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Review of ribbon categories

The notion of a ribbon category, which we have already
discussed, is due to Joyal and Street, who called them tortile.
We require a natural endomorphism θV of each object subject
to the ribbon tensor axiom

θU⊗W = c−1
U,W ◦ c−1

W ,U ◦ θU ⊗ θW = θU ⊗ θW ◦ c−1
U,W ◦ c−1

W ,U

θU θW

U

U

W

W

=
θU θW

U

U

W

W

= θU⊗W

U ⊗W

U ⊗W

And such that θI = 1I and θV∗ = θ∗V .
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Ribbon Hopf algebras

The archetypal ribbon category is the category of framed
tangles.

The notion of a ribbon Hopf algebra is due to Reshetikhin and
Turaev. This is a QTHA with a central element θ such that
multiplication by θ induces an endomorphism θV in a module V ,
making the category of finite-dimensional modules (already
braided by quasitriangularity) into a ribbon category.

For example, if H = Uq(sl2) we may take θ = K−1u where
u = S(R(2))R(1) was introduced in Lecture 5.

We will impose suitable axioms on θ after further discussing the
properties of u.
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The elements u and S(u)

Let H be a QTHA with universal R-matrix R ∈ H ⊗ H.
We recall that u = S(R(2)) R(1). Let V be a finite-dimensional
H-module. We proved that this is related to the isomorphism
u : V → V ∗∗ as follows.

V ∗∗

V

V ∗

If ι : V → V ∗∗ is the usual vector space isomorphism between
V and its double dual, then for x ∈ V ,

u(x) = ι(u · x).

Note that ι is not an H-module homorphism but u is.
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Properties of u

Let H be a QTHA and let u = S(R(2))R(1).

Proposition
If x ∈ H then

S(x(2))ux(1) = ε(x).

Recall that τ∆(x) = R∆(x)R−1 in Sweedler notation becomes

R(1)x(1) ⊗ R(2)x(2) = x(2)R(1) ⊗ x(1)R(2).

So
S(x(2))S(R(2))R(1)x(1) = S(R(2)x(2))R(1)x(1) =

S(x(1)R(2))x(2)R(1) = S(R(2))S(x(1))x(2)R(1).

Now S(x(1))x(2) = ε(x) which is a scalar that can be pulled out
leaving u and we are done.
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Properties of u, continued

We will denote v = S(u).

Proposition

The element u is invertible with inverse u−1 = R(2)S2(R(1)).
Conjugation by u implements the square of the antipode:

uxu−1 = S2(x).

vxv−1 = S−2(x).

We refer to Majid Chapter 5 for the proof.

Note that this implies that uv is central since
uv(x)(uv)−1 = uS−2(x)u−1 = x . Then uv = vu since
uv = u−1(uv)u = vu.
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Properties of u, continued

We come to another very significant property of u.

Theorem
We have

∆(u) = R−1R−1
21 (u⊗ u).

Here R21 means R(2) ⊗ R(1). Again we refer to Majid for the
proof, but one step is worth pointing out. This is the
“Yang-Baxter equation in a suitable form” mentioned at the end
of the proof on page 33. This is the Exercise 3 in Lecture 5.

Instead of repeating the proof here, we will discuss the context
and meaning of the Theorem.
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Reminder of Lecture 4

The theorem is related to a topic that concerned us earlier, in
Lecture 4, where the morphism u : V → V ∗∗ was introduced.
We considered what happens when we apply u to a tensor
product U ⊗ V . We gave the following figure.

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗

Topologically u amounts to a double twist, but only if we allow
ourselves a Reidemeister Type I move, or to put it another way,
if we ignore the distinction between V and V ∗∗.
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uU⊗W

In an arbitrary rigid braided category, we have (please check)

uU⊗W = c−1
U,W c−1

W ,U(uU ⊗ uW ) = (uU ⊗ uW )c−1
U,W c−1

W ,U .

U∗∗ ⊗W ∗∗

U ⊗W

W∗⊗U∗ =

U W

U W
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About R21R

If U,W are H-module homomorphisms, then the braiding
cU,W : U ⊗W →W ⊗ U is τ ◦ R, meaning that we multiply an
element of U ⊗W by R, then apply the flip τ .

