Lecture 15

1 Bosonic Models

Let us return to the bosonic models in Lecture 8. The R-matrix tells us that the quantum group is $U_{q}\left(\widehat{\mathfrak{s}}_{2}\right)$ or $U_{q}\left(\widehat{\mathfrak{g l}}_{2}\right)$. The horizontal edges in the model correspond to 2-dimensional modules $V_{\mathbf{z}}$ where $\mathbf{z} \in \mathbb{C}^{\times}$.

The vertical edges, however, have spinset \mathbb{N}. From the point of view of Kulish [4], where the bosonic models first appeared, these spins correspond to the energy levels of the quantum mechanical harmonic oscillator, or rather, a q-deformation of that. But from the point of view we are taking, these edges should correspond to a module of $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$. This quantum group module is a Verma module.

We will not discuss Verma modules for quantized enveloping algebras, but at least we will look at Verma modules for $U(\mathfrak{g})$. The theory is standard. The books [2] and [3] Chapter 9 are good references.

To get R-matrices out of Verma modules, one must extend this theory to $U_{q}(\mathfrak{g})$. For this, see [5]. A paper where quantum Verma modules are used to compute R-matrices is [1].

2 Verma modules continued

We continue from Lecture 14, where we introduced the PBW theorem. We will review a few ideas about highest weight modules and the BGG Category \mathcal{O}. See [3] Chapter 9 for more information about these topics.

We make use of the tensor product for noncommutative rings. This is a topic omitted in Lang's Algebra but as a reference see Mac Lane's Homology, Section 5.1. If R is a noncommutative ring, and M is a right R-module and N is a left R-module, and if T is an abelian group, a map $\beta: M \times N \longrightarrow T$ is called balanced if it is \mathbb{Z}-bilinear and $\beta(m a, n)=\beta(m, a n)$ for $a \in A, m \in M$ and $n \in N$. Then $M \otimes_{A} N$ is defined to be an abelian group with a balanced map $\otimes: M \times N \longrightarrow M \otimes_{A} N$ such that any balanced map $\beta: M \times N \longrightarrow T$ factors uniquely through $M \otimes_{A} N$. We naturally write $m \otimes n$ instead of $\otimes(m, n)$.

There is no natural way to make $M \otimes N$ to an A-module. However a common special case is where M is a bi-module. If B and A are rings, a (B, A)-bimodule is an M that is simultaneously a left B-module and a right A-module, such that these actions commute: $b(m a)=(b m) a$ for $m \in M, b \in B$ and $a \in A$. In this case, if N is a left A-module then $M \otimes N$ becomes a left B-module.

As an example, suppose that A is a ring and B a ring containing A. Then B is a left B-module and a right A-module, so it is a bimodule and

$$
N \mapsto B \otimes_{A} N
$$

is a functor from the category of left A-modules to left B-modules. This functor is called extension of scalars.

We now return to the setting at the end of Lecture 14. Let \mathfrak{g} be a simple complex Lie algebra such as $\mathfrak{s l}_{n}$. We saw that it has a triangular decomposition $\mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$. The Cartan subalgebra \mathfrak{h} is abelian, so any simple \mathfrak{h}-module is one-dimensional.

In the Lie algebra setting, weights are elements of \mathfrak{h}^{*}, which we equip with a W-invariant inner product. The root system Φ can then be characterized as the set of nonzero $\alpha \in \mathfrak{h}^{*}$ such that

$$
\begin{equation*}
\mathfrak{g}_{\alpha}=\{X \in \mathfrak{g} \mid[H, X]=\lambda(H) X \text { for } H \in \mathfrak{h}\} \tag{1}
\end{equation*}
$$

is nonzero. In this case \mathfrak{g}_{α} is one-dimensional. Let X_{α} be a generator. For the simple roots $\alpha_{1}, \cdots, \alpha_{r}$ we denote $X_{\alpha_{i}}=E_{i}$ and $X_{-\alpha_{i}}=F_{i}$.

