Lecture 13

1 Examples of colored models

In Lecture 12, we considered the following R-matrix:

We mentioned that this satisfies a Yang-Baxter equation as follows:

We will refer to this as the RRR equation since it involves three copies of the R-matrix. We described this as a parametrized Yang-Baxter equation, but it requires a bit of explanation why this is an instance of a parametrized Yang-Baxter equation. We recall that this requires a group Γ and a map R from Γ to the set of Boltzmann weights such that the following

Yang-Baxter equation holds:

One way to interpret our Yang-Baxter equation as a parametrized one is to divide the Boltzmann weights by $z-q w$, and use these weights instead:

This change does not affect the validity of the Yang-Baxter equation since it divides both sides by the same constant $\left(z_{1}-q z_{2}\right)\left(z_{1}-q z_{3}\right)\left(z_{2}-q z_{3}\right)$. But with this change the Boltzmann weights only depend on z / w and we have indicated this in the notation by labeling the Rmatrix with $z / w \in \mathbb{C}^{\times}$. We then recognize the Yang-Baxter equation as a parametrized Yang-Baxter equation with parameter group \mathbb{C}^{\times}.

In Lecture 12 we considered partition functions assuming we have a Yang-Baxter equation as follows:

We will refer to this as the RTT equation, which can be written symbolically as RTT=TTR. The letter T refers to the vertex types labeled z and w. We did not specify the Boltzmann weights at the "T" vertices except to remark that there are multiple possibilities.

And if we form the partition function of a system $Z(\mathbf{z} ; \mathbf{d})$ with boundary conditions as in the open models, then these satisfy a recursion

$$
Z\left(\mathbf{z} ; s_{i} \mathbf{d}\right)=\mathcal{L}_{i} Z(\mathbf{z} ; \mathbf{d})
$$

where \mathcal{L}_{i} is the Demazure-Lusztig operator, assuming $d_{i}>d_{i+1}$.
Let us investigate some choices for the T weights.
Example 1.1. First, we can just use the same vertex types as with the R-matrix, but rotated by 45° (clockwise).

To explain this, we rotate the R-matrix and replace the parameter w by a new parameter α which can depend on the column, and obtain these weights:

Here α can be arbitrary but in the partition function α must be constant in the column. Note that the RRR parametrized Yang-Baxter equation is equivalent to the RTT equation.

Example 1.2. Another possibility, and an interesting one, is the bosonic models used in [3], which are special cases of more general ones in [1]. In these models, every vertical edge can carry an arbitrary number of bosons for every color. Thus if c_{1}, \cdots, c_{n} are the colors, the spinset of the vertical edges is \mathbb{N}^{n} where $\mathbb{N}=\{0,1,2, \cdots\}$ and if $\mu \in \mathbb{N}^{n}$ we may write \mathbf{c}_{0}^{μ} for the spin with μ_{i} bosons of color c_{i}, where $\mathbf{c}_{0}=\left(c_{1}, \cdots, c_{n}\right)$ is the standard flag. We will not describe the Boltzmann weights here, but see [3] for details. The partition functions are nonsymmetric Hall-Littlewood polynomials, and in [1] there are similar bosonic models whose partition functions are more general nonsymmetric Macdonald polynomials.

Our point is that there are multiple choices for the edges in the models for a very good reason. In the paradigm we are considering, every edge of the model corresponds to an object in a braided category. In this case, we will see (later) that this category is the category of $U_{\sqrt{q}}\left(\widehat{\mathfrak{s}}_{n+1}\right)$-modules. And if U, V are any two objects of this category, then there is a braiding $c_{U, V}: U \otimes V \longrightarrow V \otimes U$, and these all satisfy the Yang-Baxter equation (Lecture 4).

2 Back to quantum groups

The theory of quantum groups gives an explanation of where the Yang-Baxter equation comes from, and what instances we may expect. Our goal is to give a taste of this.

Please review Lecture 12. We saw that a vector space H over a field F (for us usually \mathbb{C}) equipped with map $\mu: H \otimes H \longrightarrow H$ and $\varepsilon: F \longrightarrow H$ satisfying the associativity and unit axioms is the same as an associative algebra, with multiplication $x \cdot y=\mu(x \otimes y)$ and identity element $\varepsilon\left(1_{F}\right)$. Similarly, a vector space H equipped with a linear map $\Delta: H \longrightarrow H \otimes H$ (called comultiplication) and $\eta: H \longrightarrow F$ satisfying the coassociativity and counit axioms is called a coalgebra. A Hopf algebra is thus both an algebra and a coalgebra.

