
Lecture 13

1 Examples of colored models

In Lecture 12, we considered the following R-matrix:
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We mentioned that this satisfies a Yang-Baxter equation as follows:
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We will refer to this as the RRR equation since it involves three copies of the R-matrix.We
described this as a parametrized Yang-Baxter equation, but it requires a bit of explanation
why this is an instance of a parametrized Yang-Baxter equation. We recall that this requires
a group Γ and a map R from Γ to the set of Boltzmann weights such that the following
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Yang-Baxter equation holds:
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One way to interpret our Yang-Baxter equation as a parametrized one is to divide the
Boltzmann weights by z − qw, and use these weights instead:
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This change does not affect the validity of the Yang-Baxter equation since it divides both
sides by the same constant (z1−qz2)(z1−qz3)(z2−qz3). But with this change the Boltzmann
weights only depend on z/w and we have indicated this in the notation by labeling the R-
matrix with z/w ∈ C×. We then recognize the Yang-Baxter equation as a parametrized
Yang-Baxter equation with parameter group C×.

In Lecture 12 we considered partition functions assuming we have a Yang-Baxter equation
as follows:
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We will refer to this as the RTT equation, which can be written symbolically as RTT=TTR.
The letter T refers to the vertex types labeled z and w. We did not specify the Boltzmann
weights at the “T” vertices except to remark that there are multiple possibilities.
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And if we form the partition function of a system Z(z; d) with boundary conditions as
in the open models, then these satisfy a recursion

Z(z; sid) = LiZ(z; d)

where Li is the Demazure-Lusztig operator, assuming di > di+1.
Let us investigate some choices for the T weights.

Example 1.1. First, we can just use the same vertex types as with the R-matrix, but
rotated by 45◦ (clockwise).

To explain this, we rotate the R-matrix and replace the parameter w by a new parameter
α which can depend on the column, and obtain these weights:
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Here α can be arbitrary but in the partition function α must be constant in the column.
Note that the RRR parametrized Yang-Baxter equation is equivalent to the RTT equation.

Example 1.2. Another possibility, and an interesting one, is the bosonic models used in
[3], which are special cases of more general ones in [1]. In these models, every vertical edge
can carry an arbitrary number of bosons for every color. Thus if c1, · · · , cn are the colors,
the spinset of the vertical edges is Nn where N = {0, 1, 2, · · · } and if µ ∈ Nn we may write
cµ0 for the spin with µi bosons of color ci, where c0 = (c1, · · · , cn) is the standard flag. We
will not describe the Boltzmann weights here, but see [3] for details. The partition functions
are nonsymmetric Hall-Littlewood polynomials, and in [1] there are similar bosonic models
whose partition functions are more general nonsymmetric Macdonald polynomials.

Our point is that there are multiple choices for the edges in the models for a very good
reason. In the paradigm we are considering, every edge of the model corresponds to an object
in a braided category. In this case, we will see (later) that this category is the category of

U√q(ŝln+1)-modules. And if U, V are any two objects of this category, then there is a braiding
cU,V : U ⊗ V −→ V ⊗ U , and these all satisfy the Yang-Baxter equation (Lecture 4).
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2 Back to quantum groups

The theory of quantum groups gives an explanation of where the Yang-Baxter equation
comes from, and what instances we may expect. Our goal is to give a taste of this.

Please review Lecture 12. We saw that a vector space H over a field F (for us usually C)
equipped with map µ : H ⊗H −→ H and ε : F −→ H satisfying the associativity and unit
axioms is the same as an associative algebra, with multiplication x ·y = µ(x⊗y) and identity
element ε(1F ). Similarly, a vector space H equipped with a linear map ∆ : H −→ H ⊗ H
(called comultiplication) and η : H −→ F satisfying the coassociativity and counit axioms
is called a coalgebra. A Hopf algebra is thus both an algebra and a coalgebra.

If A and B are algebras, so is A ⊗ B and the Hopf axiom can be interpreted as saying
that ∆ : H −→ H ⊗ H is an algebra homomorphism. So is the counit η : H −→ F . It is
equivalent to say that µ : H ⊗H −→ H is a homomorphism of coalgebras.

Proposition 2.1. Let H be a Hopf algebra. Then the category of H-modules is monoidal.

Proof. For an associative algebra A, if V and W are A-modules, then V ⊗W is not naturally
an A-module. It is, however, very naturally an A⊗ A-module.

Now let V and W be H-modules. We need to put an H-module structure on V ⊗W . For
this, we use the comultiplication, which is an algebra homomorphism H −→ H ⊗H.

