
Solvable Lattice Models: Lecture 1

October 12, 2023

Lattice models were introduced in statistical mechanics in order to study realistic sys-
tems. Statistical mechanics will not be a focus of this course. Indeed, it turns out that
solvable lattice models have important connections with representation theory, for example
of quantum groups regarding the underlying mechanism, and other areas such as represen-
tation theory of p-adic groups, algebraic combinatorics, algebraic geometry, and conformal
field theory. We will review the statistical mechanical origins of the theory, referring to
Baxter [1] for much more information, before turning away to other subjects.

1 Thermodynamics

The purpose of this section is to give a quick impressionistic treatment of statistical mechan-
ics. Since we will soon migrate away from this subject, we will not try for any depth.

Statistical mechanics is a development from thermodynamics. Thermodynamics was an
empirical discovery which started with the theory of gases, motivated by considerations
related to engines and refrigeration.

We recommend the Feynman Lectures in Physics, I.44 for an introduction to Thermody-
namics. Thermodynamics can be axiomatized in the form of several laws, most importantly
the second law of thermodynamics which contains a subtle and important concept, entropy.
The laws of Thermodynamics are sometimes stated thus:

(1) Energy is conserved in a closed system.
(2) Entropy is increasing.
(3) If the temperature is decreased to zero, entropy approaches a fixed value, called the

residual entropy .

The concept of entropy is of great importance, and universal in its surprising applicability
to different areas, such as information theory and black holes. It has important philosophical
implications, since it gives a direction to the arrow of time. This is paradoxical since the
laws of physics are invariant under time reversal (CPT symmetry).

We take for granted the concept of energy, and its conservation. In thermodynamics and
statistical mechanics, it is important to take into account both closed systems, that do not
interact with their environment, and systems that do interact. Thus we imagine that energy
can be put into a system, or extracted from it. Work can be described as energy that is
extracted from a system, for example by operating a piston or generating electricity.
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Heat is a form of energy that we now understand to be due to the kinetic energy of
molecules in a substance. Carnot, whose investigations of the steam engine led to the con-
cepts of thermodynamics, thought of heat as a fluid like water, that can flow from higher
levels to lower, and in the process can be made to do work. The first law of thermodynamics
can be expressed in the formula

dU = dQ+ dW,

where U is a variable expressing the total amount of energy in the system, Q is the amount
of heat, and W is a variable expressing work, energy that is put into a system, or extracted
from it.

As Carnot realized, certain processes are reversible. We may imagine a perfectly efficient
engine, with frictionless parts, where energy is put in in the form of fire or electricity, and
mechanical work is extracted. But other processes, such as friction, are irreversible. In
friction, work is transformed into heat, and this is energy that can never be extracted from
the system. A processes involving friction is irreversible.

Again, if a system consists of two bodies of different temperatures, energy can be ex-
tracted as work by a mechanism such as a dipping bird. But if heat flows from one body to
the other, until they reach the same temperature, the energy still exists, but can no longer
be extracted as work. Thus the cooling of a hot object is an irreversible process.

The second law of thermodynamics regulates such irreversible processes. The second law
postulates that there is a quantity S, called entropy that can only increase. Irreversible
processes are precisely those that increase the entropy. Conversely, a process is reversible
if it does not increase entropy. A system is at maximal entropy the entropy can no longer
increase. An example would be a system in thermal equalibrium, where all parts are at the
same temperature.

Also related to the second law is the notion of free energy . This is the amount of energy
that can be extracted from a system as useful work. Thus the entropy of the system is
maximal if the free energy is zero.

2 Statistical Mechanics and the Partition Function

The physical basis for thermodynamics is statistical mechanics . Thus heat is understood as
being the kinetic energy of atoms and molecules, and the laws of thermodynamics can be
derived from statistical considerations.

