Base class for elements of multivariate polynomial rings

class sage.rings.polynomial.multi_polynomial.MPolynomial

Bases: sage.structure.element.CommutativeRingElement

args()

Returns the named of the arguments of self, in the order they are accepted from call.

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: x.args()
(x, y)
change_ring(R)

Return a copy of this polynomial but with coefficients in R, if at all possible.

INPUT:

  • R – a ring or morphism.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = x^3 + 3/5*y + 1
sage: f.change_ring(GF(7))
x^3 + 2*y + 1
sage: R.<x,y> = GF(9,'a')[]
sage: (x+2*y).change_ring(GF(3))
x - y
sage: K.<z> = CyclotomicField(3)
sage: R.<x,y> = K[]
sage: f = x^2 + z*y
sage: f.change_ring(K.embeddings(CC)[1])
x^2 + (-0.500000000000000 - 0.866025403784438*I)*y
coefficients()

Return the nonzero coefficients of this polynomial in a list. The returned list is decreasingly ordered by the term ordering of self.parent(), i.e. the list of coefficients matches the list of monomials returned by sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular.monomials().

EXAMPLES:

sage: R.<x,y,z> = PolynomialRing(QQ,3,order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(QQ,3,order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]

Test the same stuff with base ring \(\ZZ\) – different implementation:

sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='degrevlex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[23, 6, 1]
sage: R.<x,y,z> = PolynomialRing(ZZ,3,order='lex')
sage: f=23*x^6*y^7 + x^3*y+6*x^7*z
sage: f.coefficients()
[6, 23, 1]

AUTHOR:

  • Didier Deshommes

content()

Returns the content of this polynomial. Here, we define content as the gcd of the coefficients in the base ring.

See also

content_ideal()

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = 4*x+6*y
sage: f.content()
2
sage: f.content().parent()
Integer Ring
content_ideal()

Return the content ideal of this polynomial, defined as the ideal generated by its coefficients.

See also

content()

EXAMPLES:

sage: R.<x,y> = ZZ[]
sage: f = 2*x*y + 6*x - 4*y + 2
sage: f.content_ideal()
Principal ideal (2) of Integer Ring
sage: S.<z,t> = R[]
sage: g = x*z + y*t
sage: g.content_ideal()
Ideal (x, y) of Multivariate Polynomial Ring in x, y over Integer Ring
denominator()

Return a denominator of self.

First, the lcm of the denominators of the entries of self is computed and returned. If this computation fails, the unit of the parent of self is returned.

Note that some subclasses may implement its own denominator function.

Warning

This is not the denominator of the rational function defined by self, which would always be 1 since self is a polynomial.

EXAMPLES:

First we compute the denominator of a polynomial with integer coefficients, which is of course 1.

sage: R.<x,y> = ZZ[]
sage: f = x^3 + 17*y + x + y
sage: f.denominator()
1

Next we compute the denominator of a polynomial over a number field.

sage: R.<x,y> = NumberField(symbolic_expression(x^2+3)  ,'a')['x,y']
sage: f = (1/17)*x^19 + (1/6)*y - (2/3)*x + 1/3; f
1/17*x^19 - 2/3*x + 1/6*y + 1/3
sage: f.denominator()
102

Finally, we try to compute the denominator of a polynomial with coefficients in the real numbers, which is a ring whose elements do not have a denominator method.

sage: R.<a,b,c> = RR[]
sage: f = a + b + RR('0.3'); f
a + b + 0.300000000000000
sage: f.denominator()
1.00000000000000

Check that the denominator is an element over the base whenever the base has no denominator function. This closes trac ticket #9063:

sage: R.<a,b,c> = GF(5)[]
sage: x = R(0)
sage: x.denominator()
1
sage: type(x.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: type(a.denominator())
<type 'sage.rings.finite_rings.integer_mod.IntegerMod_int'>
sage: from sage.rings.polynomial.multi_polynomial_element import MPolynomial
sage: isinstance(a / b, MPolynomial)
False
sage: isinstance(a.numerator() / a.denominator(), MPolynomial)
True
derivative(*args)

The formal derivative of this polynomial, with respect to variables supplied in args.

Multiple variables and iteration counts may be supplied; see documentation for the global derivative() function for more details.

See also

_derivative()

EXAMPLES:

Polynomials implemented via Singular:

sage: R.<x, y> = PolynomialRing(FiniteField(5))
sage: f = x^3*y^5 + x^7*y
sage: type(f)
<type 'sage.rings.polynomial.multi_polynomial_libsingular.MPolynomial_libsingular'>
sage: f.derivative(x)
2*x^6*y - 2*x^2*y^5
sage: f.derivative(y)
x^7