There are two important and related types of Hopf algberas that have deformations into
“quantum groups.” Let G be a reductive algebraic group over C such as GL(n). Let O(G)
be the ring of polynomial functions on G. This algebra is of course commutative. The
multiplication map G × G −→ G is a morphism hence induces an algebra homorphism
O(G) −→ O(G × G) ∼= O(G) ⊗ O(G). This is the comultiplication, making O(G) into a
Hopf algebra. A deformation of this will be called a deformed function algebra.

On the other hand, let us recall the universal enveloping algebra of a Lie algebra g. This
is an associative algebra U(g) that contains a copy of g as a vector subspace, such that if
X, Y ∈ g then

[X, Y ] = X · Y − Y ·X. ( · = multiplication in U(g) )

It has the universal property that if f : g −→ A of g into an associative algebra A such that

f([X, Y ]) = f(X)f(Y )− f(Y )f(X),

then f extends uniquely to an algebra homomorphism U(g) −→ A. Then U(g) is a cocom-
mutative Hopf algebra whose comultiplication satisfies

∆(X) = X ⊗ 1 + 1⊗X (X ∈ g).

What Drinfeld and Jimbo showed ([4, 6]) was that it is possible to deform the enveloping al-
gebra U(g), after expanding it slightly to include some group-like elements. The deformation
Uq(g), with q a complex parameter, is called a quantized enveloping algebra.

4



A Lie algebra is a vector space g over a field F with a bilinear “bracket” operation
g× g −→ g, for which we use the notation [X, Y ], that satisfies

[Y,X] = −[X, Y ], [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

The second relation is called the Jacobi relation. The Lie algebra gln is Matn(C) with the
bracket operation

[X, Y ] = XY − Y X. (1)

It can be easily checked that this is a Lie algebra. Alternatively, if V is a vector space, gl(V )
is the endomorphism ring of V with bracket operation (1). The Lie algebra sln is the vector
subspace gln consisting of matrices of trace zero.

Definition 1. A representation of the Lie algebra g is a homomorphism π : g −→ gl(V ).
Thus it is a linear map to End(V ) that satsifies

π([X, Y ]) = π(X)π(Y )− π(Y )π(X).

Example 2.2. If π : GL(n,C) −→ GL(V ) is a representation, then we obtain a representa-
tion dπ : gln(C) −→ gl(V ) by differentiating. Thus

dπ(X)v =
d

dt
etXv|t=0.

It can be checked that this is a representation ([2], Proposition 7.2).

The universal enveloping algebra U(g) is the algebra generated by g subject to relations

X · Y − Y ·X = [X, Y ]. (2)

This resembles (1) but note that in (1) the multiplication is matrix multiplication and in (2)
the multiplication is the multiplication in U(g). Now if π : g −→ End(V ) is a representation,
then since by the definition of a representation the relations (2) are satisfied by π(X), π(Y )
and π([X, Y ]), the linear map π extends to an algebra homomorphism U(g) −→ End(V ).

To summarize:

• Representations of a Lie group G become representations of its Lie algebra g, by
differentiation. A representation of g that comes from a representation of G is called
integrable.

• Representations of a Lie algebra g extend to representations of the associative algebra
U(g).

So the enveloping algebra captures the representations of a Lie group or Lie algebra. We
caution that the Lie algebra of a Lie group has representations that are not integrable, such
as Verma modules, so its representation theory is slightly richer than G. Quantum versions
of these “non-integrable” representations can still figure in the Yang-Baxter equation. For
example, Verma modules of U√q(sln+1) underlie Example 1.2.
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Proposition 2.3. The enveloping algebra U(g) is a Hopf algebra with comultiplication sat-
isfying

∆(X) = X ⊗ 1 + 1⊗X (X ∈ g).

Proof. We take ∆ : g −→ g⊗ g ⊂ U(g)⊗U(g) to be defined by (2.3) when X ∈ g. We must
show that this definition extends to U(g). First let us note that if X, Y ∈ g then

∆(X)∆(Y )−∆(Y )∆(X) = XY ⊗ 1− Y X ⊗ 1 + 1⊗XY − 1⊗ Y X.

Indeed, expanding the left-hand side gives eight terms but four cancel in pairs. In U(g)⊗U(g)
we therefore have

∆(X)∆(Y )−∆(Y )∆(X) = ∆([X, Y ]).

The elements ∆(X) in U(g)⊗U(g) thus satisfy the generating relations of U(g), which was
defined by generators X ∈ g and relations (2). It follows that they extend to an algebra
homomorphism U(g) −→ U(g) ⊗ U(g). As for the counit η : U(g) −→ F , this is obtained
by extending the zero map g −→ F to an algebra homomorphism U(g) −→ F .

