
Lecture 14

1 A survey of some possibilities

The spinsets of lattice models that we care about usually correspond to modules of various
quantum groups. It is not necessary to use the quantum group theory such as the universal
R-matrix to compute the R-matrices, since this can be done by other methods. (Using a
computer is sometimes useful.) However knowing that the edges of the grid correspond to
modules of a quantum group seems an important point, and understanding this fact has
predictive power.

Our goal is to survey some of the various spinsets that we encounter and explain how
these are related to various modules of particular quantum groups. Here is an overview of
what we want to cover. We will cover none of these topics in any depth.

• We have encountered several examples of parametrized Yang-Baxter equations with
parameter C×. Although we were able to obtain such a parametrized Yang-Baxter
equation from Uq(sl2) in Lecture 13, it is better to regard this as the R-matrix for the

affine quantum group Uq(ŝl2).

• Affine Lie algebras come with Weyl groups, which are Coxeter groups that are also
associated with Hecke algebras. We have seen that the Hecke algebra of gln acts on
partition functions of colored models, and these actions can be extended to the affine
Hecke algebra.

• We have briefly discussed bosonic models, in which the spinsets are infinite. These
often correspond to Verma modules , which are usually infinite-dimensional.

• In addition to quantized enveloping algebras of Lie algebras, we encounter enveloping
algebras of Lie superalgebras such as gl(m|n). So we want to touch on this topic.

• Lie superalgebras have a special kind of Verma module called Kac modules that are
finite-dimensional. We believe these to be important for this topic. For example,
Uq(gl(m|n)) has Kac modules that have dimension 2mn. In particular the Kac modules
for Uq(gl(1|1)) are 2-dimensional modules that differ from the 2-dimensional standard
modules. These account for the vertical edges in the Tokuyama models.

In this and the next lectures we will briefly introduce each of these topics.
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2 Affine Lie algebras

We have seen that quantum groups are sources of solutions to the Yang-Baxter equation.
From the quantum group Uq(sl2) we obtained two R-matrices R′ and R′′ and obtained a
parametrized Yang-Baxter equation by taking a linear combination of these. This is an ad
hoc procedure that works for gln and sln, but which would require modification for other
Cartan types.

An alternative, better approach is to work with the (untwisted) affine Lie algebra ĝ, for
any complex reductive Lie algebra g. Since appear in a great deal of mathematics, it is worth
digressing to introduce them. They are special cases of Kac-Moody Lie algebras, for which
the standard work is [7].

Affine Lie algebras and more general Kac-Moody Lie algebras were only discovered as
recently as the 1970’s. Now however they are everywhere. For us, they underlie the most
important parametrized Yang-Baxter equations we have seen, and so we will spend a lecture
on them.

Kac-Moody Lie algebras have much in common with simple complex Lie algebras. They
have a Weyl group, a weight lattice, and for the integrable highest weight representations,
an analog of the Weyl character formula. The characters of affine Lie algebras turn out to
be modular forms.

Like the finite-dimensional simple Lie algebras, affine Lie algebras are a very special case
of the more general Kac-Moody Lie algebras, and it is worth while treating them separately.
Every finite dimensional simple Lie algebra g gives rise to an (untwisted) affine Lie algebra
ĝ.

This has two different descriptions. First, it can be described by generators and relations.
But an alternative description in Chapter 6 of [7] shows the relationship between g and ĝ.

If g is a Lie algebra and A is an associative algebra then A⊗ g is naturally a Lie algebra
with bracket

[a⊗X, b⊗ Y ] = ab⊗ [X, Y ].

So we may construct the Lie algebra

C[t, t−1]⊗ g,

where C[t, t−1] is the Laurent polynomial ring. If g is simple this has a central extension by
a one-dimensional abelian Lie algebra spanned by K. Thus we have a Lie algebra ĝ′ with a
short-exact sequence

0 −→ C ·K −→ ĝ′ −→ C[t, t−1]⊗ g −→ 0.

It is possible to enlarge this one more time by adjoining a derivation d of ĝ′, so that

ĝ = ĝ′ ⊕ Cd.

The main subtlety is in constructing a cocycle that produces the central extension ĝ′. The
difference between ĝ′ and ĝ is important, but we can ignore it for our purposes.

