Lecture 15

1 Bosonic Models

Let us return to the bosonic models in Lecture 8. The R-matrix tells us that the quantum group is $U_q(\widehat{\mathfrak{sl}}_2)$ or $U_q(\widehat{\mathfrak{gl}}_2)$. The horizontal edges in the model correspond to 2-dimensional modules V_z where $z \in \mathbb{C}^{\times}$.

The vertical edges, however, have spinset \mathbb{N} . From the point of view of Kulish [4], where the bosonic models first appeared, these spins correspond to the energy levels of the quantum mechanical harmonic oscillator, or rather, a q-deformation of that. But from the point of view we are taking, these edges should correspond to a module of $U_q(\widehat{\mathfrak{sl}}_2)$. This quantum group module is a Verma module.

We will not discuss Verma modules for quantized enveloping algebras, but at least we will look at Verma modules for $U(\mathfrak{g})$. The theory is standard. The books [2] and [3] Chapter 9 are good references.

To get R-matrices out of Verma modules, one must extend this theory to $U_q(\mathfrak{g})$. For this, see [5]. A paper where quantum Verma modules are used to compute R-matrices is [1].

2 Verma modules continued

We continue from Lecture 14, where we introduced the PBW theorem. We will review a few ideas about highest weight modules and the BGG Category \mathcal{O} . See [3] Chapter 9 for more information about these topics.

We make use of the tensor product for noncommutative rings. This is a topic omitted in Lang's Algebra but as a reference see Mac Lane's Homology, Section 5.1. If R is a noncommutative ring, and M is a right R-module and N is a left R-module, and if Tis an abelian group, a map $\beta : M \times N \longrightarrow T$ is called balanced if it is \mathbb{Z} -bilinear and $\beta(ma, n) = \beta(m, an)$ for $a \in A, m \in M$ and $n \in N$. Then $M \otimes_A N$ is defined to be an abelian group with a balanced map $\otimes : M \times N \longrightarrow M \otimes_A N$ such that any balanced map $\beta : M \times N \longrightarrow T$ factors uniquely through $M \otimes_A N$. We naturally write $m \otimes n$ instead of $\otimes(m, n)$.

There is no natural way to make $M \otimes N$ to an A-module. However a common special case is where M is a bi-module. If B and A are rings, a (B, A)-bimodule is an M that is simultaneously a left B-module and a right A-module, such that these actions commute: b(ma) = (bm)a for $m \in M$, $b \in B$ and $a \in A$. In this case, if N is a left A-module then $M \otimes N$ becomes a left B-module.

As an example, suppose that A is a ring and B a ring containing A. Then B is a left B-module and a right A-module, so it is a bimodule and

$$N \mapsto B \otimes_A N$$

is a functor from the category of left A-modules to left B-modules. This functor is called *extension of scalars*.

We now return to the setting at the end of Lecture 14. Let \mathfrak{g} be a simple complex Lie algebra such as \mathfrak{sl}_n . We saw that it has a triangular decomposition $\mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$. The Cartan subalgebra \mathfrak{h} is abelian, so any simple \mathfrak{h} -module is one-dimensional.

In the Lie algebra setting, weights are elements of \mathfrak{h}^* , which we equip with a *W*-invariant inner product. The root system Φ can then be characterized as the set of nonzero $\alpha \in \mathfrak{h}^*$ such that

$$\mathfrak{g}_{\alpha} = \{ X \in \mathfrak{g} | [H, X] = \lambda(H) X \text{ for } H \in \mathfrak{h} \}$$
(1)

is nonzero. In this case \mathfrak{g}_{α} is one-dimensional. Let X_{α} be a generator. For the simple roots $\alpha_1, \dots, \alpha_r$ we denote $X_{\alpha_i} = E_i$ and $X_{-\alpha_i} = F_i$.

If V is any module, and $\mu \in \mathfrak{h}^*$ let

$$V_{\mu} = \{ v \in V | Hv = \mu(H)v \text{ for all } H \in \mathfrak{h} \}$$

$$\tag{2}$$

be the corresponding weight space. We will always assume that V is the direct sum of its weight spaces.

The Lie algebra \mathfrak{g} is itself a \mathfrak{g} -module with respect to the *adjoint representation* ad : $\mathfrak{g} \longrightarrow \mathfrak{gl}(\mathfrak{g}) = \operatorname{End}_{\mathbb{C}}(\mathfrak{g})$, where $\operatorname{ad}(X)$ is the endomorphism $\operatorname{ad}(X)Y = [X, Y]$. Then the roots are just the nonzero weights in the adjoint representation, and the definition (1) is seen to be a special case of the definition (2).

Lemma 2.1. We have $X_{\alpha}V_{\lambda} \subseteq V_{\lambda+\alpha}$.

Proof. If $H \in \mathfrak{h}$ and $v \in V_{\lambda}$ then

$$HX_{\alpha}v = [H, X_{\alpha}]v + X_{\alpha}Hv = \alpha(H)X_{\alpha}v + X_{\alpha}\lambda(H)v$$
$$= (\alpha + \lambda)(H)X_{\alpha}v.$$

We will call elements of \mathfrak{h} such that $V_{\mu} \neq 0$ the *weights* of the representation. A weight λ is *integral* if

$$\frac{2\langle\lambda,\alpha\rangle}{\langle\alpha,\alpha\rangle} \in \mathbb{Z}$$

for all $\alpha \in \Phi$. The set of integral weights is the *weight lattice* Λ . If \mathfrak{g} is the Lie algebra of a simply-connected complex Lie group G, this weight lattice can be identified with the weight lattice of G.