The antipode is an antimultiplicative map U(g) −→ U(g) that satisfies S(X) = −X for
X ∈ g. To see that this map exists, if U(g)opp is the opposite ring then the generators −X
satisfy the defining relations for U(g), so there is a homomorphism S : U(g) −→ U(g)opp

that sends X to −X, and this is the antipode.
We leave checking the axioms to the reader.

3 Uq(sl2)

The very simplest and most important case is g = sl2. It has a basis consisting of:

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
,

with
[H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

Thus the enveloping algebra U(sl2) is a noncommutative polynomial ring with generators
E,F,H modulo the ideal generated by the relations

HE − EH = 2E, HF − FH = −2F, EF − FE = H.

The comultiplication, we have already seen, is

∆X = X ⊗ 1 + 1⊗X, X ∈ g,

and the antipode satsifies S(X) = −X for X ∈ g.
Now let us explain how to deform U(g). Let q ∈ C. We will first define Uq(g) as an

associative algebra, then prove it has a comultiplication. In place of H we make use of a
“grouplike” element K which we can think of as the matrix(

q
q−1

)
.
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We can express H = (q− q−1)−1(K −K−1) and so we do not need H among the generators.
The algebra is then generated by E,F and K with relations

KEK−1 = q2E, KFK−1 = q−2F, EF − FE = (q − q−1)−1(K −K−1).

We should also take K−1 among the generators of Uq(sl2) with obvious relations.

Proposition 3.1. The ring Uq(g) admits a comultiplication ∆ : Uq(g) −→ Uq(g) ⊗ Uq(g)
such that

∆(K) = K ⊗K, ∆(E) = E ⊗K + 1⊗ E, ∆(F ) = F ⊗ 1 +K−1 ⊗ F.

There is also an antipode S that satisfies

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1,

and a counit satisfying η(F ) = η(E) = 0, so Uq(g) is a Hopf algebra.

Proof. The proof consists of showing that the elements K ⊗ K, E ⊗ K + 1 ⊗ E and F ⊗
1 +K−1⊗F satisfy the same relations as K,E and F . We will omit this verification, or the
verification of the antipode.

4 R-matrices

Drinfeld [4] defined the notion of a quasitriangular Hopf algebra. This is a Hopf algebra H
with an invertible element R ∈ H ⊗H satisfying certain axioms. The first axiom is that for
h ∈ H we have

τ(∆h) = R(∆h)R−1,

where τ : H ⊗H −→ H ⊗H is the flip map τ(x⊗ y) = y ⊗ x. It is not hard to check that
this implies that if U, V are H-modules, then the map

u⊗ v 7−→ τ(R(u⊗ v))

is an H-module homorphism U ⊗ V −→ V ⊗ U . Then there are two more axioms that
guarantee that this map is a braiding. See [8] Chapter 5 for further details. The element R
of H ⊗H is called the universal R-matrix .

Theorem 4.1. Assume that q is not a root of unity. The category of finite-dimensional
modules a quantized enveloping algebra such as Uq(sl2) is braided.

Proof. Unfortunately H = Uq(g) is not a quasitriangular Hopf algebra. There is a universal
R-matrix, but it is given by an infinite series and so it does not live in H ⊗H but rather in
a completion. There are various ways of avoiding this difficulty. One way is to work with
a quantized function algebra that is in duality with H, and show that this Hopf algebra is
dual quasitriangular.
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So even though Uq(sl2) is not quasitriangular, it is almost as good. But rather than try
to work with the universal R-matrix, it is usually possible to work directly with equations
to find the braiding. So let us see how that works in this particular case.

Let V = C2 be the two-dimensional standard module, with basis {x, y} such that E,F
and K are represented by the matrices(

0 1
0 0

)
,

(
0 0
1 0

)
,

(
q

q−1

)
.

We will begin by determining the endomorphisms of V ⊗ V . The tensor product module is
not irreducible, but splits into two irreducible submodules, of dimensions 1 and 3. So the
endomorphism ring will turn out to be two dimensional.

We recall that the action of H on V ⊗ V is via the comultiplication. In particular
∆K = K ⊗K, so

K · (x⊗ y) = Kx⊗Ky.
Hence the eigenspaces of K corresponding to the eigenvalues q2, 1 and q−2 have bases {x⊗x}
, {x⊗ y, y⊗ x} and {y⊗ y}. These must be invariant by any endomorphism φ of V ⊗ V , so
with respect to the basis x⊗ x, x⊗ y, y ⊗ x, y ⊗ y, the matrix of φ has the form

∗
∗ ∗
∗ ∗

∗

 .

Assuming that φ is invertible, we may scale it so that

φ(x⊗ x) = x⊗ x,

φ(x⊗ y) = ax⊗ y + cy ⊗ x, (3)

φ(y ⊗ x) = bx⊗ y + dy ⊗ x, (4)

φ(y ⊗ y) = λy ⊗ y
for some nonzero constant y.

