Root system data for type B¶
-
class
sage.combinat.root_system.type_B.
AmbientSpace
(root_system, base_ring, index_set=None)¶ Bases:
sage.combinat.root_system.ambient_space.AmbientSpace
-
dimension
()¶ EXAMPLES:
sage: e = RootSystem(['B',3]).ambient_space() sage: e.dimension() 3
-
fundamental_weight
(i)¶ EXAMPLES:
sage: RootSystem(['B',3]).ambient_space().fundamental_weights() Finite family {1: (1, 0, 0), 2: (1, 1, 0), 3: (1/2, 1/2, 1/2)}
-
negative_roots
()¶ EXAMPLES:
sage: RootSystem(['B',3]).ambient_space().negative_roots() [(-1, 1, 0), (-1, -1, 0), (-1, 0, 1), (-1, 0, -1), (0, -1, 1), (0, -1, -1), (-1, 0, 0), (0, -1, 0), (0, 0, -1)]
-
positive_roots
()¶ EXAMPLES:
sage: RootSystem(['B',3]).ambient_space().positive_roots() [(1, -1, 0), (1, 1, 0), (1, 0, -1), (1, 0, 1), (0, 1, -1), (0, 1, 1), (1, 0, 0), (0, 1, 0), (0, 0, 1)]
-
root
(i, j)¶ Note that indexing starts at 0.
EXAMPLES:
sage: e = RootSystem(['B',3]).ambient_space() sage: e.root(0,1) (1, -1, 0)
-
simple_root
(i)¶ EXAMPLES:
sage: e = RootSystem(['B',4]).ambient_space() sage: e.simple_roots() Finite family {1: (1, -1, 0, 0), 2: (0, 1, -1, 0), 3: (0, 0, 1, -1), 4: (0, 0, 0, 1)} sage: e.positive_roots() [(1, -1, 0, 0), (1, 1, 0, 0), (1, 0, -1, 0), (1, 0, 1, 0), (1, 0, 0, -1), (1, 0, 0, 1), (0, 1, -1, 0), (0, 1, 1, 0), (0, 1, 0, -1), (0, 1, 0, 1), (0, 0, 1, -1), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)] sage: e.fundamental_weights() Finite family {1: (1, 0, 0, 0), 2: (1, 1, 0, 0), 3: (1, 1, 1, 0), 4: (1/2, 1/2, 1/2, 1/2)}
-
-
class
sage.combinat.root_system.type_B.
CartanType
(n)¶ Bases:
sage.combinat.root_system.cartan_type.CartanType_standard_finite
,sage.combinat.root_system.cartan_type.CartanType_simple
,sage.combinat.root_system.cartan_type.CartanType_crystallographic
EXAMPLES:
sage: ct = CartanType(['B',4]) sage: ct ['B', 4] sage: ct._repr_(compact = True) 'B4' sage: ct.is_irreducible() True sage: ct.is_finite() True sage: ct.is_affine() False sage: ct.is_crystallographic() True sage: ct.is_simply_laced() False sage: ct.affine() ['B', 4, 1] sage: ct.dual() ['C', 4] sage: ct = CartanType(['B',1]) sage: ct.is_simply_laced() True sage: ct.affine() ['B', 1, 1]
-
AmbientSpace
¶ alias of
AmbientSpace
-
PieriFactors
¶ alias of
sage.combinat.root_system.pieri_factors.PieriFactors_type_B
-
ascii_art
(label=<function CartanType.<lambda> at 0x7f96d34deca0>, node=None)¶ Return an ascii art representation of the Dynkin diagram.
EXAMPLES:
sage: print(CartanType(['B',1]).ascii_art()) O 1 sage: print(CartanType(['B',2]).ascii_art()) O=>=O 1 2 sage: print(CartanType(['B',5]).ascii_art(label = lambda x: x+2)) O---O---O---O=>=O 3 4 5 6 7
-
coxeter_number
()¶ Return the Coxeter number associated with
self
.EXAMPLES:
sage: CartanType(['B',4]).coxeter_number() 8
-
dual
()¶ Types B and C are in duality:
EXAMPLES:
sage: CartanType(["C", 3]).dual() ['B', 3]
-
dual_coxeter_number
()¶ Return the dual Coxeter number associated with
self
.EXAMPLES:
sage: CartanType(['B',4]).dual_coxeter_number() 7
-
dynkin_diagram
()¶ Returns a Dynkin diagram for type B.
EXAMPLES:
sage: b = CartanType(['B',3]).dynkin_diagram() sage: b O---O=>=O 1 2 3 B3 sage: sorted(b.edges()) [(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)] sage: b = CartanType(['B',1]).dynkin_diagram() sage: b O 1 B1 sage: sorted(b.edges()) []
-