1 Examples of colored models

In Lecture 12, we considered the following R-matrix:

\[
\begin{array}{cccc}
\text{z, w} & \text{c} & \text{c} & \text{d} \\
\text{c} & \text{d} & \text{z, w} & \text{c} \\
\text{c} & \text{d} & \text{z, w} & \text{c} \\
\text{z, w} & \text{c} & \text{d} & \text{c} \\
\text{z, w} & \text{c} & \text{d} & \text{c} \\
\end{array}
\]

We mentioned that this satisfies a Yang-Baxter equation as follows:

\[
\begin{array}{cccc}
z - qw & z - qw & (1 - q)z & z - w \\
(1 - q)w & (1 - q)w & (1 - q)w & q(z - w) \\
\end{array}
\]

We will refer to this as the RRR equation since it involves three copies of the R-matrix. We described this as a parametrized Yang-Baxter equation, but it requires a bit of explanation why this is an instance of a parametrized Yang-Baxter equation. We recall that this requires a group \(\Gamma \) and a map \(R \) from \(\Gamma \) to the set of Boltzmann weights such that the following
Yang-Baxter equation holds:

\[
R(\gamma \delta) R(\gamma) R(\gamma \delta) = R(\gamma) R(\delta) R(\gamma)
\]

One way to interpret our Yang-Baxter equation as a parametrized one is to divide the Boltzmann weights by \(z - qw \), and use these weights instead:

\[
\frac{z}{w} + \frac{1}{1 - q} z - qw \text{ if } c < d \\
\frac{z}{w} + \frac{1}{1 - q} z - qw \text{ if } c > d \\
\frac{z - w}{z - tw} + \frac{1}{1 - t} z - tw
\]

This change does not affect the validity of the Yang-Baxter equation since it divides both sides by the same constant \((z_1 - qz_2)(z_1 - qz_3)(z_2 - qz_3)\). But with this change the Boltzmann weights only depend on \(z/w \) and we have indicated this in the notation by labeling the \(R \)-matrix with \(z/w \in \mathbb{C}^\times \). We then recognize the Yang-Baxter equation as a parametrized Yang-Baxter equation with parameter group \(\mathbb{C}^\times \).

In Lecture 12 we considered partition functions assuming we have a Yang-Baxter equation as follows:

We will refer to this as the RTT equation, which can be written symbolically as \(RTT = TTR \). The letter \(T \) refers to the vertex types labeled \(z \) and \(w \). We did not specify the Boltzmann weights at the “T” vertices except to remark that there are multiple possibilities.
And if we form the partition function of a system $Z(z; d)$ with boundary conditions as in the open models, then these satisfy a recursion

$$Z(z; s_j d) = L_j Z(z; d)$$

where L_j is the Demazure-Lusztig operator, assuming $d_j > d_{j+1}$.

Let us investigate some choices for the T weights.

Example 1.1. First, we can just use the same vertex types as with the R-matrix, but rotated by 45° (clockwise).

To explain this, we rotate the R-matrix and replace the parameter w by a new parameter α which can depend on the column, and obtain these weights:

<table>
<thead>
<tr>
<th>z/α</th>
<th>z/α</th>
<th>z/α</th>
<th>z/α</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>z/α</td>
<td>z/α</td>
<td>z/α</td>
<td>z/α</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>c</td>
<td>c</td>
<td>d</td>
<td>d</td>
</tr>
<tr>
<td>$(1-q)z$</td>
<td>$(1-q)\alpha$</td>
<td>$q(z-\alpha)$</td>
<td>$z-\alpha$</td>
</tr>
<tr>
<td>$z-q\alpha$</td>
<td>$z-q\alpha$</td>
<td>$z-q\alpha$</td>
<td>$z-q\alpha$</td>
</tr>
</tbody>
</table>

Here α can be arbitrary but in the partition function α must be constant in the column. Note that the RRR parametrized Yang-Baxter equation is equivalent to the RTT equation.