Lemma 4.2. We have
a+ qc = 1, b+ dq = q, (5)

q−1a+ b = q−1, q−1c+ d = 1. (6)

Moreover b = c, λ = 1.

Proof. From ∆E = E ⊗K + 1 ⊗ E we have E(x ⊗ y) = Ex ⊗Ky + x ⊗ Ey = x ⊗ x and
similarly E(y ⊗ x) = qx⊗ x. Then

x⊗ x = φ(x⊗ x) = φ(E(x⊗ y)) = Eφ(x⊗ y) = aE(x⊗ y) + cE(y ⊗ x) = (a+ cq)x⊗ x,

proving that a+ cq = 1. Similarly

qx⊗ x = φ(E(y ⊗ x)) = Eφ(y ⊗ x) = bE(x⊗ y) + dE(y ⊗ x) = (b+ dq)x⊗ x,
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proving that b+ dq = q. We have proved
Starting with φ(x⊗ x) = x⊗ x and noting that F (x⊗ x) = q−1x⊗ y + y ⊗ x we get

q−1x⊗ y + y ⊗ x = F (x⊗ x) = Fφ(x⊗ x) = φF (x⊗ x) = φ(q−1x⊗ y + y ⊗ x).

Expanding this using (3) and (4), then comparing coefficients gives the identities (6). Com-
paring (5) and (6) gives b = c.

Proceeding similarly but starting with y ⊗ y instead of x ⊗ x gives the same identities
(5) and (6) but contingent on λ = 1.

Theorem 4.3. There are two Uq(sl2)-module endomorphisms R and R′ of V ⊗V that satisfy
the Yang-Baxter equation in the form

R12R23R12 = R23R12R23. (7)

They are the endomorphisms with matrices

R =


1

1− q2 q
q 0

1

 , R′ =


1

0 q−1

q−1 1− q−2
1

 .

Remark 1. The notation is as follows: if R ∈ End(V ⊗ V ) then Ri,j ∈ End(V ⊗ V ⊗ V ) is
R applied to the i- and j-th components of V ⊗ V ⊗ V . The Yang-Baxter equation is often
written

R12R13R22 = R23R13R12. (8)

The relationship between the two versions is that if R satisfied (8), then τR satisfies (7),
where as usual τ(x⊗ y) = y ⊗ x.

Proof of Theorem 4.3. We have seen in the Lemma that every invertible H-module homo-
morphism V ⊗ V −→ V ⊗ V is a scalar multiple of one of the form

1
a b
b d

1


with a+ qb = 1 and b+ dq = q. Such a matrix is a linear combination of two standard ones.
With d = 0, we have b = q and hence a = 1 − q2. On the other hand, with a = 0, we have
b = q−1 and so d = 1 − q−2. These give R and R′ as a basis of the two-dimensional vector
space EndH(V ⊗ V ).

Now, for the Yang-Baxter equation, we can take a linear combination tR+uR′ and check
whether it satisfies the Yang-Baxter equation. This can be checked using a computer. We
find three solutions, but one is the scalar matrix qR′ − q−1R = (q − q−1)IV⊗V . The other
solutions of the Yang-Baxter equation are just R and R′ (or constant multiples).
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5 Parametrized Yang-Baxter equations

Theorem 5.1. Let q ∈ C× be fixed. Let R and R′ be as in Theorem 4.3. For z ∈ C× let

R(z) = R− zq2R′.

Then we have a parametrized Yang-Baxter equation

R(z)12R(zw)23R(w)12 = R(w)23R(zw)12R(z)23.

Proof. This can be checked by hand, or by computer (see sl2param.sage, posted on the
class web page).

This parametrized Yang-Baxter equation is equivalent to the one in Lecture 4. The
colored equation from Lecture 12 (and the beginning of this lecture) is a generalization due
to Jimbo [7]. (To compare them replace q → √q in Theorem 5.1.)

Jimbo[7] also gave generalizations to the other classical Cartan types. These Yang-Baxter
equations come from the quantized enveloping algebras of affine Lie algebras, which we will
consider briefly in future lectures. The Lie algebra ŝl2 or Uq(ŝl2), at least when q is not a
root of unity, has one two-dimensional irreducible representation Vz for each z ∈ C×. In
one way imitating the proof of Theorem 4.3 is actually simpler in the affine case, for if z
and w are in general position, the representation Vz ⊗ Vw is irreducible, so the R-matrix
Vz ⊗ Vw −→ Vw ⊗ Vz is determined up to scalar multiple. See [5] Proposition 9.2.4.
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