If A and B are algebras, so is $A \otimes B$ and the Hopf axiom can be interpreted as saying that $\Delta: H \longrightarrow H \otimes H$ is an algebra homomorphism. So is the counit $\eta: H \longrightarrow F$. It is equivalent to say that $\mu: H \otimes H \longrightarrow H$ is a homomorphism of coalgebras.

Proposition 2.1. Let H be a Hopf algebra. Then the category of H-modules is monoidal.
Proof. For an associative algebra A, if V and W are A-modules, then $V \otimes W$ is not naturally an A-module. It is, however, very naturally an $A \otimes A$-module.

Now let V and W be H-modules. We need to put an H-module structure on $V \otimes W$. For this, we use the comultiplication, which is an algebra homomorphism $H \longrightarrow H \otimes H$.

There are two important and related types of Hopf algberas that have deformations into "quantum groups." Let G be a reductive algebraic group over \mathbb{C} such as GL (n). Let $\mathcal{O}(G)$ be the ring of polynomial functions on G. This algebra is of course commutative. The multiplication map $G \times G \longrightarrow G$ is a morphism hence induces an algebra homorphism $\mathcal{O}(G) \longrightarrow \mathcal{O}(G \times G) \cong \mathcal{O}(G) \otimes \mathcal{O}(G)$. This is the comultiplication, making $\mathcal{O}(G)$ into a Hopf algebra. A deformation of this will be called a deformed function algebra.

On the other hand, let us recall the universal enveloping algebra of a Lie algebra \mathfrak{g}. This is an associative algebra $U(\mathfrak{g})$ that contains a copy of \mathfrak{g} as a vector subspace, such that if $X, Y \in \mathfrak{g}$ then

$$
[X, Y]=X \cdot Y-Y \cdot X . \quad(\cdot=\text { multiplication in } U(\mathfrak{g}))
$$

It has the universal property that if $f: \mathfrak{g} \longrightarrow A$ of \mathfrak{g} into an associative algebra A such that

$$
f([X, Y])=f(X) f(Y)-f(Y) f(X)
$$

then f extends uniquely to an algebra homomorphism $U(\mathfrak{g}) \longrightarrow A$. Then $U(\mathfrak{g})$ is a cocommutative Hopf algebra whose comultiplication satisfies

$$
\Delta(X)=X \otimes 1+1 \otimes X \quad(X \in \mathfrak{g})
$$

What Drinfeld and Jimbo showed ([4, 6]) was that it is possible to deform the enveloping algebra $U(\mathfrak{g})$, after expanding it slightly to include some group-like elements. The deformation $U_{q}(\mathfrak{g})$, with q a complex parameter, is called a quantized enveloping algebra.

A Lie algebra is a vector space \mathfrak{g} over a field F with a bilinear "bracket" operation $\mathfrak{g} \times \mathfrak{g} \longrightarrow \mathfrak{g}$, for which we use the notation $[X, Y]$, that satisfies

$$
[Y, X]=-[X, Y], \quad[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

The second relation is called the Jacobi relation. The Lie algebra $\mathfrak{g l} l_{n}$ is $\operatorname{Mat}_{n}(\mathbb{C})$ with the bracket operation

$$
\begin{equation*}
[X, Y]=X Y-Y X \tag{1}
\end{equation*}
$$

It can be easily checked that this is a Lie algebra. Alternatively, if V is a vector space, $\mathfrak{g l}(V)$ is the endomorphism ring of V with bracket operation (1). The Lie algebra $\mathfrak{s l}_{n}$ is the vector subspace $\mathfrak{g l}_{n}$ consisting of matrices of trace zero.

