
Lecture 15

1 Bosonic Models

Let us return to the bosonic models in Lecture 8. The R-matrix tells us that the quantum
group is Uq(ŝl2) or Uq(ĝl2). The horizontal edges in the model correspond to 2-dimensional
modules Vz where z ∈ C×.

The vertical edges, however, have spinset N. From the point of view of Kulish [4], where
the bosonic models first appeared, these spins correspond to the energy levels of the quantum
mechanical harmonic oscillator, or rather, a q-deformation of that. But from the point of
view we are taking, these edges should correspond to a module of Uq(ŝl2). This quantum
group module is a Verma module.

We will not discuss Verma modules for quantized enveloping algebras, but at least we will
look at Verma modules for U(g). The theory is standard. The books [2] and [3] Chapter 9
are good references.

To get R-matrices out of Verma modules, one must extend this theory to Uq(g). For this,
see [5]. A paper where quantum Verma modules are used to compute R-matrices is [1].

2 Verma modules continued

We continue from Lecture 14, where we introduced the PBW theorem. We will review a few
ideas about highest weight modules and the BGG Category O. See [3] Chapter 9 for more
information about these topics.

We make use of the tensor product for noncommutative rings. This is a topic omitted
in Lang’s Algebra but as a reference see Mac Lane’s Homology , Section 5.1. If R is a
noncommutative ring, and M is a right R-module and N is a left R-module, and if T
is an abelian group, a map β : M × N −→ T is called balanced if it is Z-bilinear and
β(ma, n) = β(m, an) for a ∈ A, m ∈ M and n ∈ N . Then M ⊗A N is defined to be an
abelian group with a balanced map ⊗ : M × N −→ M ⊗A N such that any balanced map
β : M × N −→ T factors uniquely through M ⊗A N . We naturally write m ⊗ n instead of
⊗(m,n).

There is no natural way to make M ⊗ N to an A-module. However a common special
case is where M is a bi-module. If B and A are rings, a (B,A)-bimodule is an M that is
simultaneously a left B-module and a right A-module, such that these actions commute:
b(ma) = (bm)a for m ∈ M , b ∈ B and a ∈ A. In this case, if N is a left A-module then
M ⊗N becomes a left B-module.
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As an example, suppose that A is a ring and B a ring containing A. Then B is a left
B-module and a right A-module, so it is a bimodule and

N 7→ B ⊗A N

is a functor from the category of left A-modules to left B-modules. This functor is called
extension of scalars .

We now return to the setting at the end of Lecture 14. Let g be a simple complex Lie
algebra such as sln. We saw that it has a triangular decomposition n−⊕h⊕n+. The Cartan
subalgebra h is abelian, so any simple h-module is one-dimensional.

In the Lie algebra setting, weights are elements of h∗, which we equip with a W -invariant
inner product. The root system Φ can then be characterized as the set of nonzero α ∈ h∗

such that
gα = {X ∈ g|[H,X] = λ(H)X for H ∈ h} (1)

is nonzero. In this case gα is one-dimensional. Let Xα be a generator. For the simple roots
α1, · · · , αr we denote Xαi = Ei and X−αi = Fi.

If V is any module, and µ ∈ h∗ let

Vµ = {v ∈ V |Hv = µ(H)v for all H ∈ h} (2)

be the corresponding weight space. We will always assume that V is the direct sum of its
weight spaces.

The Lie algebra g is itself a g-module with respect to the adjoint representation ad :
g −→ gl(g) = EndC(g), where ad(X) is the endomorphism ad(X)Y = [X, Y ]. Then the
roots are just the nonzero weights in the adjoint representation, and the definition (1) is
seen to be a special case of the definition (2).

Lemma 2.1. We have XαVλ ⊆ Vλ+α.

Proof. If H ∈ h and v ∈ Vλ then

HXαv = [H,Xα]v +XαHv = α(H)Xαv +Xαλ(H)v

= (α + λ)(H)Xαv.

We will call elements of h such that Vµ 6= 0 the weights of the representation. A weight
λ is integral if

2〈λ, α〉
〈α, α〉

∈ Z

for all α ∈ Φ. The set of integral weights is the weight lattice Λ. If g is the Lie algebra of a
simply-connected complex Lie group G, this weight lattice can be identified with the weight
lattice of G.

Definition 1. Let V be a module. A vector v ∈ V is a highest weight vector with weight
λ ∈ h∗ if v ∈ Vλ and n+v = 0. If V is generated by v, then V is called a highest weight
module for the weight λ.
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For example, if V is a finite-dimensional irreducible representation, then by the Weyl
theory V has a highest weight vector that is up to scalar multiple for a unique λ, which is a
dominant integral weight.

Lemma 2.2. If V is a highest weight module for λ, then V = U(n−)v.

Proof. By the PBW theorem we have

U(g) = U(n−)U(b).

Although we do not need this fact, the PBW theorem actually implies that the multiplication
map U(n−) × U(b) −→ U(g) induces a vector space isomorphism U(n−) ⊗ U(b) −→ U(g).
Then V = U(n−)U(b)v and we can discard the U(b) since clearly U(b)v = v.

Theorem 2.3. Let λ ∈ h∗. Then g has a universal highest weight module M(λ), with a
highest weight vector mλ, such that if V is any module and v ∈ V is a highest weight vector
with weight λ, then there is a unique homomorphism M(λ) −→ V taking mλ to v.

Proof. Let Cλ be the C equipped with the h-module structure affording the character λ.
We can extend this character of b = h ⊕ n+ by letting n+ act by zero. This gives us a
U(b)-module. Now let

M(λ) = U(g)⊗U(b) Cλ.

It is easy to see that M(λ) is a highest weight module with mλ = 1U(g) ⊗ 1Cλ . To check
the universal property, note that the map β : U(g) × Cλ −→ V defined by β(ξ ⊗ a) =
ξ a v is balanced, hence induces a unique map U(g) ⊗U(b) Cλ −→ V . This is the unique
homomorphism.

If λ ∈ h∗ let eλ be a formal symbol such that eλeµ = eλ+µ. In this setting the “exponen-
tial” eλ is just a formal device for writing the weight lattice multiplicatively. The character
of a module V is

χV =
∑
µ∈h∗

dim(Vµ) eµ.

Proposition 2.4. Let λ ∈ h∗. Then ξ 7→ ξmλ is a vector space isomorphism U(n−) −→
M(λ). The character of M(λ) is

eλ
∏
α∈Φ+

(1− e−α)−1.

It is understood that we expand the geometric series and collect the terms:

∏
α∈Φ+

(1− e−α)−1 =
∏
α∈Φ+

∞∑
kα=0

e−
∑
kαα =

∑
µ

℘(µ)e−µ (3)

where ℘(µ) is the number of ways of writing µ =
∑

α∈Φ+ kαα for some vector (kα|α ∈ Φ+)
of nonnegative integers. The function ℘ is called the Kostant partition function.

• https://en.wikipedia.org/wiki/Kostant_partition_function
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Proof. This is a stronger statement than Lemma 2.2, which asserts that the map ξ 7→ ξmλ

is surjective U(n−) −→M(λ). For this, standard isomorphisms give

M(λ) = U(n−)⊗C U(b)⊗U(b) Cλ
∼= U(n−)⊗C Cλ

∼= U(n−)

as a vector space.
We want to show that the character of U(n−) as an h-module is (3). By the PBW

Theorem a basis of U(n−) consists of elements of the form∏
α∈Φ+

Xkα
−α ∈ U(n−)

and the weight of this is −
∑
kαα.
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