Now R21R∆(x) = R21(τ∆(x))R = ∆(x)R21R for x ∈ H
because τ∆(x) = R∆(x)R−1. This implies that multiplication
by R21R is an H-module endomorphism of U ⊗W for modules
U and W . The precise endomorphism is indeed
cU,W cW ,U = τRτR = R21R.
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The meaning of the theorem

We will now explain how the result in the theorem

∆(u) = (R12R)−1(u⊗ u)

is equivalent to the formula

uU⊗W = c−1
U,W c−1

W ,U(uU ⊗ uW ) = (uU ⊗ uW )c−1
U,W c−1

W ,U .

We note that u⊗ u commutes with R and R21 because
conjugation by u is the square of the antipode so

(u⊗ u)R(u⊗ u)−1 = S2(R(1))⊗ S2(R(2))

but using (S ⊗ S)R = R twice, this is R.



Ribbon Hopf Algebras Schur-Weyl-Jimbo duality

The meaning of the theorem (continued)

Now let ιV : V → V ∗∗ be the usual vector space isomorphism
so u(x) = ι(u). Naturally ιU⊗W = ιU ⊗ ιW . So applying
ιU⊗W ∆(u) to U ⊗W and using

∆(u) = (R12R)−1(u⊗ u) = (u⊗ u)(R12R)−1

gives
uU⊗W = (uU ⊗ uW )c−1

U,W c−1
W ,U ,

where we reiterate

uV (x) = ι(ux), x ∈ V

for V any module.
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The ribbon element

Now following Turaev and Reshetikhin, we define the QTHA H
to be ribbon if it contains an central element θ such that
θ2 = vu, S(θ) = θ, ε(θ) = 1 and

∆(θ) = (RR21)−1(θ ⊗ θ).

Theorem (Turaev and Reshetikhin)
The category of finite-dimensional modules for a ribbon Hopf
algebra is a ribbon category.
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Discussion

If V is a module since θ is central, multiplication by θ induces
an H-module endomorphism θV Just as the property

∆(u) = (RR21)−1(θ ⊗ u)

implied
uU⊗W = (uU ⊗ uW )c−1

U,W c−1
W ,U ,

the ribbon axiom

∆(θ) = (RR21)−1(θ ⊗ θ)

implies
θU⊗W = (θU ⊗ θW )c−1

U,W c−1
W ,U ,

one of the properties we need for a ribbon category. The other
properties, θV∗ = θ∗V and θK = 1K follow from S(θ) = θ and
ε(θ) = 1.
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Schur-Weyl duality

Schur-Weyl duality is a relationship between the
representations of the symmetric group Sr and the general
linear group GL(n,C).
The groups Sr and GL(n,C) both act on the same vector space
⊗r V where V = Cn, the standard module of GL(n). The group
GL(n) acts diagonally:

g(v1 ⊗ · · · ⊗ vn) = gv1 ⊗ · · · ⊗ gvn, g ∈ GL(n).

The symmetric group acts by permuting the components.

w(vi ⊗ · · · vr ) = vw−1i ⊗ · · · vw−1r , w ∈ Sr .

The two actions obviously commute. The problem is to
decompose ⊗r V into irreducibles.
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Irreducibles of GL(n) and Sr

Let λ be a partition of r of length 6 n. Thus λ = (λ1, λ2, · · · , λn)
where λ1 > λ2 > · · ·λn > 0 and

∑
λi = r . Then λ indexes both

an irreducible representation of Sr and of GL(r ,C).

The irreducible representations of Sr are indexed by partitions
of r . We will denote the corresponding irreducible of Sr as πSr

λ .

The irreducibles of GL(n,C) are indexed by dominant weights.
A weight is a rational character of the diagonal subgroup; the
group of weights is in bijection with Zn as follows: if
λ = (λ1, · · · , λn), then λ is called dominant if λ1 > · · · > λr . In
particular, a partition of length 6 r is a dominant weight. Let
π

GL(n)
λ be the corresponding irreducible.
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Irreducibles of GL(n) and Sr (continued)

If G = GL(n) and λ is a partition of length 6 n (hence a
dominant weight) then πGL(n)

λ is the representation whose
character is the Schur polynomial sλ, i.e.

tr(πGL(n)
λ (g)) = sλ(x1, · · · , xn)

xi the eigenvalues of g.
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Irreducibles of GL(n) and Sr (continued)

The partitions λ of r index the irreducible representations of Sr .
One way of describing this indexing is as follows. If
λ = (λ1, · · · , λr ) is a partition of r let

Sλ = Sλ1 × · · · × Sλr ⊆ Sr .