Example 1.2. Another possibility, and an interesting one, is the bosonic models used in [3], which are special cases of more general ones in [1]. In these models, every vertical edge can carry an arbitrary number of bosons for every color. Thus if c_1, \cdots, c_n are the colors, the spinset of the vertical edges is \mathbb{N}^n where $\mathbb{N} = \{0, 1, 2, \cdots\}$ and if $\mu \in \mathbb{N}^n$ we may write c_μ for the spin with μ_i bosons of color c_i, where $c_0 = (c_1, \cdots, c_n)$ is the standard flag. We will not describe the Boltzmann weights here, but see [3] for details. The partition functions are nonsymmetric Hall-Littlewood polynomials, and in [1] there are similar bosonic models whose partition functions are more general nonsymmetric Macdonald polynomials.

Our point is that there are multiple choices for the edges in the models for a very good reason. In the paradigm we are considering, every edge of the model corresponds to an object in a braided category. In this case, we will see (later) that this category is the category of $U_{\sqrt{q}(\widehat{sl}_n+1)}$-modules. And if U, V are any two objects of this category, then there is a braiding $c_{U,V} : U \otimes V \rightarrow V \otimes U$, and these all satisfy the Yang-Baxter equation (Lecture 4).
2 Back to quantum groups

The theory of quantum groups gives an explanation of where the Yang-Baxter equation comes from, and what instances we may expect. Our goal is to give a taste of this.

Please review Lecture 12. We saw that a vector space H over a field F (for us usually \mathbb{C}) equipped with map $\mu : H \otimes H \rightarrow H$ and $\varepsilon : F \rightarrow H$ satisfying the associativity and unit axioms is the same as an associative algebra, with multiplication $x \cdot y = \mu(x \otimes y)$ and identity element $\varepsilon(1_F)$. Similarly, a vector space H equipped with a linear map $\Delta : H \rightarrow H \otimes H$ (called comultiplication) and $\eta : H \rightarrow F$ satisfying the coassociativity and counit axioms is called a coalgebra. A Hopf algebra is thus both an algebra and a coalgebra.

If A and B are algebras, so is $A \otimes B$ and the Hopf axiom can be interpreted as saying that $\Delta : H \rightarrow H \otimes H$ is an algebra homomorphism. So is the counit $\eta : H \rightarrow F$. It is equivalent to say that $\mu : H \otimes H \rightarrow H$ is a homomorphism of coalgebras.

Proposition 2.1. Let H be a Hopf algebra. Then the category of H-modules is monoidal.

Proof. For an associative algebra A, if V and W are A-modules, then $V \otimes W$ is not naturally an A-module. It is, however, very naturally an $A \otimes A$-module.

Now let V and W be H-modules. We need to put an H-module structure on $V \otimes W$. For this, we use the comultiplication, which is an algebra homomorphism $H \rightarrow H \otimes H$.

There are two important and related types of Hopf algebras that have deformations into “quantum groups.” Let G be a reductive algebraic group over \mathbb{C} such as $GL(n)$. Let $\mathcal{O}(G)$ be the ring of polynomial functions on G. This algebra is of course commutative. The multiplication map $G \times G \rightarrow G$ is a morphism hence induces an algebra homomorphism $\mathcal{O}(G) \rightarrow \mathcal{O}(G \times G) \cong \mathcal{O}(G) \otimes \mathcal{O}(G)$. This is the comultiplication, making $\mathcal{O}(G)$ into a Hopf algebra. A deformation of this will be called a deformed function algebra.

On the other hand, let us recall the universal enveloping algebra of a Lie algebra \mathfrak{g}. This is an associative algebra $\mathfrak{U}(\mathfrak{g})$ that contains a copy of \mathfrak{g} as a vector subspace, such that if $X, Y \in \mathfrak{g}$ then

$$[X, Y] = X \cdot Y - Y \cdot X. \quad (\cdot \text{ = multiplication in } \mathfrak{U}(\mathfrak{g})\text{)}$$

