Lecture 10

1 Bruhat order

Most of the facts that I need about the Bruhat order are covered in Chapter 25 of [4].
Therefore I recommend that you read this chapter. (The book is available on-line through
the Stanford Libraries.) Watch out for the following typo: in (25.7) the wrong font is used
and D should be 9. For this section W can be the symmetric group, or a more general
Coxeter group, though the geometric

I will give geometric proofs of the fact that S, is a Coxeter group, that is, that it has a
presentation:

Sp = (s;|s; = 1, braid relations)

and Matsumoto’s theorem (Lecture 9). Referring to the book, these proofs are Theorem 25.1
(page 214) and Theorem 25.2 (page 217). These types of geometric arguments might be un-
satisfactory since the results can be proved by purely algebraic methods in greater generality.
However the technique is very powerful and useful. See [5] for applications of such geometric
ideas.

I will also give a similar geometric proof of the exchange principle which is Proposi-
tion 20.3 or Proposition 20.4.

Proposition 1.1. Let w = s;, - - - 55, be a product of k simple reflections such that {(w) < k.
Then it is possible to omit two of the factors and get another reduced expression:
S i,

W=, B

a

where the “hat” means a factor is omitted, with 1 < a < b < k.

Proof. This is Proposition 20.4 in [4], and in class I will give a geometric proof similar to the
geometric proofs of the Coxeter property and Matsumoto’s theorem mentioned above. The
exchange property is valid for any Coxeter group, and a purely algebraic proof may be found
in [2], Section IV.1.5. Another proof can be found in [7] Section 1.7 (pages 13-15). O

Proposition 1.2 (Exchange principle). Suppose that w = s;, - - - s;, s a reduced expression
and s; a simple reflection such that {(s;w) < (w). (Reduced means that k = {(w).) Then
we may find another reduced expression

Sik (1>

for some 1 < a < k, where the “hat” means a factor is omitted.

w:sjsil.-.si oo

a
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Proof. Let us observe how this follows from Proposition We have
S;W = 8;Si; *+* Siy = SigSiy " Siys iy 1= ]

Since ¢(sjw) < k this expression is not reduced. Therefore we may omit two factors on the
right and obtain a reduced expression for s;w:

Sjw:Sio”'sia"'sib"'sik'

Now we claim that a = 0, since if not, we have

o~

w:sil...sia...sib...sik

contradicting our assumption that ¢(w) = k. Thus
Sjw — Si1 ...g;...sik’

proving . O

Proposition 1.3. Suppose that s is a simple reflection and ¢(sw) < {(w). Then w has a

reduced expression w = s;, - -+ s;, such that s;, = s.

Proof. Let w = sj, ---sj, be a reduced expression. Then by the exchange principle, w =

$8;, + 585, -+ sj, for some a, and this is the required reduced expression. O

a

Next we come to the Bruhat order on W = S,, (or a more general Coxeter group). This
is defined on page 222 of [4]. See [I] for more information about this very important concept.
Let u,v € W, and let v = s;, - - - s;, be a reduced expression. We write u < v if there is

a subsequence (ji,- -+, ji) of (i1, ,ix) such that u =s;, - - - 55,

Proposition 1.4. (i) This definition does not depend on the choice of reduced expression
V=358 "S-

(ii) If there exists any sequence (ji,--- ,ji) such that u = sj, - --s;, then there exists such
a sequence such that this is a reduced expression.

Proof. For (i) see [4], Proposition 25.4 for a deduction of this from Matsumoto’s theorem.
For (ii), if the expression v = sj, ---s;, is found and is not reduced (so ¢(u) < ) then
by Proposition [I.1| we may discard entries in pairs to shorten the expression until it is

reduced. O

Lemma 1.5. If s is a simple reflection and w € W then either sw > w or sw < w. Indeed
sw < w if and only if {(sw) < L(w), in which case {(sw) = {(w) — 1; and sw > w if and
only if {(sw) = l(w) + 1.

Proof. 1t follows easily from the definition that ¢(w) is the length of the shortest expression
of w as a product of simple reflections that ¢(sw) = ¢(w) £ 1.

Write w = s, -+ - s;,. If {(sw) > {(w) then sw = ss;, ---s;, is a reduced expression so
that w < sw in the Bruhat order. On the other hand if /(sw) < ¢(w) by the exchange
principle, we may write sw = s;, -+ §;, - -+ S;, S0 Sw < W. 0

a
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Proposition 1.6 (Deodhar’s Property Z [6]). Let y,w € W and let s be a simple reflection.
Assume that w < sw and y < sy. Then the following are equivalent:

(i) y < w;

(ii) y < sw;

(7i) sy < sw.

Here is a lattice diagram illustrating this fact:

The solid lines represent the assumed inequalities w < sw and y < sy. Then the dotted
lines are the three equivalent statements.

Proof. (i) = (iili): Assume y < w. Let w = s;, - - 55, be a reduced expression for w and let
y =8, ---Sj be areduced expression for y such that (ji,--- ,7;) is a subword of (i1, - - , ).
Since ¢(sw) = ¢(w)+1 the expression ss; - - - s;, is a reduced expression for sw, and ssj, - - - s;
is a subexpression representing sy, so sy < sw.

(ili) = (ii): Assume sy < sw. Then y < sy < sw, as required.

(ii) = (1). Assume y < sw. Let w = s;, ---s;, be a reduced expression for w. Since
((sw) = l(w)+1 =k + 1, the expression sw = ss;, - - - s;, is reduced, and y can be obtained
from this by discarding factors. So if we take s;, = s, then we have a reduced expression

l

y = sj, ---Sj where (ji,---,7;) is a subsequence of (ig, 41, -+ ,%;). Now j; cannot be i
because this would imply that sy = s;,y < y. Therefore (ji,---,j;) is a subsequence of
(41, - ,ix) which implies that y < w. O

2 The relationship between 0; and 9,

Let 9 = (z* —1)"'(1—s;) and §; = (1—2z %) ~'(1—2z"s;) as before. We proved in Lecture 9
that both species of Demazure operators satisfy the braid relation, and so we may define

02 = -0 9 =0 -0

i) w (2

where w = s;, - -+ s;, is a reduced expression, and by Matsumoto’s theorem these are well-

defined.

k

Theorem 2.1. We have

0w =>_ 05 (2)

y<w



Proof. (From [3].) We prove this by induction on ¢(w). If w = 1, then 0; = 95 is the identity
operator and is certainly true. So assume . Let s be a simple reflection such that
((sw) > ¢(w). This is equivalent to sw > w in the Bruhat order. We must prove

O =Y 0. (3)

y<sw

Using our induction hypothesis

O = 000 = 0, » 5.

y<w

Now suppose that sy < y. Then J; = 05, = 9705, and since 9,07 = 0 (as is easily checked)

s-8Y sYsy
we have 9,0, = 0. We may thus discard such terms from the sum and obtain

Ouw = 05 Y 5. (4)

y<w
y<sy

We can divide W up into pairs {y, sy} such that y < sy. These pairs are just the left
cosets of W by the 2 element group (s). So we may write

DO =2 0+ =3 %+ 3 %y

y<sw y<sw Yy<Lsw y<sw sy<sw
y<sy sy<y y<sy y<sy

where we have made a variable change y — sy in the second term. By Deodhar’s Property Z,
if y < sy then
ys<w & ysLsw & sy < sw

and if this is true then dg, = 9;0;. Also s =1+ 05.
D=0+ > =01+ =0, 0. (5)
y<sw y<w y<w ysw y<w

y<sy y<sy y<sy y<sy

Combining this with gives , and we are done. O
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