Generic multivariate polynomials:

sage: R.<t> = PowerSeriesRing(QQ)
sage: S.<x, y> = PolynomialRing(R)
sage: f = (t^2 + O(t^3))*x^2*y^3 + (37*t^4 + O(t^5))*x^3
sage: type(f)
<class 'sage.rings.polynomial.multi_polynomial_element.MPolynomial_polydict'>
sage: f.derivative(x)   # with respect to x
(2*t^2 + O(t^3))*x*y^3 + (111*t^4 + O(t^5))*x^2
sage: f.derivative(y)   # with respect to y
(3*t^2 + O(t^3))*x^2*y^2
sage: f.derivative(t)   # with respect to t (recurses into base ring)
(2*t + O(t^2))*x^2*y^3 + (148*t^3 + O(t^4))*x^3
sage: f.derivative(x, y) # with respect to x and then y
(6*t^2 + O(t^3))*x*y^2
sage: f.derivative(y, 3) # with respect to y three times
(6*t^2 + O(t^3))*x^2
sage: f.derivative()    # can't figure out the variable
Traceback (most recent call last):
...
ValueError: must specify which variable to differentiate with respect to

Polynomials over the symbolic ring (just for fun….):

sage: x = var("x")
sage: S.<u, v> = PolynomialRing(SR)
sage: f = u*v*x
sage: f.derivative(x) == u*v
True
sage: f.derivative(u) == v*x
True
discriminant(variable)

Returns the discriminant of self with respect to the given variable.

INPUT:

  • variable - The variable with respect to which we compute

    the discriminant

OUTPUT:

  • An element of the base ring of the polynomial ring.

EXAMPLES:

sage: R.<x,y,z>=QQ[]
sage: f=4*x*y^2 + 1/4*x*y*z + 3/2*x*z^2 - 1/2*z^2
sage: f.discriminant(x)
1
sage: f.discriminant(y)
-383/16*x^2*z^2 + 8*x*z^2
sage: f.discriminant(z)
-383/16*x^2*y^2 + 8*x*y^2

Note that, unlike the univariate case, the result lives in the same ring as the polynomial:

sage: R.<x,y>=QQ[]
sage: f=x^5*y+3*x^2*y^2-2*x+y-1
sage: f.discriminant(y)
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.polynomial(y).discriminant()
x^10 + 2*x^5 + 24*x^3 + 12*x^2 + 1
sage: f.discriminant(y).parent()==f.polynomial(y).discriminant().parent()
False
AUTHOR:

Miguel Marco

gcd(other)

Return a greatest common divisor of this polynomial and other.

INPUT:

  • other – a polynomial with the same parent as this polynomial

EXAMPLES:

sage: Q.<z> = Frac(QQ['z'])
sage: R.<x,y> = Q[]
sage: r = x*y - (2*z-1)/(z^2+z+1) * x + y/z
sage: p = r * (x + z*y - 1/z^2)
sage: q = r * (x*y*z + 1)
sage: gcd(p,q)
(z^3 + z^2 + z)*x*y + (-2*z^2 + z)*x + (z^2 + z + 1)*y

Polynomials over polynomial rings are converted to a simpler polynomial ring with all variables to compute the gcd:

sage: A.<z,t> = ZZ[]
sage: B.<x,y> = A[]
sage: r = x*y*z*t+1
sage: p = r * (x - y + z - t + 1)
sage: q = r * (x*z - y*t)
sage: gcd(p,q)
z*t*x*y + 1
sage: _.parent()
Multivariate Polynomial Ring in x, y over Multivariate Polynomial Ring in z, t over Integer Ring

Some multivariate polynomial rings have no gcd implementation:

sage: R.<x,y> =GaussianIntegers()[]
sage: x.gcd(x)
Traceback (most recent call last):
...
NotImplementedError: GCD is not implemented for multivariate polynomials over Gaussian Integers in Number Field in I with defining polynomial x^2 + 1 with I = 1*I
gradient()

Return a list of partial derivatives of this polynomial, ordered by the variables of self.parent().

EXAMPLES:

sage: P.<x,y,z> = PolynomialRing(ZZ,3)
sage: f = x*y + 1
sage: f.gradient()
[y, x, 0]
homogenize(var='h')

Return the homogenization of this polynomial.

The polynomial itself is returned if it is homogeneous already. Otherwise, the monomials are multiplied with the smallest powers of var such that they all have the same total degree.

INPUT:

  • var – a variable in the polynomial ring (as a string, an element of the ring, or a zero-based index in the list of variables) or a name for a new variable (default: 'h')

OUTPUT:

If var specifies a variable in the polynomial ring, then a homogeneous element in that ring is returned. Otherwise, a homogeneous element is returned in a polynomial ring with an extra last variable var.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = x^2 + y + 1 + 5*x*y^10
sage: f.homogenize()
5*x*y^10 + x^2*h^9 + y*h^10 + h^11

The parameter var can be used to specify the name of the variable:

sage: g = f.homogenize('z'); g
5*x*y^10 + x^2*z^9 + y*z^10 + z^11
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field

However, if the polynomial is homogeneous already, then that parameter is ignored and no extra variable is added to the polynomial ring:

sage: f = x^2 + y^2
sage: g = f.homogenize('z'); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y over Rational Field

If you want the ring of the result to be independent of whether the polynomial is homogenized, you can use var to use an existing variable to homogenize:

sage: R.<x,y,z> = QQ[]
sage: f = x^2 + y^2
sage: g = f.homogenize(z); g
x^2 + y^2
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field
sage: f = x^2 - y
sage: g = f.homogenize(z); g
x^2 - y*z
sage: g.parent()
Multivariate Polynomial Ring in x, y, z over Rational Field

