
Lecture 16

1 Fusion

Roughly the fusion operation in lattice models corresponds to the tensor product of modules.
But just as the tensor product has different applications in representation theory, so there
are different kinds of thing that are called fusion.

Suppose that we have a sequence of vertices as follows. We assume that a sequence of
vertical edges labeled b1, · · · , bN have spinsets Σ1, · · · ,ΣN .

· · ·

b1 b2 bN

We may associate with these a single vertical edge with spinset Σ1×· · ·×ΣN . Assigning
spins bi ∈ Σi for i = 1, · · · , N is equivalent to assigning a spin b = (b1, · · · , bN) to the fused
edge.

If there are vertices on these edges, we may also fuse these into a single vertex. Thus:

v1 v3 vNa

b1 b2 bN

c

d1 d2 dN

becomes:

a

b

c

d

v

We will call the vertices v1, · · · , vN unfused and the vertex v fused .
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Now we will encounter exotic versions of the Yang-Baxter equations in which the R-
matrix changes when it moves past the vertex. If we are dealing with N unfused vertices
v1, · · · , vN and w1, · · · , wN , we may encounter a Yang-Baxter equation that looks like this:

a2

a1

bi

c1

c2

di

ri

vi

wi
a2

a1

bi

c1

c2

di

ri+1

vi

wi

Assuming the periodicity rN+1 = r1, and denoting this vertex as just r, we obtain the usual
kind of Yang-Baxter equation for the fused vertices:

a2

a1

b

c1

c2

d

r

v

w
a2

a1

b

c1

c2

d

r

v

w

It is expected when this happens that the fused edges should have a quantum group
interpretation.

2 Example

We know several examples of this factorization phenomenon. The ones we describe are in
[3]. More general colored models in [1] do not factorize this way. The fermionic models in [2]
also have such a factorization.

c1 > c2 > · · · > cN . The unfused vertical edges are monochrome in that each is only
allowed to carry a single color. They are bosonic in that each vertical edge is allowed to
carry multiple instances of its designated color. The partition functions are nonsymmetric
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Hall-Littlewood polynomials. Before we describe the fused vertices, here is the R-matrix:

+

+ +

+

zi, zj

c

c c

c

zi, zj

c

d d

c

zi, zj

c

d c

d

zi, zj

zi − tzj zi − tzj
(1− t)zi if c < d
(1− t)zj if c > d

zi − zj if c > d
t(zi − zj) if c < d

c

+ +

c

zi, zj

+

c c

+

zi, zj

+

c +

c

zi, zj

c

+ c

+

zi, zj

(1− t)zi (1− t)zj t(zi − zj) zi − zj

This tells us that the quantum group is Uq(ĝlN+1) or equivalently (for this purpose)

Uq(ŝlN+1).
The horizontal edges in this model are only allowed to carry one color ci, or no color,

designated +. Thus the spinset of the horizontal edges is {c1, · · · , cN ,+}.
The states of the fused vertical edges can be described in terms of N bosons, one of each

color. The spinset of the fused vertical edges is thus NN , where where N = {0, 1, 2, · · · }. If
k = (k1, · · · , kN) ∈ NN , we think of this as a state in which the edge carries ki bosons of
color ci.

To describe the admissible states, let us introduce this notation. Let k ∈ NN , which is
the vertical edge spinset. By k + ci we mean

(k1, k2, · · · , ki + 1, · · · kN).

Here the ki component, which is interpreted as the number of bosons of color ci, is increased
by 1. Similarly

k− ci = (k1, k2, · · · , ki − 1, · · · kN).

Here are the admissible states.

+

k

+

k

c

k

c

k

+

k+c

c

k

c

k

+

k+c

c

k+d

d

k+c

c < d

The striking thing to note here is that the last state is only allowed if c < d. More general
models in [1] do not have this property.

Now the vertical edges can be obtained by fusion according to the following scheme. We
have weight labeled by a spectral parameter z and a color c We fuse the vertices in order
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cN , cN−1, · · · , c1:

· · ·

· · ·

· · ·

a c

br

dr

b2

d2

b1

d1

zi, cr zi, c2 zi, c1

The vertical edges are also labeled by the colors ci. The vertical edge labeled ci is only allowed
to carry that color and no others. For this reason, we call the vertex and color labeled ci
monochrome.