It has the universal property that if $f : \mathfrak{g} \rightarrow A$ of \mathfrak{g} into an associative algebra A such that

$$f([X, Y]) = f(X)f(Y) - f(Y)f(X),$$

then f extends uniquely to an algebra homomorphism $\mathfrak{U}(\mathfrak{g}) \rightarrow A$. Then $\mathfrak{U}(\mathfrak{g})$ is a cocommutative Hopf algebra whose comultiplication satisfies

$$\Delta(X) = X \otimes 1 + 1 \otimes X \quad (X \in \mathfrak{g}).$$

What Drinfeld and Jimbo showed ([4, 6]) was that it is possible to deform the enveloping algebra $\mathfrak{U}(\mathfrak{g})$, after expanding it slightly to include some group-like elements. The deformation $\mathfrak{U}_q(\mathfrak{g})$, with q a complex parameter, is called a quantized enveloping algebra.
A **Lie algebra** is a vector space \mathfrak{g} over a field F with a bilinear “bracket” operation $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, for which we use the notation $[X,Y]$, that satisfies

$$ [Y,X] = -[X,Y], \quad [[X,Y], Z] + [[Y,Z], X] + [[Z,X], Y] = 0. $$

The second relation is called the *Jacobi relation*. The Lie algebra \mathfrak{gl}_n is $\text{Mat}_n(C)$ with the bracket operation

$$ [X,Y] = XY - YX. \tag{1} $$

It can be easily checked that this is a Lie algebra. Alternatively, if V is a vector space, $\mathfrak{gl}(V)$ is the endomorphism ring of V with bracket operation $[\cdot, \cdot]$. The Lie algebra \mathfrak{sl}_n is the vector subspace \mathfrak{gl}_n consisting of matrices of trace zero.

Definition 1. A **representation** of the Lie algebra \mathfrak{g} is a homomorphism $\pi : \mathfrak{g} \to \mathfrak{gl}(V)$. Thus it is a linear map to $\text{End}(V)$ that satisfies

$$ \pi([X,Y]) = \pi(X)\pi(Y) - \pi(Y)\pi(X). $$

Example 2.2. If $\pi : \text{GL}(n, C) \to \text{GL}(V)$ is a representation, then we obtain a representation $d\pi : \mathfrak{gl}_n(C) \to \mathfrak{gl}(V)$ by differentiating. Thus

$$ d\pi(X)v = \frac{d}{dt}e^{tx}v|_{t=0}. $$

It can be checked that this is a representation ([2], Proposition 7.2).

The **universal enveloping algebra** $U(\mathfrak{g})$ is the algebra generated by \mathfrak{g} subject to relations

$$ X \cdot Y - Y \cdot X = [X,Y]. \tag{2} $$

This resembles (1) but note that in (1) the multiplication is matrix multiplication and in (2) the multiplication is the multiplication in $U(\mathfrak{g})$. Now if $\pi : \mathfrak{g} \to \text{End}(V)$ is a representation, then since by the definition of a representation the relations (2) are satisfied by $\pi(X), \pi(Y)$ and $\pi([X,Y])$, the linear map π extends to an algebra homomorphism $U(\mathfrak{g}) \to \text{End}(V)$.

To summarize:

- Representations of a Lie group G become representations of its Lie algebra \mathfrak{g}, by differentiating. A representation of \mathfrak{g} that comes from a representation of G is called **integrable**.

- Representations of a Lie algebra \mathfrak{g} extend to representations of the associative algebra $U(\mathfrak{g})$.

So the enveloping algebra captures the representations of a Lie group or Lie algebra. We caution that the Lie algebra of a Lie group has representations that are not integrable, such as Verma modules, so its representation theory is slightly richer than G. Quantum versions of these “non-integrable” representations can still figure in the Yang-Baxter equation. For example, Verma modules of $U_{\sqrt{q}}(\mathfrak{sl}_{n+1})$ underlie Example [1.2]
Proposition 2.3. The enveloping algebra $U(g)$ is a Hopf algebra with comultiplication satisfying

\[\Delta(X) = X \otimes 1 + 1 \otimes X \quad (X \in g). \]

Proof. We take $\Delta : g \rightarrow g \otimes g \subset U(g) \otimes U(g)$ to be defined by (2.3) when $X \in g$. We must show that this definition extends to $U(g)$. First let us note that if $X, Y \in g$ then

\[\Delta(X) \Delta(Y) - \Delta(Y) \Delta(X) = XY \otimes 1 - YX \otimes 1 + 1 \otimes XY - 1 \otimes YX. \]

Indeed, expanding the left-hand side gives eight terms but four cancel in pairs. In $U(g) \otimes U(g)$ we therefore have

\[\Delta(X) \Delta(Y) - \Delta(Y) \Delta(X) = \Delta([X,Y]). \]

The elements $\Delta(X)$ in $U(g) \otimes U(g)$ thus satisfy the generating relations of $U(g)$, which was defined by generators $X \in g$ and relations [2]. It follows that they extend to an algebra homomorphism $U(g) \rightarrow U(g) \otimes U(g)$. As for the counit $\eta : U(g) \rightarrow F$, this is obtained by extending the zero map $g \rightarrow F$ to an algebra homomorphism $U(g) \rightarrow F$.