We will consider a system with many possible states, which is not strictly subject to the
first law, in that not all states have the same energy. The source of this uncertainty is usually
interaction with the environment. For example, one considers a system that is in contact
with a heat bath at a constant temperature. The system itself is assigned a temperture that
may be constant, or could vary within the medium. The system may also depend on other
parameters, such as pressure or the strength of an applied electromagnetic field.

An important question that is investigated in Statistical Mechanics is the behavior of a
system at a phase transition point. We may consider the melting or boiling of a substance
as an example. In an idealized form, we may imagine the process as follow. In a “frozen”
state, there are correlations between the local structure of the system at locations that are
separated in distance, but in the “melted” form, there are no such correlations. The phase
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transition point or critical temperature is the value where the structure changes from frozen
to melted.

A statistical mechanical system S is an ensemble of states . Each state s has an energy
e(s), and there is a probability measure on S, with high energy states being less probable.
The system may depend on some external parameters, notably the temperature of the system.
The probability of the state s with energy E(s) is proportional to β(s) = e−E(s)/kT , where k
is Boltzmann’s constant . Since the sum of the probabilities must be 1, the actual probability
is

1

Z
β(s), Z = Z(S, T ) :=

∑
s

β(s).

The quantity β(s) is called the Boltzmann weight of the state, and the quantity Z is called
the partition function. Note that as the temperature increases, energetic states become more
probable.

The partition function is a powerhouse in statistical mechanics. For example the mean
energy is

〈E〉 :=
1

Z

∑
s

β(s)E(s) = kT 2 ∂

∂T
log(Z).

The free energy, which we recall is the amount of energy that can be extracted from the
system as work, equals

F = −kT log(Z),

and the entropy is

S = k log(Z) +
1

kT
〈E〉.

If the partition function depends on other parameters such as a magnetic field strength,
differentiating with respect to those will yield other values of significance.

The partition function also occurs in other areas of physics, such as quantum field theory.
For us, the partition function will be a main object of study, even though we will soon leave
its origins in statistical mechanics behind.

3 Ice

Linus Pauling computed the entropy and free energy of ice by means of a three-dimensional
lattice model.

In an ice crystal we will consider two oxygen atoms adjacent if they share a hydrogen
bond. They then form a graph Γ that is nearly 4-regular in that each oxygen atom, except
those at the boundary of the crystal, have 4 neighbors. (Here we are ignoring a detail about
boundary edges, and we will give a proper discussion of Γ below in Section 5.

Ice has many possible crystalline structures. Under normal conditions, Ice Ih is the usual
one. This crystal occurs in sheets or layers. The graph is bivalent. Each layer is a tesselated
by hexagons, with oxygen atoms at their vertices. Furthermore, each atom has a bond with
one in either the layer above or below, depending on its valence.

Here is the hexagonal Ice Ih lattice, showing the segments joining a sample Oxygen atom
(green) to its four neighbors.

3



Here is the graph Γ showing two adjacent layers.

While the location of the oxygen atoms is fixed, and forced into a crystalline pattern,
the location of the hydrogen nuclei (protons) is another matter. Due to its position in
the periodic table, oxygen is allowed two covalent bonds. The oxygen atom will therefore
borrow electrons from two hydrogen atoms. This causes the protons to lie on the segments
between two adjacent oxygen atoms, but each proton will be closer to one or the other of the
two oxygen atoms. There are many possible configurations, which are subject to quantum
superposition.
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near

far

We may represent this graphically by making the graph Γ into a directed graph. We
decorate the edges with arrows, each pointing towards the hydrogen atom on the edge.

Then we obtain the following model: we have a 4-regular graph, based on the three-
dimensional hexagonal lattice. A state of the system is a refinement of the graph to a
directed graph, with every vertex having two incoming and two outgoing arrows.

4 Ice

Linus Pauling computed the entropy and free energy of ice by means of a three-dimensional
lattice model.