If V is any module, and $\mu \in \mathfrak{h}^{*}$ let

$$
\begin{equation*}
V_{\mu}=\{v \in V \mid H v=\mu(H) v \text { for all } H \in \mathfrak{h}\} \tag{2}
\end{equation*}
$$

be the corresponding weight space. We will always assume that V is the direct sum of its weight spaces.

The Lie algebra \mathfrak{g} is itself a \mathfrak{g}-module with respect to the adjoint representation ad : $\mathfrak{g} \longrightarrow \mathfrak{g l}(\mathfrak{g})=\operatorname{End}_{\mathbb{C}}(\mathfrak{g})$, where $\operatorname{ad}(X)$ is the endomorphism $\operatorname{ad}(X) Y=[X, Y]$. Then the roots are just the nonzero weights in the adjoint representation, and the definition (1) is seen to be a special case of the definition (2).

Lemma 2.1. We have $X_{\alpha} V_{\lambda} \subseteq V_{\lambda+\alpha}$.
Proof. If $H \in \mathfrak{h}$ and $v \in V_{\lambda}$ then

$$
\begin{gathered}
H X_{\alpha} v=\left[H, X_{\alpha}\right] v+X_{\alpha} H v=\alpha(H) X_{\alpha} v+X_{\alpha} \lambda(H) v \\
=(\alpha+\lambda)(H) X_{\alpha} v
\end{gathered}
$$

We will call elements of \mathfrak{h} such that $V_{\mu} \neq 0$ the weights of the representation. A weight λ is integral if

$$
\frac{2\langle\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle} \in \mathbb{Z}
$$

for all $\alpha \in \Phi$. The set of integral weights is the weight lattice Λ. If \mathfrak{g} is the Lie algebra of a simply-connected complex Lie group G, this weight lattice can be identified with the weight lattice of G.

Definition 1. Let V be a module. A vector $v \in V$ is a highest weight vector with weight $\lambda \in \mathfrak{h}^{*}$ if $v \in V_{\lambda}$ and $\mathfrak{n}_{+} v=0$. If V is generated by v, then V is called a highest weight module for the weight λ.

For example, if V is a finite-dimensional irreducible representation, then by the Weyl theory V has a highest weight vector that is up to scalar multiple for a unique λ, which is a dominant integral weight.

Lemma 2.2. If V is a highest weight module for λ, then $V=U\left(\mathfrak{n}_{-}\right) v$.
Proof. By the PBW theorem we have

$$
U(\mathfrak{g})=U\left(\mathfrak{n}_{-}\right) U(\mathfrak{b})
$$

Although we do not need this fact, the PBW theorem actually implies that the multiplication map $U\left(\mathfrak{n}_{-}\right) \times U(\mathfrak{b}) \longrightarrow U(\mathfrak{g})$ induces a vector space isomorphism $U\left(\mathfrak{n}_{-}\right) \otimes U(\mathfrak{b}) \longrightarrow U(\mathfrak{g})$. Then $V=U\left(\mathfrak{n}_{-}\right) U(\mathfrak{b}) v$ and we can discard the $U(\mathfrak{b})$ since clearly $U(\mathfrak{b}) v=v$.

Theorem 2.3. Let $\lambda \in \mathfrak{h}^{*}$. Then \mathfrak{g} has a universal highest weight module $M(\lambda)$, with a highest weight vector m_{λ}, such that if V is any module and $v \in V$ is a highest weight vector with weight λ, then there is a unique homomorphism $M(\lambda) \longrightarrow V$ taking m_{λ} to v.