The antipode is an antimultiplicative map $U(g) \rightarrow U(g)$ that satisfies $S(X) = -X$ for $X \in g$. To see that this map exists, if $U(g)^{opp}$ is the opposite ring then the generators $-X$ satisfy the defining relations for $U(g)$, so there is a homomorphism $S : U(g) \rightarrow U(g)^{opp}$ that sends X to $-X$, and this is the antipode.

We leave checking the axioms to the reader. \hfill \square

3 $U_q(\mathfrak{sl}_2)$

The very simplest and most important case is $g = \mathfrak{sl}_2$. It has a basis consisting of:

\[E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \]

with

\[[H, E] = 2E, \quad [H, F] = -2F, \quad [E, F] = H. \]

Thus the enveloping algebra $U(\mathfrak{sl}_2)$ is a noncommutative polynomial ring with generators E, F, H modulo the ideal generated by the relations

\[HE - EH = 2E, \quad HF - FH = -2F, \quad EF - FE = H. \]

The comultiplication, we have already seen, is

\[\Delta X = X \otimes 1 + 1 \otimes X, \quad X \in g, \]

and the antipode satisfies $S(X) = -X$ for $X \in g$.

Now let us explain how to deform $U(g)$. Let $q \in \mathbb{C}$. We will first define $U_q(g)$ as an associative algebra, then prove it has a comultiplication. In place of H we make use of a “grouplike” element K which we can think of as the matrix

\[\begin{pmatrix} q & q^{-1} \\ q^{-1} & q \end{pmatrix}. \]
We can express \(H = (q - q^{-1})^{-1}(K - K^{-1}) \) and so we do not need \(H \) among the generators. The algebra is then generated by \(E, F \) and \(K \) with relations
\[
KEK^{-1} = q^2 E, \quad KFK^{-1} = q^{-2} F, \quad EF - FE = (q - q^{-1})^{-1}(K - K^{-1}).
\]
We should also take \(K^{-1} \) among the generators of \(U_q(\mathfrak{sl}_2) \) with obvious relations.

Proposition 3.1. The ring \(U_q(\mathfrak{g}) \) admits a comultiplication \(\Delta : U_q(\mathfrak{g}) \rightarrow U_q(\mathfrak{g}) \otimes U_q(\mathfrak{g}) \) such that
\[
\Delta(K) = K \otimes K, \quad \Delta(E) = E \otimes K + 1 \otimes E, \quad \Delta(F) = F \otimes 1 + K^{-1} \otimes F.
\]
There is also an antipode \(S \) that satisfies
\[
S(E) = -EK^{-1}, \quad S(F) = -KF, \quad S(K) = K^{-1},
\]
and a counit satisfying \(\eta(F) = \eta(E) = 0 \), so \(U_q(\mathfrak{g}) \) is a Hopf algebra.

Proof. The proof consists of showing that the elements \(K \otimes K, E \otimes K + 1 \otimes E \) and \(F \otimes 1 + K^{-1} \otimes F \) satisfy the same relations as \(K, E \) and \(F \). We will omit this verification, or the verification of the antipode. \(\Box \)

4 R-matrices

Drinfeld [4] defined the notion of a *quasitriangular Hopf algebra*. This is a Hopf algebra \(H \) with an invertible element \(R \in H \otimes H \) satisfying certain axioms. The first axiom is that for \(h \in H \) we have
\[
\tau(\Delta h) = R(\Delta h)R^{-1},
\]
where \(\tau : H \otimes H \rightarrow H \otimes H \) is the flip map \(\tau(x \otimes y) = y \otimes x \). It is not hard to check that this implies that if \(U, V \) are \(H \)-modules, then the map
\[
\tau(U \otimes V) \rightarrow V \otimes U \quad \tau(U \otimes V) \rightarrow V \otimes U
\]
is an \(H \)-module homomorphism \(U \otimes V \rightarrow V \otimes U \). Then there are two more axioms that guarantee that this map is a braiding. See [8] Chapter 5 for further details. The element \(R \) of \(H \otimes H \) is called the universal R-matrix.