The parameter var can also be given as a zero-based index in the list of variables:

sage: g = f.homogenize(2); g
x^2 - y*z

If the variable specified by var is not present in the polynomial, then setting it to 1 yields the original polynomial:

sage: g(x,y,1)
x^2 - y

If it is present already, this might not be the case:

sage: g = f.homogenize(x); g
x^2 - x*y
sage: g(1,y,z)
-y + 1

In particular, this can be surprising in positive characteristic:

sage: R.<x,y> = GF(2)[]
sage: f = x + 1
sage: f.homogenize(x)
0
inverse_mod(I)

Returns an inverse of self modulo the polynomial ideal \(I\), namely a multivariate polynomial \(f\) such that self * f - 1 belongs to \(I\).

INPUT:
  • I – an ideal of the polynomial ring in which self lives

OUTPUT:

  • a multivariate polynomial representing the inverse of f modulo I

EXAMPLES:

sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + 3*x2^2; g = f.inverse_mod(I); g
1/16*x1 + 3/16
sage: (f*g).reduce(I)
1

Test a non-invertible element:

sage: R.<x1,x2> = QQ[]
sage: I = R.ideal(x2**2 + x1 - 2, x1**2 - 1)
sage: f = x1 + x2
sage: f.inverse_mod(I)
Traceback (most recent call last):
...
ArithmeticError: element is non-invertible
is_generator()

Returns True if this polynomial is a generator of its parent.

EXAMPLES:

sage: R.<x,y>=ZZ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x*y).is_generator()
False
sage: R.<x,y>=QQ[]
sage: x.is_generator()
True
sage: (x+y-y).is_generator()
True
sage: (x*y).is_generator()
False
is_homogeneous()

Return True if self is a homogeneous polynomial.

Note

This is a generic implementation which is likely overridden by subclasses.

is_nilpotent()

Return True if self is nilpotent, i.e., some power of self is 0.

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: (x+y).is_nilpotent()
False
sage: R(0).is_nilpotent()
True
sage: _.<x,y> = Zmod(4)[]
sage: (2*x).is_nilpotent()
True
sage: (2+y*x).is_nilpotent()
False
sage: _.<x,y> = Zmod(36)[]
sage: (4+6*x).is_nilpotent()
False
sage: (6*x + 12*y + 18*x*y + 24*(x^2+y^2)).is_nilpotent()
True
is_square(root=False)

Test whether this polynomial is a square root.

INPUT:

  • root - if set to True return a pair (True, root) where root is a square root or (False, None) if it is not a square.

EXAMPLES:

sage: R.<a,b> = QQ[]
sage: a.is_square()
False
sage: ((1+a*b^2)^2).is_square()
True
sage: ((1+a*b^2)^2).is_square(root=True)
(True, a*b^2 + 1)
is_symmetric(group=None)

Return whether this polynomial is symmetric.

INPUT:

  • group (default: symmetric group) – if set, test whether the polynomial is invariant with respect to the given permutation group

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: p = (x+y+z)**2 - 3 * (x+y)*(x+z)*(y+z)
sage: p.is_symmetric()
True
sage: (x + y - z).is_symmetric()
False
sage: R.one().is_symmetric()
True

sage: p = (x-y)*(y-z)*(z-x)
sage: p.is_symmetric()
False
sage: p.is_symmetric(AlternatingGroup(3))
True

sage: R.<x,y> = QQ[]
sage: ((x + y)**2).is_symmetric()
True
sage: R.one().is_symmetric()
True
sage: (x + 2*y).is_symmetric()
False

An example with a GAP permutation group (here the quaternions):

sage: R = PolynomialRing(QQ, 'x', 8)
sage: x = R.gens()
sage: p = sum(prod(x[i] for i in e) for e in [(0,1,2), (0,1,7), (0,2,7), (1,2,7), (3,4,5), (3,4,6), (3,5,6), (4,5,6)])
sage: p.is_symmetric(libgap.TransitiveGroup(8, 5))
True
sage: p = sum(prod(x[i] for i in e) for e in [(0,1,2), (0,1,7), (0,2,7), (1,2,7), (3,4,5), (3,4,6), (3,5,6)])
sage: p.is_symmetric(libgap.TransitiveGroup(8, 5))
False
is_unit()

Return True if self is a unit, that is, has a multiplicative inverse.

EXAMPLES:

sage: R.<x,y> = QQbar[]
sage: (x+y).is_unit()
False
sage: R(0).is_unit()
False
sage: R(-1).is_unit()
True
sage: R(-1 + x).is_unit()
False
sage: R(2).is_unit()
True

Check that trac ticket #22454 is fixed:

sage: _.<x,y> = Zmod(4)[]
sage: (1 + 2*x).is_unit()
True
sage: (x*y).is_unit()
False
sage: _.<x,y> = Zmod(36)[]
sage: (7+ 6*x + 12*y - 18*x*y).is_unit()
True
iterator_exp_coeff(as_ETuples=True)

Iterate over self as pairs of ((E)Tuple, coefficient).