For example we may consider ice (frozen H2O) where the larger oxygen atoms have fixed
locations at the vertices of a grid. In its usual form (called Ice Ih) these oxygen atoms are
arranged in a three-dimensional hexagonal lattice. We can envision the oxygen atoms as
lying on the vertices of a three-dimensional hexagonal crystal lattice. Each oxygen atom will
have four neighbors, lying at the vertices of a tetrahedron. We may consider the 4-regular
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graph Γ whose vertices are the oxygen atoms and whose edges are the segments joining them
to the four nearby atoms.

5 A class of lattice models

5.1 Graphs

We have formalized the ice crystal into a system based on a graph, which is almost but not
the same as a graph in the usual combinatorial definition. Let us define a graph to be a set of
vertices and a set of edges with an incident relation, that some edges are through or adjacent
to certain vertices. We will assume that every edges is through either exactly two vertices,
or a single vertex. The edges that are through a single vertex will be called boundary edges .
The edges that connect two vertices are interior edges .

As an example, let us consider this graph:

a

b

c

d

e

f

g

h

i

r

v

w

(1)

Here we have a graph with three vertices, labeled v, w and r. There are nine edges,
labeled a, b, c, d, e, f and g, h, i. The edges a, b, c, d, e, f are boundary edges.

The graph is planar if it can be embedded in the plane. We will consider mainly
planar 4-regular graphs. The Ice Ih graph is 4-regular, but not planar. On the other
hand, the graph (1) is planar.

5.2 Spins

In the class of models we will consider, every edge e will be assigned a set Σe of possible
states, called spins . In the Ice models, the spins are the two possible orientations of the arrow
that points towards the hydrogen atom. We will require that the spins of the boundary edges
are fixed, and are part of the data describing the system. On the other hand, the spins of
the interior edges are variable.

5.3 States

A state of the model is an assignment of an element of its spinset to every edge of the model.
We will assume that the boundary spins have fixed assignments. Indeed, this will be part of
the data describing the model.
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Almost always there will be local constraints at each vertex on the possible configurations
of spins adjacent to a particular vertex. We will call a state in which these constraints are
satisfied at every vertex admissible.

For example in the Ice Ih model that we have described, the spins are directions or
orientations of the edges, which we can represent by arrows, and the constraint is that there
there are two “in” arrows and two “out” arrows. This means that there are

(
4
2

)
= 6 possible

configurations of local spins at the vertex.

5.4 Boltzmann weights

Every admissible configuration s is therefore a state of the system S, which is the ensemble
of all states. It is to be assigned a Boltzmann weight β(s). We will assume that this is a
product of local Boltzmann weights βv(s) at each vertex v:

β(s) =
∏
v

βv(s),

where βv(s) depends only on the configuration of spins at the edges adjacent to the vertex.
We can extend this definition to states that are not admissible by defining βv(s) = 0 if the
local configuration is not admissible. Then β(s) = 0 for inadmissible states s.

The partition function is

Z(S) =
∑
s

β(s).

We may sum over all states, or over admissible states.

6 The Six Vertex Model

Certain lattice models are called solvable since algebraic methods based on the Yang-Baxter
equation, which will be a major focus of this course, allow the partition function to be com-
puted exactly. Historically the first example was Onsager’s 1944 study of the 2-dimensional
Ising model. However we will start with an even simpler model, the six-vertex model , which
is also related to ice.

Solvable lattice models are almost exclusively 2-dimensional. This means that the un-
derlying graph is planar. The Ice Ih model that we considered is not solvable as far as we
know, and its graph is not planar.

While Pauling had considered the realistic problem of 3-dimensional Ice and heuristically
computed the number of states, one can also consider 2-dimensional Ice, in which the oxygen
atoms are restricted to a plane, and form a crystal with the oxygen atoms at the vertices of a
square lattice. This was investigated by Nagle [7], after which Lieb [6, 4, 5] and Sutherland [8]
found exact solutions for the entropy problem. For 2-dimensional Ice, Lieb found that the
residual entropy was kN log(W ) with W = (4/3)3/2.

