Lecture 13

1 Examples of colored models

In Lecture 12, we considered the following R-matrix:
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We mentioned that this satisfies a Yang-Baxter equation as follows:
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We will refer to this as the RRR equation since it involves three copies of the R-matrix. We
described this as a parametrized Yang-Baxter equation, but it requires a bit of explanation
why this is an instance of a parametrized Yang-Baxter equation. We recall that this requires
a group I' and a map R from I' to the set of Boltzmann weights such that the following



Yang-Baxter equation holds:
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One way to interpret our Yang-Baxter equation as a parametrized one is to divide the
Boltzmann weights by z — qw, and use these weights instead:
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This change does not affect the validity of the Yang-Baxter equation since it divides both
sides by the same constant (23 —qz2)(21 —qz3)(22 —qz3). But with this change the Boltzmann
weights only depend on z/w and we have indicated this in the notation by labeling the R-
matrix with z/w € C*. We then recognize the Yang-Baxter equation as a parametrized
Yang-Baxter equation with parameter group C*.

In Lecture 12 we considered partition functions assuming we have a Yang-Baxter equation
as follows:
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We will refer to this as the RTT equation, which can be written symbolically as RT'T=TTR.
The letter T refers to the vertex types labeled z and w. We did not specify the Boltzmann
weights at the “T” vertices except to remark that there are multiple possibilities.
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And if we form the partition function of a system Z(z;d) with boundary conditions as
in the open models, then these satisfy a recursion

Z(z;8,d) = L;7(z;d)

where £; is the Demazure-Lusztig operator, assuming d; > d; 1.
Let us investigate some choices for the T" weights.

Example 1.1. First, we can just use the same vertex types as with the R-matrix, but
rotated by 45° (clockwise).

To explain this, we rotate the R-matrix and replace the parameter w by a new parameter
a which can depend on the column, and obtain these weights:
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Here a can be arbitrary but in the partition function o must be constant in the column.
Note that the RRR parametrized Yang-Baxter equation is equivalent to the RT'T equation.

Example 1.2. Another possibility, and an interesting one, is the bosonic models used in
[3], which are special cases of more general ones in [I]. In these models, every vertical edge

can carry an arbitrary number of bosons for every color. Thus if ¢y, --- ¢, are the colors,
the spinset of the vertical edges is N where N = {0,1,2,---} and if 4 € N” we may write
¢}y for the spin with p; bosons of color ¢;, where ¢ = (¢1,- -, ¢,) is the standard flag. We

will not describe the Boltzmann weights here, but see [3] for details. The partition functions
are nonsymmetric Hall-Littlewood polynomials, and in [I] there are similar bosonic models
whose partition functions are more general nonsymmetric Macdonald polynomials.

Our point is that there are multiple choices for the edges in the models for a very good
reason. In the paradigm we are considering, every edge of the model corresponds to an object
in a braided category. In this case, we will see (later) that this category is the category of
U \/g(f:\[n+1)-m0dules. And if U,V are any two objects of this category, then there is a braiding
cuv :U®V — V ®@U, and these all satisfy the Yang-Baxter equation (Lecture 4).



2 Back to quantum groups

The theory of quantum groups gives an explanation of where the Yang-Baxter equation
comes from, and what instances we may expect. Our goal is to give a taste of this.

Please review Lecture 12. We saw that a vector space H over a field F' (for us usually C)
equipped with map p: H ® H — H and ¢ : FF — H satisfying the associativity and unit
axioms is the same as an associative algebra, with multiplication -y = p(z®y) and identity
element e(1x). Similarly, a vector space H equipped with a linear map A : H — H ® H
(called comultiplication) and n : H — F satisfying the coassociativity and counit axioms
is called a coalgebra. A Hopf algebra is thus both an algebra and a coalgebra.

If A and B are algebras, so is A ® B and the Hopf axiom can be interpreted as saying
that A : H — H ® H is an algebra homomorphism. So is the counit n: H — F. It is
equivalent to say that u: H ® H — H is a homomorphism of coalgebras.

Proposition 2.1. Let H be a Hopf algebra. Then the category of H-modules is monoidal.

Proof. For an associative algebra A, if V and W are A-modules, then V @ W is not naturally
an A-module. It is, however, very naturally an A ® A-module.