INPUT:

  • as_ETuples – (default: True) if True iterate over pairs whose first element is an ETuple, otherwise as a tuples

EXAMPLES:

sage: R.<a,b,c> = QQ[]
sage: f = a*c^3 + a^2*b + 2*b^4
sage: list(f.iterator_exp_coeff())
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]
sage: list(f.iterator_exp_coeff(as_ETuples=False))
[((0, 4, 0), 2), ((1, 0, 3), 1), ((2, 1, 0), 1)]

sage: R.<a,b,c> = PolynomialRing(QQ, 3, order='lex')
sage: f = a*c^3 + a^2*b + 2*b^4
sage: list(f.iterator_exp_coeff())
[((2, 1, 0), 1), ((1, 0, 3), 1), ((0, 4, 0), 2)]
jacobian_ideal()

Return the Jacobian ideal of the polynomial self.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: f = x^3 + y^3 + z^3
sage: f.jacobian_ideal()
Ideal (3*x^2, 3*y^2, 3*z^2) of Multivariate Polynomial Ring in x, y, z over Rational Field
lift(I)

given an ideal I = (f_1,...,f_r) and some g (== self) in I, find s_1,...,s_r such that g = s_1 f_1 + ... + s_r f_r.

EXAMPLES:

sage: A.<x,y> = PolynomialRing(CC,2,order='degrevlex')
sage: I = A.ideal([x^10 + x^9*y^2, y^8 - x^2*y^7 ])
sage: f = x*y^13 + y^12
sage: M = f.lift(I)
sage: M
[y^7, x^7*y^2 + x^8 + x^5*y^3 + x^6*y + x^3*y^4 + x^4*y^2 + x*y^5 + x^2*y^3 + y^4]
sage: sum( map( mul , zip( M, I.gens() ) ) ) == f
True
macaulay_resultant(*args)

This is an implementation of the Macaulay Resultant. It computes the resultant of universal polynomials as well as polynomials with constant coefficients. This is a project done in sage days 55. It’s based on the implementation in Maple by Manfred Minimair, which in turn is based on the references [CLO], [Can], [Mac]. It calculates the Macaulay resultant for a list of Polynomials, up to sign!

AUTHORS:

  • Hao Chen, Solomon Vishkautsan (7-2014)

INPUT:

  • args – a list of \(n-1\) homogeneous polynomials in \(n\) variables.

    works when args[0] is the list of polynomials, or args is itself the list of polynomials

OUTPUT:

  • the macaulay resultant

EXAMPLES:

The number of polynomials has to match the number of variables:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x+z)
Traceback (most recent call last):
...
TypeError: number of polynomials(= 2) must equal number of variables (= 3)

The polynomials need to be all homogeneous:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z+x^3])
Traceback (most recent call last):
...
TypeError: resultant for non-homogeneous polynomials is not supported

All polynomials must be in the same ring:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: S.<x,y> = PolynomialRing(QQ, 2)
sage: y.macaulay_resultant(z+x,z)
Traceback (most recent call last):
...
TypeError: not all inputs are polynomials in the calling ring

The following example recreates Proposition 2.10 in Ch.3 of Using Algebraic Geometry:

sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,2])
sage: flist[0].macaulay_resultant(flist[1:])
u2^2*u4^2*u6 - 2*u1*u2*u4*u5*u6 + u1^2*u5^2*u6 - u2^2*u3*u4*u7 + u1*u2*u3*u5*u7 + u0*u2*u4*u5*u7 - u0*u1*u5^2*u7 + u1*u2*u3*u4*u8 - u0*u2*u4^2*u8 - u1^2*u3*u5*u8 + u0*u1*u4*u5*u8 + u2^2*u3^2*u9 - 2*u0*u2*u3*u5*u9 + u0^2*u5^2*u9 - u1*u2*u3^2*u10 + u0*u2*u3*u4*u10 + u0*u1*u3*u5*u10 - u0^2*u4*u5*u10 + u1^2*u3^2*u11 - 2*u0*u1*u3*u4*u11 + u0^2*u4^2*u11

The following example degenerates into the determinant of a \(3*3\) matrix:

sage: K.<x,y> = PolynomialRing(ZZ, 2)
sage: flist,R = K._macaulay_resultant_universal_polynomials([1,1,1])
sage: flist[0].macaulay_resultant(flist[1:])
-u2*u4*u6 + u1*u5*u6 + u2*u3*u7 - u0*u5*u7 - u1*u3*u8 + u0*u4*u8

The following example is by Patrick Ingram (arXiv 1310.4114):

sage: U = PolynomialRing(ZZ,'y',2); y0,y1 = U.gens()
sage: R = PolynomialRing(U,'x',3); x0,x1,x2 = R.gens()
sage: f0 = y0*x2^2 - x0^2 + 2*x1*x2
sage: f1 = y1*x2^2 - x1^2 + 2*x0*x2
sage: f2 = x0*x1 - x2^2
sage: f0.macaulay_resultant(f1,f2)
y0^2*y1^2 - 4*y0^3 - 4*y1^3 + 18*y0*y1 - 27

a simple example with constant rational coefficients:

sage: R.<x,y,z,w> = PolynomialRing(QQ,4)
sage: w.macaulay_resultant([z,y,x])
1

an example where the resultant vanishes:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: (x+y).macaulay_resultant([y^2,x])
0

an example of bad reduction at a prime p = 5:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x^3+25*y^2*x,5*z])
125

