
Lecture 10

1 Bruhat order

Most of the facts that I need about the Bruhat order are covered in Chapter 25 of [4].
Therefore I recommend that you read this chapter. (The book is available on-line through
the Stanford Libraries.) Watch out for the following typo: in (25.7) the wrong font is used
and D should be ∂. For this section W can be the symmetric group, or a more general
Coxeter group, though the geometric

I will give geometric proofs of the fact that Sn is a Coxeter group, that is, that it has a
presentation:

Sn ∼=
〈
si|s2i = 1, braid relations

〉
and Matsumoto’s theorem (Lecture 9). Referring to the book, these proofs are Theorem 25.1
(page 214) and Theorem 25.2 (page 217). These types of geometric arguments might be un-
satisfactory since the results can be proved by purely algebraic methods in greater generality.
However the technique is very powerful and useful. See [5] for applications of such geometric
ideas.

I will also give a similar geometric proof of the exchange principle which is Proposi-
tion 20.3 or Proposition 20.4.

Proposition 1.1. Let w = si1 · · · sik be a product of k simple reflections such that `(w) < k.
Then it is possible to omit two of the factors and get another reduced expression:

w = si1 · · · ŝia · · · ŝib · · · sik ,

where the “hat” means a factor is omitted, with 1 6 a < b 6 k.

Proof. This is Proposition 20.4 in [4], and in class I will give a geometric proof similar to the
geometric proofs of the Coxeter property and Matsumoto’s theorem mentioned above. The
exchange property is valid for any Coxeter group, and a purely algebraic proof may be found
in [2], Section IV.1.5. Another proof can be found in [7] Section 1.7 (pages 13–15).

Proposition 1.2 (Exchange principle). Suppose that w = si1 · · · sik is a reduced expression
and sj a simple reflection such that `(sjw) < `(w). (Reduced means that k = `(w).) Then
we may find another reduced expression

w = sjsi1 · · · ŝia · · · sik (1)

for some 1 6 a 6 k, where the “hat” means a factor is omitted.
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Proof. Let us observe how this follows from Proposition 1.1. We have

sjw = sjsi1 · · · sik = si0si1 · · · sik , i0 := j.

Since `(sjw) < k this expression is not reduced. Therefore we may omit two factors on the
right and obtain a reduced expression for sjw:

sjw = si0 · · · ŝia · · · ŝib · · · sik .

Now we claim that a = 0, since if not, we have

w = si1 · · · ŝia · · · ŝib · · · sik

contradicting our assumption that `(w) = k. Thus

sjw = si1 · · · ŝib · · · sik ,

proving (1).

Proposition 1.3. Suppose that s is a simple reflection and `(sw) < `(w). Then w has a
reduced expression w = si1 · · · sik such that si1 = s.

Proof. Let w = sj1 · · · sjk be a reduced expression. Then by the exchange principle, w =
ssj1 · · · ŝja · · · sjk for some a, and this is the required reduced expression.

Next we come to the Bruhat order on W = Sn (or a more general Coxeter group). This
is defined on page 222 of [4]. See [1] for more information about this very important concept.

Let u, v ∈ W , and let v = si1 · · · sik be a reduced expression. We write u 6 v if there is
a subsequence (j1, · · · , jl) of (i1, · · · , ik) such that u = sj1 · · · sjl .

Proposition 1.4. (i) This definition does not depend on the choice of reduced expression
v = si1 · · · sik .

(ii) If there exists any sequence (j1, · · · , jl) such that u = sj1 · · · sjl then there exists such
a sequence such that this is a reduced expression.

Proof. For (i) see [4], Proposition 25.4 for a deduction of this from Matsumoto’s theorem.
For (ii), if the expression u = sj1 · · · sjl is found and is not reduced (so `(u) < l) then
by Proposition 1.1 we may discard entries in pairs to shorten the expression until it is
reduced.

Lemma 1.5. If s is a simple reflection and w ∈ W then either sw > w or sw < w. Indeed
sw < w if and only if `(sw) < `(w), in which case `(sw) = `(w) − 1; and sw > w if and
only if `(sw) = `(w) + 1.

Proof. It follows easily from the definition that `(w) is the length of the shortest expression
of w as a product of simple reflections that `(sw) = `(w)± 1.