If V is any irreducible ĝ-module, then by Schur’s Lemma the central element K acts by
a scalar. The algebra ĝ has an important family of infinite-dimensional representations, the
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integrable highest weight representations, in which K acts by a nonzero scalar. As far as I
know these have not been used in lattice models but maybe they should be. One particular
integrable highest weight representation, called the basic representation is of particular im-
portance, showing up in diverse places such as string theory and the modular representations
of the symmetric group.

If V is any g-module, and if z ∈ C×, then V becomes a C[t, t−1] ⊗ g module in which t
acts by the scalar z. We can then pull this back to ĝ′ and obtain a family of modules Vz in
which K acts by zero. At least when g is a classical group, the R-matrices for these were
computed by Jimbo [6]. For ŝl2, this gives the parametrized R-matrices that were computed
in Lecture 13.

3 Affine Weyl group

The affine Lie algebra ĝ has a Weyl group Waff that is a Coxeter group. As before, let g be
a complex simple Lie algebra, with Weyl group W , root lattice Λ and root system Φ. The
weight lattice can be embedded in a Euclidean space, that is, a real vector space V with a
positive definite inner product that is W -invariant. The lattice Λroot is of finite index in Λ.
The weight lattice Λ can be characterized as{

λ ∈ V |2〈λ, α〉
〈α, α〉

∈ Z for α ∈ Φ

}
.

Let αi be the simple positive roots, and si ∈ W the corresponding simple reflections. If
α ∈ Φ, let Hα be the hyperplane through the origin orthogonal to α. The set V −

⋃
Hα

is disconnected, and the connected components are called Weyl chambers . One particular
one is C◦+ = {x ∈ V |〈x, α〉 > 0 for α ∈ Φ+} = {x ∈ V |〈x, α〉 > 0 for α ∈ Φ+}. Let C+ be the
closure of C◦+. It is a fundamental domain for the action of W on V , in that every orbit of
W intersects C+ in a unique point.

Then W can be defined as the group generated by the reflections in the hyperplanes Hα

(α ∈ Φ). The simple reflection si is the reflection in Hαi
. The group W is actually generated

by the subset {s1, · · · , sr} generated by the simple reflections. The hyperplanes Hαi
are just

the walls of C+. For g = sl3, here is a picture of the six Weyl chambers, with C+ shaded.

Cs1C
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We now turn to Waff .
If k ∈ Z let Hα,k = {x ∈ V |〈x, α〉 = k}. Again we may consider the complement of⋃
Hα,k. The closure of one connected component of this complement is called an alcove. In

particular
F = {x ∈ V |〈x, αi〉 > 0, 〈x, α`〉 6 1},

where α` is the highest root is called the fundamental alcove. The affine reflection s0 is the
reflection in the hyperplane Hα`,1.

For g = sl3, α` = α1 + α2. Here is a picture showing some of the alcoves.

F
s1

s2

s0

α1

α2

s0s2s0s1F

s0F s0s2F

s0s2s0F

This figure also shows weight lattice (small black dots at the corners of the alcove) and some
elements of the root lattice (larger red dots).

The group Waff can be defined as the group generated by the reflections in the hyperplanes
Hα,k. But actually it is generated by 〈s0, s1, · · · , sr〉, and it is a Coxeter group with these
generators.

The group Waff contains the subgroup Λroot of translations by elements of the root lattice.
In the above picture, it is shown that s0s2s0s1 takes the fundamental alcove F into F + α1.
Indeed there is an isomorphism Θ of Λroot into W , and Waff is the semidirect product of W
with the normal subgroup Θ(Λroot).

The group Waff
∼= W nΘ(Λroot) can be expanded by adding the group of translations by

Λ. This expanded group is called the extended affine Weyl group.
The Hecke algebra H(Waff) of Waff has generators T0, T1, · · · , Tr subject to the quadratic

relations
T 2
i = (q − 1)Ti + q (1)

and the braid relations. It has an alternative presentation, due to Bernstein, that is generated
by T1, · · · , Tr and an abelian subalgebra isomorphic to Λroot.