The input can given as an unpacked list of polynomials:

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant(x^3+25*y^2*x,5*z)
125

an example when the coefficients live in a finite field:

sage: F = FiniteField(11)
sage: R.<x,y,z,w> = PolynomialRing(F,4)
sage: z.macaulay_resultant([x^3,5*y,w])
4

example when the denominator in the algorithm vanishes(in this case the resultant is the constant term of the quotient of char polynomials of numerator/denominator):

sage: R.<x,y,z> = PolynomialRing(QQ,3)
sage: y.macaulay_resultant([x+z, z^2])
-1

when there are only 2 polynomials, macaulay resultant degenerates to the traditional resultant:

sage: R.<x> = PolynomialRing(QQ,1)
sage: f =  x^2+1; g = x^5+1
sage: fh = f.homogenize()
sage: gh = g.homogenize()
sage: RH = fh.parent()
sage: f.resultant(g) == fh.macaulay_resultant(gh)
True
map_coefficients(f, new_base_ring=None)

Returns the polynomial obtained by applying f to the non-zero coefficients of self.

If f is a sage.categories.map.Map, then the resulting polynomial will be defined over the codomain of f. Otherwise, the resulting polynomial will be over the same ring as self. Set new_base_ring to override this behaviour.

INPUT:

  • f – a callable that will be applied to the coefficients of self.

  • new_base_ring (optional) – if given, the resulting polynomial will be defined over this ring.

EXAMPLES:

sage: k.<a> = GF(9); R.<x,y> = k[];  f = x*a + 2*x^3*y*a + a
sage: f.map_coefficients(lambda a : a + 1)
(-a + 1)*x^3*y + (a + 1)*x + (a + 1)

Examples with different base ring:

sage: R.<r> = GF(9); S.<s> = GF(81)
sage: h = Hom(R,S)[0]; h
Ring morphism:
  From: Finite Field in r of size 3^2
  To:   Finite Field in s of size 3^4
  Defn: r |--> 2*s^3 + 2*s^2 + 1
sage: T.<X,Y> = R[]
sage: f = r*X+Y
sage: g = f.map_coefficients(h); g
(-s^3 - s^2 + 1)*X + Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in s of size 3^4
sage: h = lambda x: x.trace()
sage: g = f.map_coefficients(h); g
X - Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field in r of size 3^2
sage: g = f.map_coefficients(h, new_base_ring=GF(3)); g
X - Y
sage: g.parent()
Multivariate Polynomial Ring in X, Y over Finite Field of size 3
newton_polytope()

Return the Newton polytope of this polynomial.

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: f = 1 + x*y + x^3 + y^3
sage: P = f.newton_polytope()
sage: P
A 2-dimensional polyhedron in ZZ^2 defined as the convex hull of 3 vertices
sage: P.is_simple()
True
nth_root(n)

Return a \(n\)-th root of this element.

If there is no such root, a ValueError is raised.

EXAMPLES:

sage: R.<x,y,z> = QQ[]
sage: a = 32 * (x*y + 1)^5 * (x+y+z)^5
sage: a.nth_root(5)
2*x^2*y + 2*x*y^2 + 2*x*y*z + 2*x + 2*y + 2*z
sage: b = x + 2*y + 3*z
sage: b.nth_root(42)
Traceback (most recent call last):
...
ValueError: not a 42nd power

sage: R.<x,y> = QQ[]
sage: S.<z,t> = R[]
sage: T.<u,v> = S[]
sage: p = (1 + x*u + y + v) * (1 + z*t)
sage: (p**3).nth_root(3)
(x*z*t + x)*u + (z*t + 1)*v + (y + 1)*z*t + y + 1
sage: (p**3).nth_root(3).parent() is p.parent()
True
sage: ((1+x+z+t)**2).nth_root(3)
Traceback (most recent call last):
...
ValueError: not a 3rd power
numerator()

Return a numerator of self computed as self * self.denominator()

Note that some subclasses may implement its own numerator function.

Warning

This is not the numerator of the rational function defined by self, which would always be self since self is a polynomial.

EXAMPLES:

First we compute the numerator of a polynomial with integer coefficients, which is of course self.

sage: R.<x, y> = ZZ[]
sage: f = x^3 + 17*x + y + 1
sage: f.numerator()
x^3 + 17*x + y + 1
sage: f == f.numerator()
True

Next we compute the numerator of a polynomial over a number field.

sage: R.<x,y> = NumberField(symbolic_expression(x^2+3)  ,'a')['x,y']
sage: f = (1/17)*y^19 - (2/3)*x + 1/3; f
1/17*y^19 - 2/3*x + 1/3
sage: f.numerator()
3*y^19 - 34*x + 17
sage: f == f.numerator()
False

We try to compute the numerator of a polynomial with coefficients in the finite field of 3 elements.

sage: K.<x,y,z> = GF(3)['x, y, z']
sage: f = 2*x*z + 2*z^2 + 2*y + 1; f
-x*z - z^2 - y + 1
sage: f.numerator()
-x*z - z^2 - y + 1

We check that the computation the numerator and denominator are valid

sage: K=NumberField(symbolic_expression('x^3+2'),'a')['x']['s,t']
sage: f=K.random_element()
sage: f.numerator() / f.denominator() == f
True
sage: R=RR['x,y,z']
sage: f=R.random_element()
sage: f.numerator() / f.denominator() == f
True
polynomial(var)

Let var be one of the variables of the parent of self. This returns self viewed as a univariate polynomial in var over the polynomial ring generated by all the other variables of the parent.

