \mathbb{C}^{\times} \longrightarrow\{\text { field free Boltzmann weights } a, b, c\}
$$

given by

$$
R_{\Delta}(x)=(a, b, c)=\left(\frac{x q-(x q)^{-1}}{q-q^{-1}}, \frac{x-x^{-1}}{q-q^{-1}}, 1\right)
$$

These are the Boltzmann weights from Theorem 5.2 in Lecture 4, divided by the constant $\frac{1}{2}\left(q-q^{-1}\right)$. We saw that this gives a parametrized Yang-Baxter equation. (Dividing by a constant does not affect this since both sides of the Yang-Baxter equation are divided by the same constant.)

Then by Theorem 1.1 of Lecture 2, the row transfer matrices $T_{a, b, c}(\alpha, \beta)$ form a commuting family. We choose fixed χ so that $e^{i \chi}=q$. Then we choose variable θ so that $e^{i \theta}=x q$. We slightly modify the notation, omitting Δ from the notation R_{Δ} because it is fixed, and regarding R as a function of θ instead of x. We will use the notation $R(\theta)_{\alpha \beta}^{\gamma \delta}$ as explained in Section 2.

Lemma 3.1. When $\theta=\chi$, we have

$$
R(\chi)_{\alpha \beta}^{\gamma \delta}= \begin{cases}1 & \text { if } \alpha=\delta \text { and } \beta=\gamma \\ 0 & \text { otherwise } .\end{cases}
$$

Proof. Note that when $\theta=\chi$ we have $(a, b, c)=(1,0,1)$. So this follows from the definition of the Boltzmann weights.

Let $T_{\theta}(\alpha, \beta)$ be the row transfer matrix $T_{a, b, c}(\alpha, \beta)$ with this parametrization.
Remark 1. At the special point $\theta=\chi$, since $b=0$, we are in a 5 -vertex model case in which the particles are allowed to move to the right but not straight down. In fact $T_{\chi}(\alpha, \beta)$ is the right shift operator, moving each particle one step to the right. Obviously T_{χ} is invertible, the inverse being the left shift operator.

We may differentiate the operator T_{θ} with respect to θ. The derivative T_{θ}^{\prime} commutes with T_{θ}, and we may consider the logarithmic derivative at $\theta=\chi$.

$$
\mathcal{L}=\frac{1}{2} T_{\chi}^{-1} T_{\chi}^{\prime}
$$

It is at this point $\theta=\chi$ that there is a relationship between the XXZ Hamiltonian and the six-vertex model. Regard the p_{i} in (4) as functions of θ.

$$
\begin{equation*}
J_{x}=\frac{1}{2} p_{1}^{\prime}(\chi), \quad J_{y}=\frac{1}{2} p_{2}^{\prime}(\chi), \quad J_{z}=\frac{1}{2} p_{3}^{\prime}(\chi) \tag{6}
\end{equation*}
$$

Since $d=0$, we have $J_{x}=J_{y}$. Let H be the XXZ Hamiltonian (3).
Theorem 3.2. With these notations, we have

$$
\mathcal{L}=H+c I_{\otimes^{N} \mathbb{C}^{2}},
$$

where c is an explicit constant. The operator H commutes with the 6 -vertex row transfer matrices T_{θ}.

Proof. We will label the interior edges of the single-layer grid whose partition function is T_{θ} by $\lambda_{1}, \cdots, \lambda_{N}$, thus:

Due to the periodic boundary conditions, $\lambda_{N+1}=\lambda_{1}$. Thus

$$
T_{\theta}(\alpha, \beta)=\sum_{\lambda} \prod_{i=1}^{N} R(\theta)_{\lambda_{i} \alpha_{i}}^{\lambda_{i+1} \beta_{i}} .
$$

Differentiating with respect to θ and setting $\theta=\chi$,

$$
T_{\chi}^{\prime}(\alpha, \beta)=\sum_{j=1}^{N} \sum_{\lambda}\left[\frac{d}{d \theta} R(\theta)_{\lambda_{j} \alpha_{j}}^{\lambda_{j+1} \beta_{j}}\right]_{\theta=\chi} \prod_{i \neq j} R(\chi)_{\lambda_{i} \alpha_{i}}^{\lambda_{i+1} \beta_{i}} .
$$

By Lemma 3.1, if $i \neq j$ then $R(\chi)_{\lambda_{i} \alpha_{j}}^{\lambda_{i+1} \beta_{i}}=1$ provided $\lambda_{i}=\beta_{i}$ and $\alpha_{i}=\lambda_{i+1}$, and is zero otherwise. Therefore the j-th term only contributes if $\beta_{i}=\alpha_{i-1}$ when $i \neq j, j+1$. Assuming this, since we are summing over λ, we may omit these factors and take $\lambda_{j}=\alpha_{j-1}, \lambda_{j+1}=\beta_{j+1}$ to obtain

$$
T_{\chi}^{\prime}(\alpha, \beta)=\left.\sum_{j=1}^{N} \frac{d}{d \theta} R(\theta)_{\alpha_{j-1} \alpha_{j}}^{\beta_{j+1} \beta_{j}}\right|_{\theta=\chi}
$$

Now we substitute (5) to obtain

$$
T_{\chi}^{\prime}(\alpha, \beta)=\sum_{k=1}^{4} p_{k}^{\prime}(\chi) \sum_{j=1}^{N} \sigma_{\alpha_{j} \beta_{j+1}}^{k} \sigma_{\alpha_{j-1} \beta_{j}}^{k} .
$$

But now we remember that it is not T_{χ}^{\prime} that we are trying to compute, but $\frac{1}{2} T_{\chi}^{-1} T_{\chi}^{\prime}$, and T_{χ}^{-1} is the left-shift operator by Remark 1. Thus

$$
\mathcal{L}=\frac{1}{2} \sum_{k=1}^{4} p_{k}^{\prime}(\chi) \sum_{j=1}^{N} \sigma_{\alpha_{j} \beta_{j}}^{k} \sigma_{\alpha_{j-1} \beta_{j-1}}^{k} .
$$

The first three terms produce the XXZ Hamiltonian, with $J_{x}=J_{y}=p_{1}^{\prime}(\chi)$ and $J_{z}=p_{3}^{\prime}(\chi)$. The last term produces $c I_{\otimes^{N} \mathbb{C}^{2}}$ with the constant $c=\frac{1}{2} N p_{4}^{\prime}(\chi)$.

References

[1] R. J. Baxter. One-dimensional anisotropic Heisenberg chain. Ann. Physics, 70:323-337, 1972.
[2] R. J. Baxter. Exactly solved models in statistical mechanics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982.
[3] B. Brubaker and A. Schultz. On Hamiltonians for six-vertex models. J. Combin. Theory Ser. A, 155:100-121, 2018.
[4] G. Felder and A. Varchenko. Algebraic Bethe ansatz for the elliptic quantum group $E_{\tau, \eta}\left(\mathrm{sl}_{2}\right)$. Nuclear Phys. B, 480(1-2):485-503, 1996.
[5] W. Heisenberg. Zur Theorie des Ferromagnetismus. Z. Physik, 49:619-636, 1928.
[6] B. Sutherland. Exact solution of a two-dimensional model for hydrogen-bonded crystals. Phys. Rev. Lett., 19:103-104, Jul 1967.
[7] P. Zinn-Justin. Six-vertex, loop and tiling models: Integrability and combinatorics, 2009, arXiv:0901.0665.

