Lecture 9: More about vertex algebras

Daniel Bump

January 1, 2020

Fields

Today's lecture will continue discussing the Heisenberg vertex operator following Frenkel and Ben-Zvi, Chapter 2.

We fix a vector space V, which will later be given some additional structure. A field is a formal power series

$$A(z) = \sum_{j \in \mathbb{Z}} A_j z^{-j}$$

with $A_j \in \text{End}(V)$ such that for any $v \in V$ we have $A_j v = 0$ for sufficiently large *j*.

Locality

Two fields A(z) and B(w) are considered (mutually) local if for every $\Phi \in V$ and $\Psi \in V^*$ the matrix coefficients

$$\langle \Psi | A(z) B(w) | \Phi \rangle, \qquad \langle \Psi | B(w) A(z) | \Phi \rangle$$

defined the same element of $\mathbb{C}[[z,w]][z^{-1},w^{-1},(z-w)^{-1}]$ expanded in $\mathbb{C}((z))((w))$ and $\mathbb{C}((w))((z))$, respectively.

Less precisely, for sufficiently large N

$$(z-w)^{N}[A(z), B(w)] = 0.$$

Vertex algebra axioms

A vertex algebra is a purely algebraic structure in which the state-field correspondence associates a field

$$Y(A,z) = \sum_{n} A_{(n)} z^{-n-1}.$$

We also need a vacuum vector $|0\rangle$ and a translation operator $T: V \rightarrow V$ subject to the following axioms.

Vacuum Axiom. We have $Y(|0\rangle, z) = I_{\nu}$. Moreover if $A \in V$ then $Y(A, z)|0\rangle \in V[[z]]$ so the limit $Y(A, z)|0\rangle$ as $z \to 0$ exists and is A.

Translation Axiom. [T, Y(A, z)] = (d/dz)Y(A, z) and $T|0\rangle = 0$.

Locality Axiom. The fields Y(A, z) are mutually local.

Origins in CFT

In 2-dimensional Euclidean conformal field theory, the state-field correspondence associates to every point z in $\mathbb{R}^{(2)}$ or its conformal completion $\mathbb{P}^1(\mathbb{C})$ and to every vector A in the Hilbert space \mathcal{H} a field; the correspondence is such that v is the limiting value of the field at v.

Also in conformal field theory, there are Virasoro operators L_n corresponding to local conformal transformations. (We have not lectured on this yet.)

The translation operator is the Virasoro generator L_{-1} , an infinitesimal translation along the one-parameter subgroup of special conformal transformations

$$z\mapsto \frac{z-|z|^2b}{1-2\langle z,b\rangle+|z|^2|b|^2}$$

Normal ordering

In a field $A(z) = \sum A_n z^{-n-1}$ we may often think of A_n as a creation operator if n > 0 and an annihilation operator if n < 0. As we saw last time there is a difficulty interpreting

$$A(z)B(w) = \sum_{n,m} A_n B_m z^{-n-1} w^{-m-1}$$

due to the fact that infinitely many times, a creation operator is done before the annihilation operator.

To avoid this problem, we define the normal ordered product

$$:A(z)B(w) := \sum_{m} \left(\sum_{n < 0} A_{(n)} B_m z^{-n-1} + \sum_{n > 0} B_m A_{(n)} z^{-n-1} \right) w^{-m-1}.$$

Often this makes sense when A(z)B(w) is problematic, particularly when z = w.

Normal order as a residue

Recall that we defined the delta distribution to equal

$$\delta_{-}(z-w) = \frac{1}{z} \sum_{n \in \mathbb{Z}} \left(\frac{w}{z}\right)^{n}$$

so

$$\delta(z-w) = \delta_{-}(z-w) + \delta_{+}(z-w)$$

where

$$\delta_{-}(z-w) = \frac{1}{z} \sum_{n \ge 0} \left(\frac{w}{z}\right)^n, \qquad \delta_{+}(z-w) = \frac{1}{z} \sum_{n > 0} \left(\frac{z}{w}\right)^n.$$
$$\delta_{-}(z-w) = \frac{1}{z-w}, \qquad \delta_{+}(z-w) = -\frac{1}{z-w}.$$

We will show

:
$$A(w)B(w)$$
 : $\operatorname{Res}_{z=0}(\delta_{-}(z-w)A(z)B(w) + \delta_{+}(z-w)B(w)A(z))$.