The mathematical model of 2-dimensional ice is the famous 6-vertex model, which is the
archetype of a large class of important solvable lattice models. It is realistic enough to have
a phase transition, which was of great interest to the early investigators. We will therefore
discuss it at length.
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The six-vertex model is nearly identical to the Ih models we have discussed, except that
the underlying crystal is 2-dimensional, based on a square lattice. We will give two versions
of the Boltzmann weights. Recall that the spinset of an edge is a set of possible states. For
the six-vertex model, the spinset has cardinality two. In one version of the six vertex model,
the spinset of an edge is an orientation. The Boltzmann weights depend on six parameters,
a1, a2, b1, b2, c1 and c2, which may depend on the vertex v, so we may write a1(v), etc. We
label the possible states as follows:

a1 a2 b1 b2 c1 c2

On the other hand, it will also be convenient to dispense with the orientation and take
the spinset to be the 2-element set {+,−}. Then the labeling of the states is as follows:

a1 a2 b1 b2 c1 c2

+

+

+

+

−

−

−

−

+

−

+

−

−

+

−

+

−

+

+

−

+

−

−

+

Although the lattice model will be based on a rectangular grid, we will also encounter
vertices that are in a rotated orientation, and we will use the following labels for these.

a1 a2 b1 b2 c1 c2

+

+ +

+ −

− −

− +

− +

− −

+ −

+ −

+ +

− +

− −

+

7 Solvability

Baxter introduced an important method of studying certain vertex models, and he used it
to solve not just the six-vertex model, but the more difficult eight-vertex model, and with
it the XYZ Heisenberg spin chain, a related quantum mechanical problem. This method is
based on the Yang-Baxter equation, so named by Faddeev. The study of the Yang-Baxter
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equation leads to interesting mathematics, namely braided categories and quantum groups.
Indeed, historically, the six-vertex model was a key example.

We will consider vertices in a model (as described in Section 5) as being associated with
a set of Boltzmann weights. We will say that a class of models is solvable if when v and w
are vertices that can occur adjacent to each other in the class, there is another type of vertex
that we will denote r such that the two following systems are equivalent:

a

b

c

d

e

f

g

h

i

r

v

w
a

b

c

d

e

f

j

k

l

r

v

w

(2)

This means that for every possible assignment of spins to the six boundary edges a, b, c, d, e, f ,
the partition functions of the two systems are equivalent. Thus we sum over all possible as-
signments of spins to the interior edges, g, h, i on the left-hand side, or j, k, l on the right-hand
side. If this is so, we say the Yang-Baxter equation is satisfied for these vertices v, w, r.

We will consider two families of solutions to the Yang-Baxter equation within the six-
vertex model.

7.1 Field-Free Six-Vertex Model

The vertex v with Boltzmann weights ai(v), bi(v) and ci(v) will be called field-free if a1(v) =
a2(v), b1(v) = b2(v) and c1(v) = c2(v). We will suppress the subscript in the field free case
and write just a(v) = a1(v) = a2(v). We will make the following assumptions:

Assumption 7.1. In addition to the field-free assumption that a1 = a2, b1 = b2, c1 = c2 we
will assume that a 6= 0 and that b 6= ±c.

Let

∆(v) =
a2(v) + b2(v)− c2(v)

2a(v)b(v)
.

Note that this requires a(v) and b(v) to be nonzero, and we will assume this for v, w and
r in the next theorem. We will relax that assumption in Lecture 4. (In Lecture 4 we will
continue to assume a(v) 6= 0 but we will allow b = 0.)

Assumption 7.2. We will assume that ∆ 6= 0, 1,−1.