Definition 1. A representation of the Lie algebra \mathfrak{g} is a homomorphism $\pi: \mathfrak{g} \longrightarrow \mathfrak{g l}(V)$. Thus it is a linear map to $\operatorname{End}(V)$ that satsifies

$$
\pi([X, Y])=\pi(X) \pi(Y)-\pi(Y) \pi(X)
$$

Example 2.2. If $\pi: \mathrm{GL}(n, \mathbb{C}) \longrightarrow \mathrm{GL}(V)$ is a representation, then we obtain a representation $d \pi: \mathfrak{g l}_{n}(\mathbb{C}) \longrightarrow \mathfrak{g l}(V)$ by differentiating. Thus

$$
d \pi(X) v=\left.\frac{d}{d t} e^{t X} v\right|_{t=0}
$$

It can be checked that this is a representation ([2], Proposition 7.2).
The universal enveloping algebra $U(\mathfrak{g})$ is the algebra generated by \mathfrak{g} subject to relations

$$
\begin{equation*}
X \cdot Y-Y \cdot X=[X, Y] \tag{2}
\end{equation*}
$$

This resembles (1) but note that in (1) the multiplication is matrix multiplication and in (2) the multiplication is the multiplication in $U(\mathfrak{g})$. Now if $\pi: \mathfrak{g} \longrightarrow \operatorname{End}(V)$ is a representation, then since by the definition of a representation the relations (2) are satisfied by $\pi(X), \pi(Y)$ and $\pi([X, Y])$, the linear map π extends to an algebra homomorphism $U(\mathfrak{g}) \longrightarrow \operatorname{End}(V)$.

To summarize:

- Representations of a Lie group G become representations of its Lie algebra \mathfrak{g}, by differentiation. A representation of \mathfrak{g} that comes from a representation of G is called integrable.
- Representations of a Lie algebra \mathfrak{g} extend to representations of the associative algebra $U(\mathfrak{g})$.

So the enveloping algebra captures the representations of a Lie group or Lie algebra. We caution that the Lie algebra of a Lie group has representations that are not integrable, such as Verma modules, so its representation theory is slightly richer than G. Quantum versions of these "non-integrable" representations can still figure in the Yang-Baxter equation. For example, Verma modules of $U_{\sqrt{q}}\left(\mathfrak{s l}_{n+1}\right)$ underlie Example 1.2 .

Proposition 2.3. The enveloping algebra $U(\mathfrak{g})$ is a Hopf algebra with comultiplication satisfying

$$
\Delta(X)=X \otimes 1+1 \otimes X \quad(X \in \mathfrak{g})
$$

Proof. We take $\Delta: \mathfrak{g} \longrightarrow \mathfrak{g} \otimes \mathfrak{g} \subset U(\mathfrak{g}) \otimes U(\mathfrak{g})$ to be defined by (2.3) when $X \in \mathfrak{g}$. We must show that this definition extends to $U(\mathfrak{g})$. First let us note that if $X, Y \in \mathfrak{g}$ then

$$
\Delta(X) \Delta(Y)-\Delta(Y) \Delta(X)=X Y \otimes 1-Y X \otimes 1+1 \otimes X Y-1 \otimes Y X
$$

Indeed, expanding the left-hand side gives eight terms but four cancel in pairs. In $U(\mathfrak{g}) \otimes U(\mathfrak{g})$ we therefore have

$$
\Delta(X) \Delta(Y)-\Delta(Y) \Delta(X)=\Delta([X, Y])
$$

The elements $\Delta(X)$ in $U(\mathfrak{g}) \otimes U(\mathfrak{g})$ thus satisfy the generating relations of $U(\mathfrak{g})$, which was defined by generators $X \in \mathfrak{g}$ and relations (2). It follows that they extend to an algebra homomorphism $U(\mathfrak{g}) \longrightarrow U(\mathfrak{g}) \otimes U(\mathfrak{g})$. As for the counit $\eta: U(\mathfrak{g}) \longrightarrow F$, this is obtained by extending the zero map $\mathfrak{g} \longrightarrow F$ to an algebra homomorphism $U(\mathfrak{g}) \longrightarrow F$.

The antipode is an antimultiplicative map $U(\mathfrak{g}) \longrightarrow U(\mathfrak{g})$ that satisfies $S(X)=-X$ for $X \in \mathfrak{g}$. To see that this map exists, if $U(\mathfrak{g})^{\text {opp }}$ is the opposite ring then the generators $-X$ satisfy the defining relations for $U(\mathfrak{g})$, so there is a homomorphism $S: U(\mathfrak{g}) \longrightarrow U(\mathfrak{g})^{\text {opp }}$ that sends X to $-X$, and this is the antipode.

We leave checking the axioms to the reader.