Definition 1. Let V be a module. A vector $v \in V$ is a *highest weight vector* with weight $\lambda \in \mathfrak{h}^*$ if $v \in V_{\lambda}$ and $\mathfrak{n}_+ v = 0$. If V is generated by v, then V is called a *highest weight module* for the weight λ .

For example, if V is a finite-dimensional irreducible representation, then by the Weyl theory V has a highest weight vector that is up to scalar multiple for a unique λ , which is a dominant integral weight.

Lemma 2.2. If V is a highest weight module for λ , then $V = U(\mathfrak{n}_{-})v$.

Proof. By the PBW theorem we have

$$U(\mathfrak{g}) = U(\mathfrak{n}_{-})U(\mathfrak{b}).$$

Although we do not need this fact, the PBW theorem actually implies that the multiplication map $U(\mathfrak{n}_{-}) \times U(\mathfrak{b}) \longrightarrow U(\mathfrak{g})$ induces a vector space isomorphism $U(\mathfrak{n}_{-}) \otimes U(\mathfrak{b}) \longrightarrow U(\mathfrak{g})$. Then $V = U(\mathfrak{n}_{-})U(\mathfrak{b})v$ and we can discard the $U(\mathfrak{b})$ since clearly $U(\mathfrak{b})v = v$.

Theorem 2.3. Let $\lambda \in \mathfrak{h}^*$. Then \mathfrak{g} has a universal highest weight module $M(\lambda)$, with a highest weight vector m_{λ} , such that if V is any module and $v \in V$ is a highest weight vector with weight λ , then there is a unique homomorphism $M(\lambda) \longrightarrow V$ taking m_{λ} to v.

Proof. Let \mathbb{C}_{λ} be the \mathbb{C} equipped with the \mathfrak{h} -module structure affording the character λ . We can extend this character of $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ by letting \mathfrak{n}_+ act by zero. This gives us a $U(\mathfrak{b})$ -module. Now let

$$M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}.$$

It is easy to see that $M(\lambda)$ is a highest weight module with $m_{\lambda} = 1_{U(\mathfrak{g})} \otimes 1_{\mathbb{C}_{\lambda}}$. To check the universal property, note that the map $\beta : U(\mathfrak{g}) \times \mathbb{C}_{\lambda} \longrightarrow V$ defined by $\beta(\xi \otimes a) = \xi a v$ is balanced, hence induces a unique map $U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \longrightarrow V$. This is the unique homomorphism.

If $\lambda \in \mathfrak{h}^*$ let e^{λ} be a formal symbol such that $e^{\lambda}e^{\mu} = e^{\lambda+\mu}$. In this setting the "exponential" e^{λ} is just a formal device for writing the weight lattice multiplicatively. The *character* of a module V is

$$\chi_V = \sum_{\mu \in \mathfrak{h}^*} \dim(V_\mu) e^\mu.$$

Proposition 2.4. Let $\lambda \in \mathfrak{h}^*$. Then $\xi \mapsto \xi m_{\lambda}$ is a vector space isomorphism $U(\mathfrak{n}_{-}) \longrightarrow M(\lambda)$. The character of $M(\lambda)$ is

$$e^{\lambda} \prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})^{-1}.$$

It is understood that we expand the geometric series and collect the terms:

$$\prod_{\alpha \in \Phi^+} (1 - e^{-\alpha})^{-1} = \prod_{\alpha \in \Phi^+} \sum_{k_\alpha = 0}^{\infty} e^{-\sum k_\alpha \alpha} = \sum_{\mu} \wp(\mu) e^{-\mu}$$
(3)

where $\wp(\mu)$ is the number of ways of writing $\mu = \sum_{\alpha \in \Phi^+} k_{\alpha} \alpha$ for some vector $(k_{\alpha} | \alpha \in \Phi^+)$ of nonnegative integers. The function \wp is called the *Kostant partition function*.

• https://en.wikipedia.org/wiki/Kostant_partition_function

Proof. This is a stronger statement than Lemma 2.2, which asserts that the map $\xi \mapsto \xi m_{\lambda}$ is surjective $U(\mathfrak{n}_{-}) \longrightarrow M(\lambda)$. For this, standard isomorphisms give

$$M(\lambda) = U(\mathfrak{n}_{-}) \otimes_{\mathbb{C}} U(\mathfrak{b}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda} \cong U(\mathfrak{n}_{-}) \otimes_{\mathbb{C}} \mathbb{C}_{\lambda} \cong U(\mathfrak{n}_{-})$$

as a vector space.

We want to show that the character of $U(\mathfrak{n}_{-})$ as an \mathfrak{h} -module is (3). By the PBW Theorem a basis of $U(\mathfrak{n}_{-})$ consists of elements of the form

$$\prod_{\alpha \in \Phi^+} X_{-\alpha}^{k_\alpha} \in U(\mathfrak{n}_-)$$

and the weight of this is $-\sum k_{\alpha}\alpha$.

References

- H. Boos, F. Göhmann, A. Klümper, K. S. Nirov, and A. V. Razumov. Quantum groups and functional relations for higher rank. J. Phys. A, 47(27):275201, 47, 2014.
- [2] J. E. Humphreys. Representations of semisimple Lie algebras in the BGG category O, volume 94 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2008.
- [3] V. G. Kac. *Infinite-dimensional Lie algebras*. Cambridge University Press, Cambridge, third edition, 1990.
- [4] P. P. Kulish. Contraction of quantum algebras, and q-oscillators. Teoret. Mat. Fiz., 86(1):157–160, 1991.
- [5] K. S. Nirov and A. V. Razumov. Quantum groups, Verma modules and q-oscillators: general linear case. J. Phys. A, 50(30):305201, 19, 2017.

4