Now let V' and W be H-modules. We need to put an H-module structure on V@ W. For
this, we use the comultiplication, which is an algebra homomorphism H — H ® H. O

There are two important and related types of Hopf algberas that have deformations into
“quantum groups.” Let G be a reductive algebraic group over C such as GL(n). Let O(G)
be the ring of polynomial functions on G. This algebra is of course commutative. The
multiplication map G x G — G is a morphism hence induces an algebra homorphism
O(G) — O(G x G) = O(G) ® O(G). This is the comultiplication, making O(G) into a
Hopf algebra. A deformation of this will be called a deformed function algebra.

On the other hand, let us recall the universal enveloping algebra of a Lie algebra g. This
is an associative algebra U(g) that contains a copy of g as a vector subspace, such that if
X,Y € g then

(X, Y]=X-Y-Y X (- = multiplication in U(g) )
It has the universal property that if f : g — A of g into an associative algebra A such that
FIXY]) = F(XOfF(Y) = FY)F(X),

then f extends uniquely to an algebra homomorphism U(g) — A. Then U(g) is a cocom-
mutative Hopf algebra whose comultiplication satisfies

AX)=X®1l+10X (X €g).

What Drinfeld and Jimbo showed ([4] [6]) was that it is possible to deform the enveloping al-
gebra U(g), after expanding it slightly to include some group-like elements. The deformation
U,(g), with ¢ a complex parameter, is called a quantized enveloping algebra.



A Lie algebra is a vector space g over a field F' with a bilinear “bracket” operation
g X g — g, for which we use the notation [X, Y], that satisfies

vV, X]=—[XY], [X.Y],Z]+][Y.Z],X]+[ZX],Y]=0.

The second relation is called the Jacobi relation. The Lie algebra gl,, is Mat,, (C) with the
bracket operation
(X,Y]=XY -YX. (1)

It can be easily checked that this is a Lie algebra. Alternatively, if V' is a vector space, gl(V)
is the endomorphism ring of V' with bracket operation . The Lie algebra sl,, is the vector
subspace gl,, consisting of matrices of trace zero.

Definition 1. A representation of the Lie algebra g is a homomorphism 7 : g — gl(V).
Thus it is a linear map to End(V') that satsifies

7([X,Y]) = 7(X)m(Y) — 7(¥ )r(X).

Example 2.2. If 7 : GL(n,C) — GL(V) is a representation, then we obtain a representa-
tion dm : gl,(C) — gl(V) by differentiating. Thus
d

dr(X)v = %etxvhzo.

It can be checked that this is a representation ([2], Proposition 7.2).

The universal enveloping algebra U(g) is the algebra generated by g subject to relations
X Y-Y - X=[XY]. (2)

This resembles but note that in the multiplication is matrix multiplication and in (2))

the multiplication is the multiplication in U(g). Now if 7 : g — End (V) is a representation,

then since by the definition of a representation the relations ({2)) are satisfied by 7(X), 7(Y)

and 7([X,Y]), the linear map 7 extends to an algebra homomorphism U(g) — End(V).
To summarize:

e Representations of a Lie group G become representations of its Lie algebra g, by
differentiation. A representation of g that comes from a representation of G is called
integrable.

e Representations of a Lie algebra g extend to representations of the associative algebra
Ul(g).

So the enveloping algebra captures the representations of a Lie group or Lie algebra. We
caution that the Lie algebra of a Lie group has representations that are not integrable, such
as Verma modules, so its representation theory is slightly richer than GG. Quantum versions
of these “non-integrable” representations can still figure in the Yang-Baxter equation. For
example, Verma modules of U s(sl,+1) underlie Example



Proposition 2.3. The enveloping algebra U(g) is a Hopf algebra with comultiplication sat-
1sfying

AX)=X®1+1X (X €g).
Proof. We take A : g — g®g C U(g) ® U(g) to be defined by (2.3) when X € g. We must
show that this definition extends to U(g). First let us note that if X, Y € g then

AXIAY) - AMAX) = XY @1 -YX@1+10XY —1QYVX.

Indeed, expanding the left-hand side gives eight terms but four cancel in pairs. In U(g)®U(g)

we therefore have
AX)AY) = A(Y)A(X) = A([X, YT]).

The elements A(X) in U(g) ® U(g) thus satisfy the generating relations of U(g), which was
defined by generators X € g and relations (2)). It follows that they extend to an algebra
homomorphism U(g) — U(g) ® U(g). As for the counit n : U(g) — F, this is obtained
by extending the zero map g — F' to an algebra homomorphism U(g) — F.