$3 \quad U_{q}\left(\mathfrak{s l}_{2}\right)$

The very simplest and most important case is $\mathfrak{g}=\mathfrak{s l}_{2}$. It has a basis consisting of:

$$
E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad F=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

with

$$
[H, E]=2 E, \quad[H, F]=-2 F, \quad[E, F]=H
$$

Thus the enveloping algebra $U\left(\mathfrak{s l}_{2}\right)$ is a noncommutative polynomial ring with generators E, F, H modulo the ideal generated by the relations

$$
H E-E H=2 E, \quad H F-F H=-2 F, \quad E F-F E=H .
$$

The comultiplication, we have already seen, is

$$
\Delta X=X \otimes 1+1 \otimes X, \quad X \in \mathfrak{g}
$$

and the antipode satsifies $S(X)=-X$ for $X \in \mathfrak{g}$.
Now let us explain how to deform $U(\mathfrak{g})$. Let $q \in \mathbb{C}$. We will first define $U_{q}(\mathfrak{g})$ as an associative algebra, then prove it has a comultiplication. In place of H we make use of a "grouplike" element K which we can think of as the matrix

$$
\left(\begin{array}{ll}
q & \\
& q^{-1}
\end{array}\right) .
$$

We can express $H=\left(q-q^{-1}\right)^{-1}\left(K-K^{-1}\right)$ and so we do not need H among the generators. The algebra is then generated by E, F and K with relations

$$
K E K^{-1}=q^{2} E, \quad K F K^{-1}=q^{-2} F, \quad E F-F E=\left(q-q^{-1}\right)^{-1}\left(K-K^{-1}\right)
$$

We should also take K^{-1} among the generators of $U_{q}\left(\mathfrak{s l}_{2}\right)$ with obvious relations.
Proposition 3.1. The ring $U_{q}(\mathfrak{g})$ admits a comultiplication $\Delta: U_{q}(\mathfrak{g}) \longrightarrow U_{q}(\mathfrak{g}) \otimes U_{q}(\mathfrak{g})$ such that

$$
\Delta(K)=K \otimes K, \quad \Delta(E)=E \otimes K+1 \otimes E, \quad \Delta(F)=F \otimes 1+K^{-1} \otimes F
$$

There is also an antipode S that satisfies

$$
S(E)=-E K^{-1}, \quad S(F)=-K F, \quad S(K)=K^{-1}
$$

and a counit satisfying $\eta(F)=\eta(E)=0$, so $U_{q}(\mathfrak{g})$ is a Hopf algebra.
Proof. The proof consists of showing that the elements $K \otimes K, E \otimes K+1 \otimes E$ and $F \otimes$ $1+K^{-1} \otimes F$ satisfy the same relations as K, E and F. We will omit this verification, or the verification of the antipode.

4 R-matrices

Drinfeld [4] defined the notion of a quasitriangular Hopf algebra. This is a Hopf algebra H with an invertible element $R \in H \otimes H$ satisfying certain axioms. The first axiom is that for $h \in H$ we have

$$
\tau(\Delta h)=R(\Delta h) R^{-1}
$$

where $\tau: H \otimes H \longrightarrow H \otimes H$ is the flip map $\tau(x \otimes y)=y \otimes x$. It is not hard to check that this implies that if U, V are H-modules, then the map

$$
u \otimes v \longmapsto \tau(R(u \otimes v))
$$

is an H-module homorphism $U \otimes V \longrightarrow V \otimes U$. Then there are two more axioms that guarantee that this map is a braiding. See [8] Chapter 5 for further details. The element R of $H \otimes H$ is called the universal R-matrix.

Theorem 4.1. Assume that q is not a root of unity. The category of finite-dimensional modules a quantized enveloping algebra such as $U_{q}\left(\mathfrak{s l}_{2}\right)$ is braided.

Proof. Unfortunately $H=U_{q}(\mathfrak{g})$ is not a quasitriangular Hopf algebra. There is a universal R-matrix, but it is given by an infinite series and so it does not live in $H \otimes H$ but rather in a completion. There are various ways of avoiding this difficulty. One way is to work with a quantized function algebra that is in duality with H, and show that this Hopf algebra is dual quasitriangular.

So even though $U_{q}\left(\mathfrak{s l}_{2}\right)$ is not quasitriangular, it is almost as good. But rather than try to work with the universal R-matrix, it is usually possible to work directly with equations to find the braiding. So let us see how that works in this particular case.