Remark 1. From this, we can see why we the last state is is forbidden if c > d. The reason
is that if c > d, the horizontal edges between the c column, which is to the left of the d
column, would have to carry both colors, and a horizontal edge is only allowed to carry one
color.

Here are the weights of the monochrome vertices:

A(n) B(n) C(n) D(n)

zi, c+ +

n

n

zi, cd d

n

n

zi, cc +

n

n+1

zi, c+ c

n+1

n

1
1 c < d
zi c = d
tn c > d

zi(1− tn+1) 1

The auxiliary R-matrix depends on the color of the monochrome edge to the right of the
vertex:

4



zi, zj, c

+

+ +

+

zi, zj, c

d

d d

d

zi, zj, c

d

e d

e

zi, zj, c

d

e e

d

zi − tzj zi − tzj
t(zi − zj) e > d
zi − zj d > e

(1− t)zj e > d > c
c > d > e
d > e > c

(1− tzi) d > c > e
c > e > d
e > d > c

zi, zj, c

d

c c

d

zi, zj, c

c

d d

c

zi, zj, c

+

d +

d

zi, zj, c

d

+ d

+

(1− t)zj (1− t)zi t(zi − zj) zi − zj

zi, zj, c

d

+ +

d

zi, zj, c

+

d d

+

(1− t)zi (1− t)zj

We do not show the Yang-Baxter equation, but as in the last section, it changes when the
R-matrix moves past the vertex. After moving past all the vertices, the R-matrix is restored
to its original state. See [3] for further information.

3 Explanation in terms of Verma modules

The claims in this section are undoubtedly true but haven’t been verified.
The Lie algebra g = glN+1 has a parabolic subalgebra p that is the semidirect product of

m = glN ⊕ gl1 with the nilpotent subalgebra u+ supported on the last column. If N = 3:

p = m⊕ u, m =



∗ ∗ ∗ 0
∗ ∗ ∗ 0
∗ ∗ ∗ 0
0 0 0 ∗


 , u =




0 0 0 ∗
0 0 0 ∗
0 0 0 ∗
0 0 0 0


 .

Let u− be the complementary nilpotent subalgebra that is the transpose of u in matrix form.
We then have glN+1 = u− ⊕ p. By the PBW theorem,

U(glN+1) ∼= U(u−)⊗C U(p).
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Let us take any one-dimensional representation ψ of p, afforded by the module Cψ. The
induced module Vψ = U(glN+1) ⊗U(p) Cψ is then isomorphic to U(u−) as a vector space.
Since u− is abelian, the enveloping algebra U(u−) is just the symmetric algebra Sym(u−).

If β ∈ Φ, we are regarding β as an element of h∗, where h is the diagonal Cartan
subalgebra. There is a unique (up to scalar) element Xβ ∈ g such that

[H,Xβ] = β(H)Xβ.

There are N negative roots β1, · · · , βN such that Xβi ∈ u−. We order these so that Xβi has
its nonzero entry in the N + 1− i column. Thus for N = 3:

Xβ3 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , Xβ2 =


0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0

 , Xβ1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 .

Then U(u−) = C[Xβ1 , · · · , XβN ] is a polynomial ring.

Conjecture 3.1. The quantized version of Vψ for suitable ψ is the Uq(ĝlN+1)-module asso-
ciated with the vertical edges in the model described in Section 2. The more general models
of [1], the module would be a Borel Verma module as in Lecture 14.

For this it is likely important that the nilpotent subalgebra u− is abelian.
How should we view the monochrome edges and vertices? Only the fused edges corre-

spond to Uq(ŝlN+1) modules. However the constitutent unfused edges, each of which can

carry only one color, resembles the Uq(ŝl2) vertex.
So there is an embedding of sl2 −→ glN+1 along the positive root −βi, namely

〈X−β, Xβ〉 ∼= sl2. (1)

And the Verma module

Vψ ∼= U(u−) ∼=
N⊗
i=1

U(CXβi).

Each factor U(CXβi) is an sl2 Verma module, for the copy (1) of sl2. The last isomorphism
shows that the slN+1 parabolic Verma module is a tensor product of these N sl2 Verma
modules, and this fact is reflected in the factorization of the edges into monochrome edges.
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