EXAMPLES:

sage: R.<x,w,z> = QQ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5
sage: f.polynomial(x)
x^3 + (17*w^3 + 3*w)*x + w^5 + z^5
sage: parent(f.polynomial(x))
Univariate Polynomial Ring in x over Multivariate Polynomial Ring in w, z over Rational Field

sage: f.polynomial(w)
w^5 + 17*x*w^3 + 3*x*w + z^5 + x^3
sage: f.polynomial(z)
z^5 + w^5 + 17*x*w^3 + x^3 + 3*x*w
sage: R.<x,w,z,k> = ZZ[]
sage: f = x^3 + 3*w*x + w^5 + (17*w^3)*x + z^5 +x*w*z*k + 5
sage: f.polynomial(x)
x^3 + (17*w^3 + w*z*k + 3*w)*x + w^5 + z^5 + 5
sage: f.polynomial(w)
w^5 + 17*x*w^3 + (x*z*k + 3*x)*w + z^5 + x^3 + 5
sage: f.polynomial(z)
z^5 + x*w*k*z + w^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: f.polynomial(k)
x*w*z*k + w^5 + z^5 + 17*x*w^3 + x^3 + 3*x*w + 5
sage: R.<x,y>=GF(5)[]
sage: f=x^2+x+y
sage: f.polynomial(x)
x^2 + x + y
sage: f.polynomial(y)
y + x^2 + x
reduced_form(**kwds)

Return a reduced form of this polynomial.

The algorithm is from Stoll and Cremona’s “On the Reduction Theory of Binary Forms” [CS2003]. This takes a two variable homogeneous polynomial and finds a reduced form. This is a \(SL(2,\ZZ)\)-equivalent binary form whose covariant in the upper half plane is in the fundamental domain. If the polynomial has multiple roots, they are removed and the algorithm is applied to the portion without multiple roots.

This reduction should also minimize the sum of the squares of the coefficients, but this is not always the case. By default the coefficient minimizing algorithm in [HS2018] is applied. The coefficients can be minimized either with respect to the sum of their squares or the maximum of their global heights.

A portion of the algorithm uses Newton’s method to find a solution to a system of equations. If Newton’s method fails to converge to a point in the upper half plane, the function will use the less precise \(z_0\) covariant from the \(Q_0\) form as defined on page 7 of [CS2003]. Additionally, if this polynomial has a root with multiplicity at least half the total degree of the polynomial, then we must also use the \(z_0\) covariant. See [CS2003] for details.

Note that, if the covariant is within error_limit of the boundary but outside the fundamental domain, our function will erroneously move it to within the fundamental domain, hence our conjugation will be off by 1. If you don’t want this to happen, decrease your error_limit and increase your precision.

Implemented by Rebecca Lauren Miller as part of GSOC 2016. Smallest coefficients added by Ben Hutz July 2018.

INPUT:

keywords:

  • prec – integer, sets the precision (default:300)

  • return_conjugation – boolean. Returns element of \(SL(2, \ZZ)\) (default:True)

  • error_limit – sets the error tolerance (default:0.000001)

  • smallest_coeffs – (default: True), boolean, whether to find the model with smallest coefficients

  • norm_type – either 'norm' or 'height'. What type of norm to use for smallest coefficients

  • emb – (optional) embedding of based field into CC

OUTPUT:

  • a polynomial (reduced binary form)

  • a matrix (element of \(SL(2, \ZZ)\))

TODO: When Newton’s Method doesn’t converge to a root in the upper half plane.

Now we just return z0. It would be better to modify and find the unique root in the upper half plane.

EXAMPLES:

sage: R.<x,h> = PolynomialRing(QQ)
sage: f = 19*x^8 - 262*x^7*h + 1507*x^6*h^2 - 4784*x^5*h^3 + 9202*x^4*h^4\
 -10962*x^3*h^5 + 7844*x^2*h^6 - 3040*x*h^7 + 475*h^8
sage: f.reduced_form(prec=200, smallest_coeffs=False)
(
-x^8 - 2*x^7*h + 7*x^6*h^2 + 16*x^5*h^3 + 2*x^4*h^4 - 2*x^3*h^5 + 4*x^2*h^6 - 5*h^8,

[ 1 -2]
[ 1 -1]
)

An example where the multiplicity is too high:

sage: R.<x,y> = PolynomialRing(QQ)
sage: f = x^3 + 378666*x^2*y - 12444444*x*y^2 + 1234567890*y^3
sage: j = f * (x-545*y)^9
sage: j.reduced_form(prec=200, smallest_coeffs=False)
Traceback (most recent call last):
...
ValueError: cannot have a root with multiplicity >= 12/2