Let $V=\mathbb{C}^{2}$ be the two-dimensional standard module, with basis $\{x, y\}$ such that E, F and K are represented by the matrices

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad\left(\begin{array}{ll}
q & \\
& q^{-1}
\end{array}\right) .
$$

We will begin by determining the endomorphisms of $V \otimes V$. The tensor product module is not irreducible, but splits into two irreducible submodules, of dimensions 1 and 3 . So the endomorphism ring will turn out to be two dimensional.

We recall that the action of H on $V \otimes V$ is via the comultiplication. In particular $\Delta K=K \otimes K$, so

$$
K \cdot(x \otimes y)=K x \otimes K y .
$$

Hence the eigenspaces of K corresponding to the eigenvalues $q^{2}, 1$ and q^{-2} have bases $\{x \otimes x\}$, $\{x \otimes y, y \otimes x\}$ and $\{y \otimes y\}$. These must be invariant by any endomorphism ϕ of $V \otimes V$, so with respect to the basis $x \otimes x, x \otimes y, y \otimes x, y \otimes y$, the matrix of ϕ has the form

$$
\left(\begin{array}{llll}
* & & & \\
& * & * & \\
& * & * & \\
& & & *
\end{array}\right)
$$

Assuming that ϕ is invertible, we may scale it so that

$$
\begin{gather*}
\phi(x \otimes x)=x \otimes x, \\
\phi(x \otimes y)=a x \otimes y+c y \otimes x, \tag{3}\\
\phi(y \otimes x)=b x \otimes y+d y \otimes x, \tag{4}\\
\phi(y \otimes y)=\lambda y \otimes y
\end{gather*}
$$

for some nonzero constant y.
Lemma 4.2. We have

$$
\begin{gather*}
a+q c=1, \quad b+d q=q \tag{5}\\
q^{-1} a+b=q^{-1}, \quad q^{-1} c+d=1 \tag{6}
\end{gather*}
$$

Moreover $b=c, \lambda=1$.
Proof. From $\Delta E=E \otimes K+1 \otimes E$ we have $E(x \otimes y)=E x \otimes K y+x \otimes E y=x \otimes x$ and similarly $E(y \otimes x)=q x \otimes x$. Then

$$
x \otimes x=\phi(x \otimes x)=\phi(E(x \otimes y))=E \phi(x \otimes y)=a E(x \otimes y)+c E(y \otimes x)=(a+c q) x \otimes x
$$

proving that $a+c q=1$. Similarly

$$
q x \otimes x=\phi(E(y \otimes x))=E \phi(y \otimes x)=b E(x \otimes y)+d E(y \otimes x)=(b+d q) x \otimes x
$$

proving that $b+d q=q$. We have proved
Starting with $\phi(x \otimes x)=x \otimes x$ and noting that $F(x \otimes x)=q^{-1} x \otimes y+y \otimes x$ we get

$$
q^{-1} x \otimes y+y \otimes x=F(x \otimes x)=F \phi(x \otimes x)=\phi F(x \otimes x)=\phi\left(q^{-1} x \otimes y+y \otimes x\right) .
$$

Expanding this using (3) and (4), then comparing coefficients gives the identities (6). Comparing (5) and (6) gives $b=c$.

Proceeding similarly but starting with $y \otimes y$ instead of $x \otimes x$ gives the same identities (5) and (6) but contingent on $\lambda=1$.

Theorem 4.3. There are two $U_{q}\left(\mathfrak{s l}_{2}\right)$-module endomorphisms R and R^{\prime} of $V \otimes V$ that satisfy the Yang-Baxter equation in the form

$$
\begin{equation*}
R_{12} R_{23} R_{12}=R_{23} R_{12} R_{23} \tag{7}
\end{equation*}
$$

They are the endomorphisms with matrices

$$
R=\left(\begin{array}{cccc}
1 & & & \\
& 1-q^{2} & q & \\
& q & 0 & \\
& & & 1
\end{array}\right), \quad R^{\prime}=\left(\begin{array}{cccc}
1 & & & \\
& 0 & q^{-1} & \\
& q^{-1} & 1-q^{-2} & \\
& & & 1
\end{array}\right)
$$

Remark 1. The notation is as follows: if $R \in \operatorname{End}(V \otimes V)$ then $R_{i, j} \in \operatorname{End}(V \otimes V \otimes V)$ is R applied to the i - and j-th components of $V \otimes V \otimes V$. The Yang-Baxter equation is often written

$$
\begin{equation*}
R_{12} R_{13} R_{22}=R_{23} R_{13} R_{12} \tag{8}
\end{equation*}
$$

The relationship between the two versions is that if R satisfied (8), then τR satisfies (7), where as usual $\tau(x \otimes y)=y \otimes x$.