Proof. Let \mathbb{C}_{λ} be the \mathbb{C} equipped with the \mathfrak{h}-module structure affording the character λ. We can extend this character of $\mathfrak{b}=\mathfrak{h} \oplus \mathfrak{n}_{+}$by letting \mathfrak{n}_{+}act by zero. This gives us a $U(\mathfrak{b})$-module. Now let

$$
M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}
$$

It is easy to see that $M(\lambda)$ is a highest weight module with $m_{\lambda}=1_{U(\mathfrak{g})} \otimes 1_{\mathbb{C}_{\lambda}}$. To check the universal property, note that the map $\beta: U(\mathfrak{g}) \times \mathbb{C}_{\lambda} \longrightarrow V$ defined by $\beta(\xi \otimes a)=$ $\xi a v$ is balanced, hence induces a unique map $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \longrightarrow V$. This is the unique homomorphism.

If $\lambda \in \mathfrak{h}^{*}$ let e^{λ} be a formal symbol such that $e^{\lambda} e^{\mu}=e^{\lambda+\mu}$. In this setting the "exponential" e^{λ} is just a formal device for writing the weight lattice multiplicatively. The character of a module V is

$$
\chi_{V}=\sum_{\mu \in \mathfrak{h}^{*}} \operatorname{dim}\left(V_{\mu}\right) e^{\mu}
$$

Proposition 2.4. Let $\lambda \in \mathfrak{h}^{*}$. Then $\xi \mapsto \xi m_{\lambda}$ is a vector space isomorphism $U\left(\mathfrak{n}_{-}\right) \longrightarrow$ $M(\lambda)$. The character of $M(\lambda)$ is

$$
e^{\lambda} \prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)^{-1}
$$

It is understood that we expand the geometric series and collect the terms:

$$
\begin{equation*}
\prod_{\alpha \in \Phi^{+}}\left(1-e^{-\alpha}\right)^{-1}=\prod_{\alpha \in \Phi^{+}} \sum_{k_{\alpha}=0}^{\infty} e^{-\sum k_{\alpha} \alpha}=\sum_{\mu} \wp(\mu) e^{-\mu} \tag{3}
\end{equation*}
$$

where $\wp(\mu)$ is the number of ways of writing $\mu=\sum_{\alpha \in \Phi^{+}} k_{\alpha} \alpha$ for some vector ($k_{\alpha} \mid \alpha \in \Phi^{+}$) of nonnegative integers. The function \wp is called the Kostant partition function.

- https://en.wikipedia.org/wiki/Kostant_partition_function

Proof. This is a stronger statement than Lemma 2.2, which asserts that the map $\xi \mapsto \xi m_{\lambda}$ is surjective $U\left(\mathfrak{n}_{-}\right) \longrightarrow M(\lambda)$. For this, standard isomorphisms give

$$
M(\lambda)=U\left(\mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} U(\mathfrak{b}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \cong U\left(\mathfrak{n}_{-}\right) \otimes_{\mathbb{C}} \mathbb{C}_{\lambda} \cong U\left(\mathfrak{n}_{-}\right)
$$

as a vector space.
We want to show that the character of $U\left(\mathfrak{n}_{-}\right)$as an \mathfrak{h}-module is (3). By the PBW Theorem a basis of $U\left(\mathfrak{n}_{-}\right)$consists of elements of the form

$$
\prod_{\alpha \in \Phi^{+}} X_{-\alpha}^{k_{\alpha}} \in U\left(\mathfrak{n}_{-}\right)
$$

and the weight of this is $-\sum k_{\alpha} \alpha$.

References

[1] H. Boos, F. Göhmann, A. Klümper, K. S. Nirov, and A. V. Razumov. Quantum groups and functional relations for higher rank. J. Phys. A, 47(27):275201, 47, 2014.
[2] J. E. Humphreys. Representations of semisimple Lie algebras in the BGG category \mathcal{O}, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
[3] V. G. Kac. Infinite-dimensional Lie algebras. Cambridge University Press, Cambridge, third edition, 1990.
[4] P. P. Kulish. Contraction of quantum algebras, and q-oscillators. Teoret. Mat. Fiz., 86(1):157-160, 1991.
[5] K. S. Nirov and A. V. Razumov. Quantum groups, Verma modules and q-oscillators: general linear case. J. Phys. A, 50(30):305201, 19, 2017.