An example where Newton’s Method does not find the right root:

sage: R.<x,y> = PolynomialRing(QQ)
sage: F = x^6 + 3*x^5*y - 8*x^4*y^2 - 2*x^3*y^3 - 44*x^2*y^4 - 8*x*y^5
sage: F.reduced_form(smallest_coeffs=False, prec=400)
Traceback (most recent call last):
...
ArithmeticError: Newton's method converged to z not in the upper half plane

An example with covariant on the boundary, therefore a non-unique form:

sage: R.<x,y> = PolynomialRing(QQ)
sage: F = 5*x^2*y - 5*x*y^2 - 30*y^3
sage: F.reduced_form(smallest_coeffs=False)
(
                            [1 1]
5*x^2*y + 5*x*y^2 - 30*y^3, [0 1]
)

An example where precision needs to be increased:

sage: R.<x,y> = PolynomialRing(QQ)
sage: F=-16*x^7 - 114*x^6*y - 345*x^5*y^2 - 599*x^4*y^3 - 666*x^3*y^4 - 481*x^2*y^5 - 207*x*y^6 - 40*y^7
sage: F.reduced_form(prec=50, smallest_coeffs=False)
Traceback (most recent call last):
...
ValueError: accuracy of Newton's root not within tolerance(0.0000124... > 1e-06), increase precision
sage: F.reduced_form(prec=100, smallest_coeffs=False)
(
                                                      [-1 -1]
-x^5*y^2 - 24*x^3*y^4 - 3*x^2*y^5 - 2*x*y^6 + 16*y^7, [ 1  0]
)
sage: R.<x,y> = PolynomialRing(QQ)
sage: F = - 8*x^4 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 1825511633*y^4
sage: F.reduced_form(return_conjugation=False)
x^4 + 9*x^3*y - 3*x*y^3 - 8*y^4
sage: R.<x,y> = QQ[]
sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3
sage: F.reduced_form()
(
                                       [1 4]
-2*x^3 - 22*x^2*y - 77*x*y^2 + 43*y^3, [0 1]
)
sage: R.<x,y> = QQ[]
sage: F = -2*x^3 + 2*x^2*y + 3*x*y^2 + 127*y^3
sage: F.reduced_form(norm_type='height')
(
                                        [5 4]
-58*x^3 - 47*x^2*y + 52*x*y^2 + 43*y^3, [1 1]
)
sage: R.<x,y,z> = PolynomialRing(QQ)
sage: F = x^4 + x^3*y*z + y^2*z
sage: F.reduced_form()
Traceback (most recent call last):
...
ValueError: (=x^3*y*z + x^4 + y^2*z) must have two variables
sage: R.<x,y> = PolynomialRing(ZZ)
sage: F = - 8*x^6 - 3933*x^3*y - 725085*x^2*y^2 - 59411592*x*y^3 - 99*y^6
sage: F.reduced_form(return_conjugation=False)
Traceback (most recent call last):
...
ValueError: (=-8*x^6 - 99*y^6 - 3933*x^3*y - 725085*x^2*y^2 -
59411592*x*y^3) must be homogeneous
sage: R.<x,y> = PolynomialRing(RR)
sage: F = 217.992172373276*x^3 + 96023.1505442490*x^2*y + 1.40987971253579e7*x*y^2\
+ 6.90016027113216e8*y^3
sage: F.reduced_form(smallest_coeffs=False) # tol 1e-8
(
-39.5673942565918*x^3 + 111.874026298523*x^2*y + 231.052762985229*x*y^2 - 138.380829811096*y^3,

[-147 -148]
[   1    1]
)
sage: R.<x,y> = PolynomialRing(CC)
sage: F = (0.759099196558145 + 0.845425869641446*CC.0)*x^3 + (84.8317207268542 + 93.8840848648033*CC.0)*x^2*y\
+ (3159.07040755858 + 3475.33037377779*CC.0)*x*y^2 + (39202.5965389079 + 42882.5139724962*CC.0)*y^3
sage: F.reduced_form(smallest_coeffs=False) # tol 1e-11
(
(-0.759099196558145 - 0.845425869641446*I)*x^3 + (-0.571709908900118 - 0.0418133346027929*I)*x^2*y
+ (0.856525964330103 - 0.0721403997649759*I)*x*y^2 + (-0.965531044130330 + 0.754252314465703*I)*y^3,

[-1 37]
[ 0 -1]
)
specialization(D=None, phi=None)

Specialization of this polynomial.

Given a family of polynomials defined over a polynomial ring. A specialization is a particular member of that family. The specialization can be specified either by a dictionary or a SpecializationMorphism.