Let λ′ be the conjugate partition. Then the induced
representations

indSr
Sλ

(1), indSr
Sλ′

(sgn)

have a unique irreducible constituent in common. Call this πSr
λ .
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Schur-Weyl duality (concluded)

Then as a Sr ⊗GL(n)-module, Schur-Weyl duality is the
isomorphism

⊗r V ∼=
⊕
λ`r

πSr
λ ⊗ π

GL(n)
λ .

This has many applications. There are no repetitions among
the representations that appear on either side, so this gives a
bijection between the representations of GL(n) that appear, and
the representations of Sr .

In Jimbo’s generalization, GL(n) is replaced by Uq(gln) and Sr
is replaced by its Hecke algebra.

Before we explain the Hecke algebra we consider the braid
group.
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Coxeter groups

A Coxeter group W is a group with generators s1, · · · sr of order
2. Let n(i , j) be the order of si . Since the si have order 2 we
may write

sisjsi · · · = sjsisj · · ·

where there are n(i , j) factors on both sides. This is called the
braid relation. It is assumed that these relations

s2
i = 1, sisjsi · · · = sjsisj · · ·

are a presentation of W . For example Sr a presentation with
generators si = (i , i + 1) and relations

s2
i = 1, sisi+1si = si+1sisi+1

sisj = sjsi if |i − j | > 1.
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The braid group of a Coxeter group

The braid group B associated with the Coxeter group W has
generators ti satisfying the braid relations but which are not
assumed to be of order 2. So we have a homomorphism
W → B mapping si to ti .

For example The braid group Br of the symmetric group Sr is
the Artin braid group generated by braids t1, · · · , tr−1. These
may be identified with isotopy classes of braids, embedding the
braid group in the Grothendieck group of the tangle category.
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Matsumoto’s theorem

We will need the following very important fact about Coxeter
groups. Let W be a Coxeter group with generators si (called
simple reflections) and let w ∈W . A reduced expression or
reduced word is a representation of w as a product of simple
reflections that is as short as possible: w = si1 · · · sik . Then if
w = sj1 · · · sjk is another reduced word, Matsumoto’s theorem
asserts that second reduced word may be obtained from the
first by successive applications of the braid group. For example
in S4 we have s1s2s1s3s2s1 = s3s2s1s3s2s3 and:

212321⇒ 121321⇒ 123121⇒ 123212⇒

132312⇒ 312132⇒ 321232⇒ 321323

Thus ti1 · · · tik = tj1 · · · tjk in the braid group.
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The braid relations

The braid relations for the Artin braid group correspond to
Reidemeister moves of Type III:

ti ti+1ti = ti+1ti ti+1, ti tj = tj ti if |i − j | > 1.

· · · · · · · · · · · ·

ti ti+1ti ti+1ti ti+1
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Braid group representations

Braid group representations are an important topic.
Turaev: Faithful representions of the braid group

Jones: a polynomial invariant for knots via von Neumann algebras

We obtain braid group representations from the Yang-Baxter
equation. Let V be a vector space and R ∈ End(V ⊗ V ) satisfy

R12R13R23 = R23R13R12

in End(V ⊗ V ⊗ V ). Then R = τR satisfies

R12R23R12 = R23R12R23.

This means that if we define Ti ∈ End(⊗r V ) to be the
endomorphism Ri,i+1, then the satisfy the braid relation

TiTi+1Ti = Ti+1TiTi+1.

So there is a homomorphism Bn → GL(⊗V k ) mapping ti → Ti .

http://archive.numdam.org/article/SB_1999-2000__42__389_0.pdf
http://www.ams.org/journals/bull/1985-12-01/S0273-0979-1985-15304-2/
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The SL2 R-matrix

Let us recall the Uq(sl2) R-matrix that we obtained in Lecture 6.
I have replaced q by q−1 so this is actually the Uq−1(sl2)
R-matrix.