Theorem 4.1. Assume that \(q \) is not a root of unity. The category of finite-dimensional modules a quantized enveloping algebra such as \(U_q(\mathfrak{sl}_2) \) is braided.

Proof. Unfortunately \(H = U_q(\mathfrak{g}) \) is not a quasitriangular Hopf algebra. There is a universal R-matrix, but it is given by an infinite series and so it does not live in \(H \otimes H \) but rather in a completion. There are various ways of avoiding this difficulty. One way is to work with a quantized function algebra that is in duality with \(H \), and show that this Hopf algebra is dual quasitriangular. \(\Box \)
So even though $U_q(\mathfrak{sl}_2)$ is not quasitriangular, it is almost as good. But rather than try to work with the universal R-matrix, it is usually possible to work directly with equations to find the braiding. So let us see how that works in this particular case.

Let $V = \mathbb{C}^2$ be the two-dimensional standard module, with basis $\{x, y\}$ such that E, F and K are represented by the matrices

$$
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
q & 0 \\
0 & q^{-1}
\end{pmatrix}.
$$

We will begin by determining the endomorphisms of $V \otimes V$. The tensor product module is not irreducible, but splits into two irreducible submodules, of dimensions 1 and 3. So the endomorphism ring will turn out to be two dimensional.

We recall that the action of H on $V \otimes V$ is via the comultiplication. In particular $\Delta K = K \otimes K$, so

$$
K \cdot (x \otimes y) = Kx \otimes Ky.
$$

Hence the eigenspaces of K corresponding to the eigenvalues q^2, 1 and q^{-2} have bases $\{x \otimes x\}$, $\{x \otimes y, y \otimes x\}$ and $\{y \otimes y\}$. These must be invariant by any endomorphism ϕ of $V \otimes V$, so with respect to the basis $x \otimes x, x \otimes y, y \otimes x, y \otimes y$, the matrix of ϕ has the form

$$
\begin{pmatrix}
* & * & * & * \\
* & * & * & *
\end{pmatrix}.
$$

Assuming that ϕ is invertible, we may scale it so that

$$
\phi(x \otimes x) = x \otimes x, \quad \phi(x \otimes y) = ax \otimes y + cy \otimes x, \quad \phi(y \otimes x) = bx \otimes y + dy \otimes x, \quad \phi(y \otimes y) = \lambda y \otimes y
$$

for some nonzero constant y.

Lemma 4.2. We have

$$
a + qc = 1, \quad b + dq = q, \quad q^{-1}a + b = q^{-1}, \quad q^{-1}c + d = 1.
$$

Moreover $b = c, \lambda = 1$.

Proof. From $\Delta E = E \otimes K + 1 \otimes E$ we have $E(x \otimes y) = Ex \otimes Ky + x \otimes Ey = x \otimes x$ and similarly $E(y \otimes x) = qx \otimes x$. Then

$$
x \otimes x = \phi(x \otimes x) = \phi(E(x \otimes y)) = E\phi(x \otimes y) = aE(x \otimes y) + cE(y \otimes x) = (a + cq)x \otimes x,
$$

proving that $a + cq = 1$. Similarly

$$
qx \otimes x = \phi(E(y \otimes x)) = E\phi(y \otimes x) = bE(x \otimes y) + dE(y \otimes x) = (b + dq)x \otimes x,
$$

8
proving that \(b + dq = q \). We have proved

Starting with \(\phi(x \otimes x) = x \otimes x \) and noting that \(F(x \otimes x) = q^{-1} x \otimes y + y \otimes x \) we get

\[
q^{-1} x \otimes y + y \otimes x = F(x \otimes x) = \phi(x \otimes x) = \phi F(x \otimes x) = \phi(q^{-1} x \otimes y + y \otimes x).
\]

Expanding this using (3) and (4), then comparing coefficients gives the identities (6). Comparing (5) and (6) gives \(b = c \).