Write w = si1 · · · sik . If `(sw) > `(w) then sw = ssi1 · · · sik is a reduced expression so
that w < sw in the Bruhat order. On the other hand if `(sw) < `(w) by the exchange
principle, we may write sw = si1 · · · ŝia · · · sik so sw < w.
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Proposition 1.6 (Deodhar’s Property Z [6]). Let y, w ∈ W and let s be a simple reflection.
Assume that w < sw and y < sy. Then the following are equivalent:

(i) y 6 w;
(ii) y 6 sw;
(iii) sy 6 sw.

Here is a lattice diagram illustrating this fact:

y

syw

sw

The solid lines represent the assumed inequalities w < sw and y < sy. Then the dotted
lines are the three equivalent statements.

Proof. (i) ⇒ (iii): Assume y 6 w. Let w = si1 · · · sik be a reduced expression for w and let
y = sj1 · · · sjl be a reduced expression for y such that (j1, · · · , jl) is a subword of (i1, · · · , ik).
Since `(sw) = `(w)+1 the expression ss1 · · · sik is a reduced expression for sw, and ssj1 · · · sjl
is a subexpression representing sy, so sy 6 sw.

(iii) ⇒ (ii): Assume sy 6 sw. Then y < sy 6 sw, as required.
(ii) ⇒ (i). Assume y < sw. Let w = si1 · · · sik be a reduced expression for w. Since

`(sw) = `(w) + 1 = k + 1, the expression sw = ssi1 · · · sik is reduced, and y can be obtained
from this by discarding factors. So if we take si0 = s, then we have a reduced expression
y = sj1 · · · sjl where (j1, · · · , jl) is a subsequence of (i0, i1, · · · , ik). Now j1 cannot be i0
because this would imply that sy = sj1y < y. Therefore (j1, · · · , jl) is a subsequence of
(i1, · · · , ik) which implies that y 6 w.

2 The relationship between ∂◦w and ∂w

Let ∂◦
i = (zαi−1)−1(1−si) and ∂i = (1−z−αi)−1(1−zαisi) as before. We proved in Lecture 9

that both species of Demazure operators satisfy the braid relation, and so we may define

∂◦
w = ∂◦

i1
· · · ∂◦

ik
, ∂◦

w = ∂i1 · · · ∂ik

where w = si1 · · · sik is a reduced expression, and by Matsumoto’s theorem these are well-
defined.

Theorem 2.1. We have
∂w =

∑
y6w

∂◦
y (2)
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Proof. (From [3].) We prove this by induction on `(w). If w = 1, then ∂1 = ∂◦
1 is the identity

operator and (2) is certainly true. So assume (2). Let s be a simple reflection such that
`(sw) > `(w). This is equivalent to sw > w in the Bruhat order. We must prove

∂sw =
∑
y6sw

∂◦
y . (3)

Using our induction hypothesis

∂sw = ∂s∂w = ∂s
∑
y6w

∂◦
y .

Now suppose that sy < y. Then ∂◦
y = ∂◦

s·sy = ∂◦
s∂

◦
sy and since ∂s∂

◦
s = 0 (as is easily checked)

we have ∂s∂
◦
y = 0. We may thus discard such terms from the sum and obtain

∂sw = ∂s
∑
y6w
y<sy

∂◦
y . (4)

We can divide W up into pairs {y, sy} such that y < sy. These pairs are just the left
cosets of W by the 2 element group 〈s〉. So we may write∑

y6sw

∂◦
y =

∑
y6sw
y<sy

∂◦
y +

∑
y6sw
sy<y

∂◦
y =

∑
y6sw
y<sy

∂◦
y +

∑
sy6sw
y<sy

∂◦
sy,

where we have made a variable change y → sy in the second term. By Deodhar’s Property Z,
if y < sy then

y 6 w ⇔ y 6 sw ⇔ sy 6 sw

and if this is true then ∂◦
sy = ∂◦

s∂
◦
y . Also ∂s = 1 + ∂◦

s .∑
y6sw

∂◦
y =

∑
y6w
y<sy

∂◦
y +

∑
y6w
y<sy

∂◦
s∂

◦
y = (1 + ∂◦

s )
∑
y6w
y<sy

∂◦
y = ∂s

∑
y6w
y<sy

∂◦
y . (5)

Combining this with (4) gives (3), and we are done.
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