R =


q

1
q − q−1 1

q

 .

It is actually τR that is the endomorphism of V ⊗ V , where V is
the standard two-dimensional module. So we are concerned
with

τR =


q

q − q−1 1
1

q

 .
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A generalization

Jimbo found a more general R-matrix for Uq−1(sln). Let
x1, · · · , xn be basis vectors of an n-dimensional vector space.
We will denote by Eij the rank one elementary transformation
that takes xi to xj and other basis vectors to zero. Let

Rq =
∑

i

q Eii ⊗ Eii +
∑
i 6=j

Eii ⊗ Ejj +
(
q − q−1)

∑
i<j

Eij ⊗ Eji

If n = 2, this is the same R-matrix as before. This is the
R-matrix for the n-dimensional standard module of the quantum
group Uq−1(sln).
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The quadratic relation

Let R be the R-matrix for Uq(sl2) or more generally the Uq(sln)
R-matrix found by Jimbo which contains the sl2 R-matrix as a
special case. Then T = τR satisfies a quadratic relation:

T 2 = (q − q−1)T + 1,

as can easily be checked. As we will now explain, this implies
that the braid group representation that we have constructed
extends to a representation of the Hecke algebra of Sr , a
certain deformation of the group algebra C[Sr ].
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The Hecke algebra

Let W be a Coxeter group. The Hecke algebra Hq (in one
normalization) has generators Ti corresponding to the simple
reflections. They are assumed to satisfy the braid relations and
the quadratic relations

T 2
i = (q − q−1)Ti + 1.

If w ∈W , let w = si1 · · · sik be a reduced expression and define

Tw = Ti1 · · ·Tik .

By Matsumoto’s theorem this is well-defined. Moreover, it is not
hard to show that this is a basis of Hq, which is therefore a
finite-dimensional algebra whose dimension is |W |.
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Hq is a deformation of W

Ti is invertible since

Ti(Ti − q + q−1) = 1, T−1
i = Ti − q + q−1.

So we may map the braid group into the multiplicative group of
the Hecke algebra by ti → Ti .

Note that if q → 1 then the quadratic relation becomes T 2
i = 1,

so in the limit, the relations satisfies by the Ti are the same as
the si . Thus the Hecke algebra is a deformation of C[W ].
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Hq is ubiquitous.

The Hecke algebra arises in a remarkable variety of different
settings.

Iwahori and Matsumoto showed the Hecke algebras of W
and of its (infinite) affine Weyl group appear as convolution
rings of functions on a p-adic group.
Howlett and Lehrer showed that the Hecke algebras
appear as endomorphism rings of induced representations
of finite groups.
Lusztig interpreted the Hecke algebra as the equivariant
K-theory of the flag variety.
Jimbo showed that Hq appears in a deformation of Schur
duality.
The Temperley-Lieb algebras in statistical mechanics are a
version of the Hecke algebra.
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Schur-Weyl-Jimbo duality

Now let V be the standard module for Uq(sl2) or more generally
Uq(sln). It is actually better to enlarge the quantum group a little
to obtain generally Uq(gln), and the same R-matrix still works.

We have noted that we may obtain a braid group representation
Ti ∈ End(⊗r V ) to be the endomorphism Ri,i+1, then the satisfy
the braid relation

TiTi+1Ti = Ti+1TiTi+1.

Since the Ti satisfy the quadratic relations

T 2
i = (q − q−1)Ti + 1

this is actually a representation of the Hecke algebra. It
commutes with the action of Uq(gln), and in the limit q → 1
these two representations essentially reduce to the
representations of Sr and GL(n) in Schur duality.
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Schur-Weyl-Jimbo duality (concluded)

If q is not a root of unity, then just as the irreducible
representations of GL(n) are parametrized by dominant
weights, so are those of Uq(gln).

(This is not quite true: we have to specify how the group-like
generators Ki act. We are ignoring this nuance.)

The irreducible representations of the Hecke algebra are, like
those of Sr , indexed by partitions. And

⊗r V ∼=
⊕
λ

π
Uq(gln)
λ ⊗ πHq

λ .
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