INPUT:

  • D – dictionary (optional)

  • phi – SpecializationMorphism (optional)

OUTPUT: a new polynomial

EXAMPLES:

sage: R.<c> = PolynomialRing(QQ)
sage: S.<x,y> = PolynomialRing(R)
sage: F = x^2 + c*y^2
sage: F.specialization({c:2})
x^2 + 2*y^2
sage: S.<a,b> = PolynomialRing(QQ)
sage: P.<x,y,z> = PolynomialRing(S)
sage: RR.<c,d> = PolynomialRing(P)
sage: f = a*x^2 + b*y^3 + c*y^2 - b*a*d + d^2 - a*c*b*z^2
sage: f.specialization({a:2, z:4, d:2})
(y^2 - 32*b)*c + b*y^3 + 2*x^2 - 4*b + 4

Check that we preserve multi- versus uni-variate:

sage: R.<l> = PolynomialRing(QQ, 1)
sage: S.<k> = PolynomialRing(R)
sage: K.<a, b, c> = PolynomialRing(S)
sage: F = a*k^2 + b*l + c^2
sage: F.specialization({b:56, c:5}).parent()
Univariate Polynomial Ring in a over Univariate Polynomial Ring in k
over Multivariate Polynomial Ring in l over Rational Field
subresultants(other, variable=None)

Return the nonzero subresultant polynomials of self and other.

INPUT:

  • other – a polynomial

OUTPUT: a list of polynomials in the same ring as self

EXAMPLES:

sage: R.<x,y> = QQ[]
sage: p = (y^2 + 6)*(x - 1) - y*(x^2 + 1)
sage: q = (x^2 + 6)*(y - 1) - x*(y^2 + 1)
sage: p.subresultants(q, y)
[2*x^6 - 22*x^5 + 102*x^4 - 274*x^3 + 488*x^2 - 552*x + 288,
 -x^3 - x^2*y + 6*x^2 + 5*x*y - 11*x - 6*y + 6]
sage: p.subresultants(q, x)
[2*y^6 - 22*y^5 + 102*y^4 - 274*y^3 + 488*y^2 - 552*y + 288,
 x*y^2 + y^3 - 5*x*y - 6*y^2 + 6*x + 11*y - 6]
sylvester_matrix(right, variable=None)

Given two nonzero polynomials self and right, returns the Sylvester matrix of the polynomials with respect to a given variable.

Note that the Sylvester matrix is not defined if one of the polynomials is zero.

INPUT:

  • self , right: multivariate polynomials

  • variable: optional, compute the Sylvester matrix with respect to this variable. If variable is not provided, the first variable of the polynomial ring is used.

OUTPUT:

  • The Sylvester matrix of self and right.

EXAMPLES:

sage: R.<x, y> = PolynomialRing(ZZ)
sage: f = (y + 1)*x + 3*x**2
sage: g = (y + 2)*x + 4*x**2
sage: M = f.sylvester_matrix(g, x)
sage: M
[    3 y + 1     0     0]
[    0     3 y + 1     0]
[    4 y + 2     0     0]
[    0     4 y + 2     0]

If the polynomials share a non-constant common factor then the determinant of the Sylvester matrix will be zero:

sage: M.determinant()
0

sage: f.sylvester_matrix(1 + g, x).determinant()
y^2 - y + 7

If both polynomials are of positive degree with respect to variable, the determinant of the Sylvester matrix is the resultant:

sage: f = R.random_element(4)
sage: g = R.random_element(4)
sage: f.sylvester_matrix(g, x).determinant() == f.resultant(g, x)
True
truncate(var, n)

Returns a new multivariate polynomial obtained from self by deleting all terms that involve the given variable to a power at least n.

weighted_degree(*weights)

Return the weighted degree of self, which is the maximum weighted degree of all monomials in self; the weighted degree of a monomial is the sum of all powers of the variables in the monomial, each power multiplied with its respective weight in weights.

This method is given for convenience. It is faster to use polynomial rings with weighted term orders and the standard degree function.

INPUT:

  • weights - Either individual numbers, an iterable or a dictionary, specifying the weights of each variable. If it is a dictionary, it maps each variable of self to its weight. If it is a sequence of individual numbers or a tuple, the weights are specified in the order of the generators as given by self.parent().gens():

EXAMPLES:

sage: R.<x,y,z> = GF(7)[]
sage: p = x^3 + y + x*z^2
sage: p.weighted_degree({z:0, x:1, y:2})
3
sage: p.weighted_degree(1, 2, 0)
3
sage: p.weighted_degree((1, 4, 2))
5
sage: p.weighted_degree((1, 4, 1))
4
sage: p.weighted_degree(2**64, 2**50, 2**128)
680564733841876926945195958937245974528
sage: q = R.random_element(100, 20) #random
sage: q.weighted_degree(1, 1, 1) == q.total_degree()
True

You may also work with negative weights

sage: p.weighted_degree(-1, -2, -1)
-2

Note that only integer weights are allowed

sage: p.weighted_degree(x,1,1)
Traceback (most recent call last):
...
TypeError: unable to convert non-constant polynomial x to an integer
sage: p.weighted_degree(2/1,1,1)
6

The weighted_degree coincides with the degree of a weighted polynomial ring, but the later is faster.

sage: K = PolynomialRing(QQ, 'x,y', order=TermOrder('wdegrevlex', (2,3)))
sage: p = K.random_element(10)
sage: p.degree() == p.weighted_degree(2,3)
True
sage.rings.polynomial.multi_polynomial.is_MPolynomial(x)