Proceeding similarly but starting with \(y \otimes y \) instead of \(x \otimes x \) gives the same identities (5) and (6) but contingent on \(\lambda = 1 \).

Theorem 4.3. There are two \(U_q(\mathfrak{sl}_2) \)-module endomorphisms \(R \) and \(R' \) of \(V \otimes V \) that satisfy the Yang-Baxter equation in the form

\[
R_{12} R_{23} R_{12} = R_{23} R_{12} R_{23}. \tag{7}
\]

They are the endomorphisms with matrices

\[
R = \begin{pmatrix}
1 & 0 \\
1 - q^2 & q \\
q & 0 \\
1 & 1
\end{pmatrix}, \quad R' = \begin{pmatrix}
1 & 0 & q^{-1} \\
0 & q^{-1} & 1 - q^{-2} \\
q^{-1} & 1 - q^{-2} & 1
\end{pmatrix}.
\]

Remark 1. The notation is as follows: if \(R \in \text{End}(V \otimes V) \) then \(R_{i,j} \in \text{End}(V \otimes V \otimes V) \) is \(R \) applied to the \(i \)- and \(j \)-th components of \(V \otimes V \otimes V \). The Yang-Baxter equation is often written

\[
R_{12} R_{13} R_{22} = R_{23} R_{12} R_{23}. \tag{8}
\]

The relationship between the two versions is that if \(R \) satisfied (8), then \(\tau R \) satisfies (7), where as usual \(\tau(x \otimes y) = y \otimes x \).

Proof of Theorem 4.3. We have seen in the Lemma that every invertible \(H \)-module homomorphism \(V \otimes V \rightarrow V \otimes V \) is a scalar multiple of one of the form

\[
\begin{pmatrix}
1 & a & b \\
a & b & d \\
b & d & 1
\end{pmatrix}
\]

with \(a + qb = 1 \) and \(b + dq = q \). Such a matrix is a linear combination of two standard ones. With \(d = 0 \), we have \(b = q \) and hence \(a = 1 - q^2 \). On the other hand, with \(a = 0 \), we have \(b = q^{-1} \) and so \(d = 1 - q^{-2} \). These give \(R \) and \(R' \) as a basis of the two-dimensional vector space \(\text{End}_H(V \otimes V) \).

Now, for the Yang-Baxter equation, we can take a linear combination \(tR + uR' \) and check whether it satisfies the Yang-Baxter equation. This can be checked using a computer. We find three solutions, but one is the scalar matrix \(qR' - q^{-1}R = (q - q^{-1}) I_{V \otimes V} \). The other solutions of the Yang-Baxter equation are just \(R \) and \(R' \) (or constant multiples). \(\square \)
5 Parametrized Yang-Baxter equations

Theorem 5.1. Let $q \in \mathbb{C}^\times$ be fixed. Let R and R' be as in Theorem 4.3. For $z \in \mathbb{C}^\times$ let

$$R(z) = R - zq^2R'.$$

Then we have a parametrized Yang-Baxter equation

$$R(z)_{12}R(zw)_{23}R(w)_{12} = R(w)_{23}R(zw)_{12}R(z)_{23}.$$

Proof. This can be checked by hand, or by computer (see sl2param.sage, posted on the class web page).

This parametrized Yang-Baxter equation is equivalent to the one in Lecture 4. The colored equation from Lecture 12 (and the beginning of this lecture) is a generalization due to Jimbo [7]. (To compare them replace $q \rightarrow \sqrt{q}$ in Theorem 5.1.)

Jimbo [7] also gave generalizations to the other classical Cartan types. These Yang-Baxter equations come from the quantized enveloping algebras of affine Lie algebras, which we will consider briefly in future lectures. The Lie algebra \hat{sl}_2 or $U_q(\hat{sl}_2)$, at least when q is not a root of unity, has one two-dimensional irreducible representation V_z for each $z \in \mathbb{C}^\times$. In one way imitating the proof of Theorem 4.3 is actually simpler in the affine case, for if z and w are in general position, the representation $V_z \otimes V_w$ is irreducible, so the R-matrix $V_z \otimes V_w \rightarrow V_w \otimes V_z$ is determined up to scalar multiple. See [5] Proposition 9.2.4.
References