To describe the Bernstein presentation, we make use of a complex torus T such that the
group of rational characters of T is identified with the weight lattice Λ. If z ∈ T , let zλ be
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the character λ evaluated at z. Let H(W ) = 〈T1, · · · , Tr〉 be the finite Hecke algebra, with
generators omitting T0, subject to the quadratic relations and braid relations (which may be
read off from the Dynkin diagram). We omit T0 in this presentation. Now we consider the
algebra H(W )⊗ zΛ, where the generators of H(W ) commute with the weight lattice by the
Bernstein relation

zλTi − Tizsiλ =
q − 1

1− z−αi
(zλ − zsiλ).

Just as the affine Weyl group is smaller than the extended affine Weyl group, the algebra
H(W ) ⊗ zΛ is alsoslightly bigger than the Coxeter group 〈T0, · · · , Tr〉. It is called the
extended affine Hecke algebra. To recover the Coxeter group, we restrict the elements zλ to
the root lattice.

Theorem 3.1 (Bernstein, Zelevinsky, Lusztig). The subalgebra H(W )⊗zΛroot is isomorphic
to the Coxeter group H(Waff).

See [10, 2, 3] for more information.
In Lecture 12, Theorem 1.1 we saw that there is an action of H(W ) on O(T ) in which

T1, · · · , Tr act by Demazure-Lusztig operators. In the special case where W = Sn is the Weyl
group of GL(n) we applied this to study the partition functions of colored lattice models.

Theorem 3.2 (Lusztig [9]). This action extends to the affine Hecke algebra H(W )⊗ zΛ.

In this action we let zλ act by its inverse z−λ. To prove this, one must check the Bernstein
relation.

4 The Poincaré-Birkhoff-Witt theorem

As we saw in the last lecture, many examples of the Yang-Baxter equation come from
quantum groups. It is also possible to work backwards from the Yang-Baxter equation and
produce a quantum group ([13] or [8] Section 8.6). If we understand the term “quantum
group” to mean a quasitriangular Hopf algebra, many instances turn out to be quantized
enveloping algebras. Recall the H = Uq(g) is actually not quasitriangular (though if q is a
root of unity it has a quasitriangular quotient), but it is “morally” quasitriangular, meaning
that there is a universal R-matrix, but it is not in H ⊗H but in a completion which might
be denoted H⊗̂H. There are various ways of handling this difficulty.

The notion of Hopf algebra is self-dual, but quasitriangularity is not, so there are also
dual quasitriangular Hopf algebras ([11, 8]). Quantized function algebras are dual quasitri-
angular. For the purpose of investigating the Yang-Baxter equation, whether to work with
quasitriangular or dual quasitriangular Hopf algebra is a matter of taste.

In preparation for discussing Verma modules, we will introduce here a tool, the Poincaré-
Birkhoff-Witt (PBW) theorem.

We work with U(g), not Uq(g). Let g be a Lie algebra and U(g) its enveloping algebra. We
assume that g is finite-dimensional, though this hypothesis is easily lifted. Let X1, · · · , Xd

be a basis of g. Let N = {0, 1, 2, · · · }.

Theorem 4.1 (PBW). A basis of U(g) as a vector space consists of the elements Xk1
1 · · ·X

kd
d

as k = (k1, · · · , kd) runs through Nd.
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Proof. See [4] Section 17.3.

As an application, let g = gl(n,C), which we recall is Matn(C) with the bracket operation
[X, Y ] = XY −Y X (matrix multiplication). This Lie algebra has 3 subalgebras, the Cartan
subalgebra h of diagonal matrices, and the subalgebras n+ and n− nilpotent upper triangular
and lower triangular matrices, respectively.

Proposition 4.2. The multiplication map U(n−)⊗U(h)⊗U(n+) −→ U(g) is a vector space
isomorphism.

Proof. This follows from the PBW theorem by choosing the basis X1, · · · , Xn so that the
first 1

2
n(n − 1) elements are in n−, the next n are in h and the last 1

2
n(n − 1) are in n+.

Then every basis element of g is uniquely the product of basis elements of n−, h and n+,
from which the statement is clear.

In Lecture 15 we will use this to describe certain infinite-dimensional representations of
g called Verma modules . The natural habitat for these is the Bernstein-Gelfand-Gelfand
Category O ([1, 5], [7] Chapter 9). They are not integrable, meaning that they do not lift
to representations of GL(n,C). However Verma modules are still important for us because
they do have analogs for quantum groups, and these have applications to lattice models. See
[12].
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