Proof of Theorem 4.3. We have seen in the Lemma that every invertible H-module homomorphism $V \otimes V \longrightarrow V \otimes V$ is a scalar multiple of one of the form

$$
\left(\begin{array}{llll}
1 & & & \\
& a & b & \\
& b & d & \\
& & & 1
\end{array}\right)
$$

with $a+q b=1$ and $b+d q=q$. Such a matrix is a linear combination of two standard ones. With $d=0$, we have $b=q$ and hence $a=1-q^{2}$. On the other hand, with $a=0$, we have $b=q^{-1}$ and so $d=1-q^{-2}$. These give R and R^{\prime} as a basis of the two-dimensional vector space $\operatorname{End}_{H}(V \otimes V)$.

Now, for the Yang-Baxter equation, we can take a linear combination $t R+u R^{\prime}$ and check whether it satisfies the Yang-Baxter equation. This can be checked using a computer. We find three solutions, but one is the scalar matrix $q R^{\prime}-q^{-1} R=\left(q-q^{-1}\right) I_{V \otimes V}$. The other solutions of the Yang-Baxter equation are just R and R^{\prime} (or constant multiples).

5 Parametrized Yang-Baxter equations

Theorem 5.1. Let $q \in \mathbb{C}^{\times}$be fixed. Let R and R^{\prime} be as in Theorem4.3. For $z \in \mathbb{C}^{\times}$let

$$
R(z)=R-z q^{2} R^{\prime}
$$

Then we have a parametrized Yang-Baxter equation

$$
R(z)_{12} R(z w)_{23} R(w)_{12}=R(w)_{23} R(z w)_{12} R(z)_{23} .
$$

Proof. This can be checked by hand, or by computer (see sl2param.sage, posted on the class web page).

This parametrized Yang-Baxter equation is equivalent to the one in Lecture 4. The colored equation from Lecture 12 (and the beginning of this lecture) is a generalization due to Jimbo [7]. (To compare them replace $q \rightarrow \sqrt{q}$ in Theorem 5.1.)

Jimbo [7] also gave generalizations to the other classical Cartan types. These Yang-Baxter equations come from the quantized enveloping algebras of affine Lie algebras, which we will consider briefly in future lectures. The Lie algebra $\widehat{\mathfrak{s l}}_{2}$ or $U_{q}\left(\widehat{\mathfrak{s l}}_{2}\right)$, at least when q is not a root of unity, has one two-dimensional irreducible representation V_{z} for each $z \in \mathbb{C}^{\times}$. In one way imitating the proof of Theorem 4.3 is actually simpler in the affine case, for if z and w are in general position, the representation $V_{z} \otimes V_{w}$ is irreducible, so the R-matrix $V_{z} \otimes V_{w} \longrightarrow V_{w} \otimes V_{z}$ is determined up to scalar multiple. See [5] Proposition 9.2.4.

References

[1] A. Borodin and M. Wheeler. Colored stochastic vertex models and their spectral theory. Astérisque, (437):ix+225, 2022, arXiv:1808.01866.
[2] D. Bump. Lie groups, volume 225 of Graduate Texts in Mathematics. Springer, New York, second edition, 2013.
[3] D. Bump and S. Naprienko. Colored bosonic models and matrix coefficients, 2022, arXiv:2211.15850.
[4] V. G. Drinfeld. Quantum groups. In Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 798-820. Amer. Math. Soc., Providence, RI, 1987.
[5] J. Hong and S.-J. Kang. Introduction to quantum groups and crystal bases, volume 42 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.
[6] M. Jimbo. A q-difference analogue of $U(\mathfrak{g})$ and the Yang-Baxter equation. Lett. Math. Phys., 10(1):63-69, 1985.
[7] M. Jimbo. Quantum R matrix related to the generalized Toda system: an algebraic approach. In Field theory, quantum gravity and strings (Meudon/Paris, 1984/1985), volume 246 of Lecture Notes in Phys., pages 335-361. Springer, Berlin, 1986.
[8] S. Majid. A quantum groups primer, volume 292 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2002.