The antipode is an antimultiplicative map U(g) — U(g) that satisfies S(X) = —X for
X € g. To see that this map exists, if U(g)°PP is the opposite ring then the generators —X
satisfy the defining relations for U(g), so there is a homomorphism S : U(g) — U(g)°®
that sends X to —X, and this is the antipode.

We leave checking the axioms to the reader. O

3 Uq(ﬁ[g)

The very simplest and most important case is g = sl,. It has a basis consisting of:
01 00 1 0
e-(ba) =(0) =G h)

[H,E]=2E, [H F|=-2F,  [E F]=H.

with
Thus the enveloping algebra U(sly) is a noncommutative polynomial ring with generators
E, F, H modulo the ideal generated by the relations
HE — EH =2F, HF — FH = —2F, EF - FE=H.
The comultiplication, we have already seen, is
AX=X®1+1®X, X €g,

and the antipode satsifies S(X) = —X for X € g.

Now let us explain how to deform U(g). Let ¢ € C. We will first define U,(g) as an
associative algebra, then prove it has a comultiplication. In place of H we make use of a
“grouplike” element K which we can think of as the matrix

(qql)'
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We can express H = (¢ — ¢ ')"}(K — K~') and so we do not need H among the generators.
The algebra is then generated by F, F and K with relations

KEK™' = ¢FE KFK™' =¢7%F, EF —FE=(q—q¢ ") ' (K-K).

We should also take K ! among the generators of U,(sly) with obvious relations.

Proposition 3.1. The ring U,(g) admits a comultiplication A : U,(g) — U,(g) ® U,(g)
such that

AK)=K®K, AE)=EK+1®E, A(F)=Fl1+K'®F.
There is also an antipode S that satisfies
S(E)=-EK™, S(F)=—-KF, S(K)=K,
and a counit satisfying n(F) =n(E) =0, so Uy(g) is a Hopf algebra.

Proof. The proof consists of showing that the elements K ® K, F® K +1® FE and F ®
1+ K~ ' ® F satisfy the same relations as K, E and F'. We will omit this verification, or the
verification of the antipode. ]

4 R-matrices

Drinfeld [4] defined the notion of a quasitriangular Hopf algebra. This is a Hopf algebra H
with an invertible element R € H ® H satisfying certain axioms. The first axiom is that for
h € H we have

7(Ah) = R(AR)R™,

where 7 : H® H — H ® H is the flip map 7(x ® y) = y ® x. It is not hard to check that
this implies that if U,V are H-modules, then the map

u®vr— 7(R(u®v))

is an H-module homorphism U ® V. — V ® U. Then there are two more axioms that
guarantee that this map is a braiding. See [§] Chapter 5 for further details. The element R
of H® H is called the universal R-matriz.

Theorem 4.1. Assume that q is not a root of unity. The category of finite-dimensional
modules a quantized enveloping algebra such as Uy(sly) is braided.

Proof. Unfortunately H = U,(g) is not a quasitriangular Hopf algebra. There is a universal
R-matrix, but it is given by an infinite series and so it does not live in H ® H but rather in
a completion. There are various ways of avoiding this difficulty. One way is to work with
a quantized function algebra that is in duality with H, and show that this Hopf algebra is
dual quasitriangular. O]



So even though U,(sly) is not quasitriangular, it is almost as good. But rather than try
to work with the universal R-matrix, it is usually possible to work directly with equations
to find the braiding. So let us see how that works in this particular case.

Let V = C? be the two-dimensional standard module, with basis {z,y} such that E, F
and K are represented by the matrices

(o) (F0) (")

We will begin by determining the endomorphisms of V' ® V. The tensor product module is
not irreducible, but splits into two irreducible submodules, of dimensions 1 and 3. So the
endomorphism ring will turn out to be two dimensional.
We recall that the action of H on V ® V is via the comultiplication. In particular
AK =K ® K, so
K- -(z®y)=Kzr® Ky.