Assumption 7.1 is essential, and needed to obtain a reasonable theory. Assumption 7.2
should be removed. The assumption that ∆ 6= 0 is because we will treat that case in detail
as part of the free-fermionic case in later lectures. The assumption that ∆ 6= 1,−1 is out of
caution since though these cases are important. (They are phase transition points.) Some
of our algebra might be wrong if ∆ = ±1.
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Theorem 7.1 (Baxter). Let ∆ ∈ C, and let v and w be two field-free six-vertex model
vertices with ∆(v) = ∆(w) = ∆. In addition to the requirement in Assumption 7.1 that a(v)
and a(w) are nonzero, let us assume that b(v) and b(w) are nonzero. Then there is another
field-free six-vertex model vertex r such that the Yang-Baxter equation (2) is satisfied. We
have a(r)2 + b(r)2 − c(r)2 = 2a(r) b(r) ∆, so if b(r) 6= 0 then ∆(r) = ∆.

Proof. We claim that there are three equations that must be satisfied for the Yang-Baxter
equation to be satisfied. First take (a, b, c, d, e, f) = (+,+,−,+,−,+). The left-hand side
of the Yang-Baxter equation has one admissible state:

+

+

−

+

−

+

+

−

+

r

v

w

This has Boltzmann weight b(v)c(w)a(r). On the other hand, there are two admissible states
on the right-hand side:

+

+

−

+

−

+

+

−

−

r

v

w

+

+

−

+

−

+

−

+

+

r

v

w

These have weights c(v)b(w)c(r) and a(v)c(w)b(r). So we obtain the equation

b(v)c(w)a(r) = c(v)b(w)c(r) + a(v)c(w)b(r). (3)

Taking (a, b, c, d, e, f) = (+,+,−,−,+,+) gives

c(v)a(w)a(r) = c(v)b(w)b(r) + a(v)c(w)c(r), (4)

and taking (a, b, c, d, e, f) = (+,−,+,−,+,+) gives

b(v)a(w)c(r) = c(v)c(w)b(r) + a(v)b(w)c(r). (5)

Taking other combinations of a, b, c, d, e, f give a total of 12 equations altogether, but they
turn out to be these same three equations, repeated. So we need to show that we can
construct the vertex r to satisfy (3–5).
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Since ∆(v) = ∆(w) we have

(a(v)2 + b(v)2 − c(v)2)a(w)b(w) = (a(w)2 + b(w)2 − c(w)2)a(v)b(v).

This identity implies that

b(v)a(w)b(w)− a(v)b(w)2 + a(v)c(w)2

a(w)
=
a(v)b(v)a(w)− a(v)2b(w) + c(v)2b(w)

b(v)
,

and we define this to be a(r). Then we define

b(r) = b(v)a(w)− a(v)b(w), c(r) = c(v)c(w).

Now it may be checked that the identities (3), (4), (5) are satisfied. For example, to prove
(3), the right-hand side equals

c(w)(a(v)b(v)a(w)− a(v)2b(w) + c(v)2b(w))

and using the second expression for a(r) this equals a(r)c(w)b(v). We leave the other two
cases to the reader. Checking that ∆(r) = ∆ is an easy calculation.

We will explain later how this Yang-Baxter equation can be applied to study the partition
functions for the field-free two-dimensional ice models, and what some of the applications
are.

7.2 The Free-Fermionic Six Vertex Model

The second case where there is solvability is the free-fermionic case. Here the relevant
Yang-Baxter equation was found (partly) by Korepin around 1981. See [3], page 126, with
referencces to earlier literature. Later Brubaker, Bump and Friedberg rediscovered this in a
slightly more general form and gave applications. See [2]. Within the six-vertex model, this
is a very interesting example with important generalizations.

We will call the six-vertex model vertex v free-fermionic if

a1(v)a2(v) + b1(v)b2(v) = c1(v)c2(v).

We are of course dropping the field free-condition.

Theorem 7.2 (Korepin-Izergin; Brubaker-Bump-Friedberg). Let v and w be free-fermionic
vertices. Then there is a free-fermionic vertex r such that the Yang-Baxter equation is
satisfied.
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