Lecture 15

1 Bosonic Models

Let us return to the bosonic models in Lecture 8. The R-matrix tells us that the quantum
group is U, (sly) or U,(gly). The horizontal edges in the model correspond to 2-dimensional
modules V, where z € C*.

The vertical edges, however, have spinset N. From the point of view of Kulish [4], where
the bosonic models first appeared, these spins correspond to the energy levels of the quantum
mechanical harmonic oscillator, or rather, a g-deformation of that. But from the point of
view we are taking, these edges should correspond to a module of U,(sly). This quantum
group module is a Verma module.

We will not discuss Verma modules for quantized enveloping algebras, but at least we will
look at Verma modules for U(g). The theory is standard. The books [2] and [3] Chapter 9
are good references.

To get R-matrices out of Verma modules, one must extend this theory to U,(g). For this,
see [0]. A paper where quantum Verma modules are used to compute R-matrices is [I].

2 Verma modules continued

We continue from Lecture 14, where we introduced the PBW theorem. We will review a few
ideas about highest weight modules and the BGG Category O. See [3] Chapter 9 for more
information about these topics.

We make use of the tensor product for noncommutative rings. This is a topic omitted
in Lang’s Algebra but as a reference see Mac Lane’s Homology, Section 5.1. If R is a
noncommutative ring, and M is a right R-module and N is a left R-module, and if T
is an abelian group, a map 8 : M x N — T is called balanced if it is Z-bilinear and
B(ma,n) = B(m,an) for a € A, m € M and n € N. Then M ®4 N is defined to be an
abelian group with a balanced map ® : M x N — M ®4 N such that any balanced map
B: M x N — T factors uniquely through M ®4 N. We naturally write m ® n instead of
®(m,n).

There is no natural way to make M ® N to an A-module. However a common special
case is where M is a bi-module. If B and A are rings, a (B, A)-bimodule is an M that is
simultaneously a left B-module and a right A-module, such that these actions commute:
b(ma) = (bm)a for m € M, b € B and a € A. In this case, if N is a left A-module then
M ® N becomes a left B-module.



As an example, suppose that A is a ring and B a ring containing A. Then B is a left
B-module and a right A-module, so it is a bimodule and

N— B®,4 N

is a functor from the category of left A-modules to left B-modules. This functor is called
extension of scalars.

We now return to the setting at the end of Lecture 14. Let g be a simple complex Lie
algebra such as sl,,. We saw that it has a triangular decomposition n_ & h @ n,. The Cartan
subalgebra b is abelian, so any simple h-module is one-dimensional.

In the Lie algebra setting, weights are elements of h*, which we equip with a W-invariant
inner product. The root system ® can then be characterized as the set of nonzero a € h*
such that

0o = {X €g|[H,X]=\NH)X for H € h} (1)

is nonzero. In this case g, is one-dimensional. Let X, be a generator. For the simple roots
oy, ,a, we denote X,,, = E; and X_,, = F;.
If V is any module, and u € h* let

V,={veV|Hv=pu(H)v for all H € b} (2)

be the corresponding weight space. We will always assume that V is the direct sum of its
weight spaces.

The Lie algebra g is itself a g-module with respect to the adjoint representation ad :
g — gl(g) = Endc(g), where ad(X) is the endomorphism ad(X)Y = [X,Y]. Then the
roots are just the nonzero weights in the adjoint representation, and the definition is
seen to be a special case of the definition (2)).

Lemma 2.1. We have X, V) C Vyiq.
Proof. If H € hh and v € V), then

HXwv=[H X,|Jv+ XoHv=a(H)Xw+ X A(H)v

= (a+ \)(H)X,v.
0

We will call elements of b such that V,, # 0 the weights of the representation. A weight
A is integral if
2(\, )

(@, a)

ez

for all & € ®. The set of integral weights is the weight lattice A. If g is the Lie algebra of a
simply-connected complex Lie group G, this weight lattice can be identified with the weight
lattice of G.

Definition 1. Let V be a module. A vector v € V' is a highest weight vector with weight
Ae b ifveVyand nyv =0. If V is generated by v, then V is called a highest weight
module for the weight .



For example, if V' is a finite-dimensional irreducible representation, then by the Weyl
theory V has a highest weight vector that is up to scalar multiple for a unique A, which is a
dominant integral weight.

Lemma 2.2. If V is a highest weight module for \, then V- = U(n_)v.

Proof. By the PBW theorem we have

Although we do not need this fact, the PBW theorem actually implies that the multiplication
map U(n_) x U(b) — U(g) induces a vector space isomorphism U(n_) ® U(b) — U(g).
Then V = U(n_)U(b)v and we can discard the U(b) since clearly U(b)v = v. O

Theorem 2.3. Let A € h*. Then g has a universal highest weight module M(X), with a
highest weight vector my, such that if V is any module and v € V' is a highest weight vector
with weight X\, then there is a unique homomorphism M(X) — V' taking my to v.

Proof. Let C, be the C equipped with the h-module structure affording the character .
We can extend this character of b = h @ n, by letting n, act by zero. This gives us a
U(b)-module. Now let

M(X) = U(g) ®u) Ca.

It is easy to see that M(A) is a highest weight module with my = 1y ® 1c,. To check
the universal property, note that the map g : U(g) x C, — V defined by f({ ® a) =
£av is balanced, hence induces a unique map U(g) ®u@) Cy — V. This is the unique
homomorphism. O

If A € h* let e* be a formal symbol such that e*e# = e*#, In this setting the “exponen-
tial” e is just a formal device for writing the weight lattice multiplicatively. The character

of a module V is
Xy = Z dim(V},) e*.
pneh*

Proposition 2.4. Let A € b*. Then £ — &my is a vector space isomorphism U(n_) —
M(X). The character of M(X) is

e H (1—e ™)
acdt
It is understood that we expand the geometric series and collect the terms:
[Ta-e =TI 3 e S =3 p(we g
aedt aedt ko=0 M

where ©(j) is the number of ways of writing i = Y o+ koo for some vector (ky|la € &%)
of nonnegative integers. The function g is called the Kostant partition function.

e https://en.wikipedia.org/wiki/Kostant_partition_function
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Proof. This is a stronger statement than Lemma [2.2] which asserts that the map & — &my,
is surjective U(n_) — M (). For this, standard isomorphisms give

M()\) = U(I‘l_) Rc U(b) QU () C, = U(n_) ®Rc Cy = U(n_)

as a vector space.
We want to show that the character of U(n_) as an h-module is (3). By the PBW
Theorem a basis of U(n_) consists of elements of the form

I x e Un-
acdt

and the weight of this is — > k,a. O
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