Hence the eigenspaces of K corresponding to the eigenvalues ¢%, 1 and ¢~2 have bases {z®x}
,Ar @y, y®x} and {y @ y}. These must be invariant by any endomorphism ¢ of V@ V|, so
with respect to the basis x @ z,2 ® ¥,y ® =,y ® y, the matrix of ¢ has the form

Assuming that ¢ is invertible, we may scale it so that
Prer)=rRuz,

H(rRyY)=ar®@y+cydw, (3)

dlyzr)=br@y+dy Rz, (4)
PyRy) =Ry

for some nonzero constant y.

Lemma 4.2. We have
a+qc=1, b+dq=q, (5)
g la+b=q", ¢ le+d=1. (6)

Moreover b=c, A\ =1.

Proof. From AE = EQ K+ 1® E we have E(z ®y) = Fr @ Ky+ 2 ® Ey = x ® x and
similarly E(y ® ) = gr ® z. Then

tRr=9¢(z®x)=9¢E@@®y))=FEdr®y)=abz®y)+cE(y®r)=(a+cqz®u,
proving that a + cq = 1. Similarly

gr®r=0¢(E(y®c))=FEo(y®z)=bE(r®y)+dE(y®z)=(b+dg)r®u,
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proving that b+ dq = q. We have proved
Starting with ¢(z ® *) = r ® x and noting that F(z ® z) = ¢ 'z @ y + y @ = we get

lrOytyRr=Far)=Fror)=¢Flz0z)=¢(¢ 't @y+y ).

Expanding this using and , then comparing coefficients gives the identities @ Com-

paring and @ gives b = c.
Proceeding similarly but starting with y ® y instead of x ® x gives the same identities

and @ but contingent on A = 1. O]

Theorem 4.3. There are two U,(sly)-module endomorphisms R and R' of V@V that satisfy
the Yang-Baxter equation in the form

R12R23R12 = R23R12R23- (7)

They are the endomorphisms with matrices

B 1-¢ ¢ . 0 q!
k= g 0 A= gt 1—q

1 1

Remark 1. The notation is as follows: if R € End(V ® V') then R, ; € End(V @V ® V) is
R applied to the i- and j-th components of V ® V' ® V. The Yang-Baxter equation is often
written

R12R13R22 = R23R13R12' (8)

The relationship between the two versions is that if R satisfied , then 7R satisfies ,
where as usual 7(z ® y) =y ® z.

Proof of Theorem[].3. We have seen in the Lemma that every invertible H-module homo-
morphism V ® V — V ® V is a scalar multiple of one of the form

1

R
QUL

1

with a +¢b =1 and b+ dq = q. Such a matrix is a linear combination of two standard ones.
With d = 0, we have b = ¢ and hence a = 1 — ¢2. On the other hand, with a = 0, we have
b=g¢g !andsod=1—¢q?2 These give R and R’ as a basis of the two-dimensional vector
space Endy(V ®@ V).

Now, for the Yang-Baxter equation, we can take a linear combination tR+uR’ and check
whether it satisfies the Yang-Baxter equation. This can be checked using a computer. We
find three solutions, but one is the scalar matrix ¢R — ¢'R = (¢ — ¢~ ') Iygy. The other
solutions of the Yang-Baxter equation are just R and R’ (or constant multiples). O]



5 Parametrized Yang-Baxter equations
Theorem 5.1. Let ¢ € C* be fived. Let R and R’ be as in Theorem[/.d For = € C* let
R(z) = R — 2¢*R/.
Then we have a parametrized Yang-Baxter equation
R(2)12R(zw)a3R(w)12 = R(w)azR(zw)12R(2)a3.

Proof. This can be checked by hand, or by computer (see sl2param.sage, posted on the
class web page). O

This parametrized Yang-Baxter equation is equivalent to the one in Lecture 4. The
colored equation from Lecture 12 (and the beginning of this lecture) is a generalization due
to Jimbo [7]. (To compare them replace ¢ — /g in Theorem [5.1})

Jimbo[7] also gave generalizations to the other classical Cartan types. These Yang-Baxter
equations come from the quantized enveloping algebras of affine Lie algebras, which we will
consider briefly in future lectures. The Lie algebra sly or U,(sly), at least when ¢ is not a
root of unity, has one two-dimensional irreducible representation V, for each z € C*. In
one way imitating the proof of Theorem is actually simpler in the affine case, for if z
and w are in general position, the representation V, ® V,, is irreducible, so the R-matrix
V,®V, — V,, ® V, is determined up to scalar multiple. See [5] Proposition 9.2.4.
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