Proof

To see this, first consider

$$\operatorname{Res}_{z=0} \delta_{-}(z-w)A(z)B(w).$$

This is the z^{-1} coefficient in

$$\frac{1}{z}\sum_{k\geqslant 0}\left(\frac{w}{z}\right)^k\sum_{n,m}A_nB_mz^{-n-1}w^{-m-1}.$$

We must have -k - n - 1 = 0 so $-n - 1 = k \ge 0$ and thus n < 0. The residue is

$$\sum_{n<0} A_n B_m w^{-n-m-1}.$$

Similarly

$$\operatorname{Res}_{z=0} \delta_{+}(z-w)B(w)A(z) = \sum_{n>0} B_{m}w^{-n-m-1}A_{n}.$$

Review: the Heisenberg Lie Algebra

The Heisenberg Lie algebra \mathfrak{H} has a central basis element $\mathbb{1}$ and other basis elements b_n such that

$$[b_m, b_n] = m\delta_{m, -n}\mathbb{1}.$$

Note that both b_0 and $\mathbb{1}$ are central. A version of the Stone-von-Neumann theorem asserts \mathfrak{H} has a unique irreducible module in which b_0 and $\mathbb{1}$ act by scalars 0 and 1.

A model of this representation is the bosonic Fock space $B = \mathbb{C}[b_{-1}, b_{-2}, \cdots] \subset U(\mathfrak{H})$ where b_{-n} with n > 0 act by multiplication and b_n with n > 0 acts by $n\partial/\partial b_{-n}$.

Review: The Bosonic Fock Space

The Fock space *B* is a graded module in which b_{-k} has degree *k*. Secretly *B* may be identified with the ring of symmetric functions, with b_{-k} corresponding to the power-sum symmetric function p_k . (See Kac-Raina, equation (6.5)).

The vacuum element is $1 \in B = \mathbb{C}[b_{-1}, b_{-2}, \cdots]$ (not to be confused with 1).

The translation operator *T* is defined to satisfy T(1) = 0, $[T, b_m] = -mb_{m-1}$ from which its effect may be deduced recursively using

$$T \cdot b_k f = b_k T(f) + [T, b_k] \cdot f.$$

ł

Review: Vertex operators

We now have to define $Y(b_k, z)$. First we define $Y(b_{-1}, z)$ to be

$$b(z) = \sum_{n = -\infty}^{\infty} b_n z^{-n-1}$$

More generally we define

$$Y(b_{-k}, z) = \frac{1}{(k-1)!} \left(\frac{d}{dz}\right)^{k-1} b(z).$$

However the b_k are not a basis of *B*, since we may have elements like b_{-1}^2 . We cannot define this to be

$$b(z)^{2} = \sum_{n} \left(\sum_{k+l=n} b_{k} b_{l} \right) z^{-n-2}$$

since the sum in parentheses is problematic if n = -2. Applied to $f \in B$ there are infinitely many terms. See [FBZ] p. 30.

Locality

We have defined $Y(b_{-k}, z)$ but what about $Y(b_{-i_1} \cdots b_{-i_k}, z)$? This is the normal ordered product of $Y(b_{-i_1}, z)$, in other words

$$Y(b_{-i_1}\cdots b_{-i_k},z) = \frac{1}{(i_1-1)!}\cdots \frac{1}{(i_k-1)!}: (\partial_z^{i_1-1}b(z))\cdots (\partial_z^{i_k-1}b(z)):$$

So far we have reviewed what we did in Lecture 8. Now let us show that b(z) is local with respect to itself. This depends on the formula

$$b(z)b(w) = \frac{1}{(z-w)^2} + :b(z)b(w):,$$

which we will now discuss.

Locality (continued)

We are pondering

$$b(z)b(w) = \sum_{m,n} b_n b_m z^{-n-1} w^{-m-1}.$$

Note that $b_m b_n$ and : $b_m b_n$ are equal unless n = m and m < 0. So

$$b(z)b(w) =: b(z)b(w) :+ \sum_{n>0} [b_n, b_{-n}] z^{-n-1} w^{n-1}$$

The correction term is

$$\sum_{n>0} nz^{-n-1}w^{n-1}$$

which is the expansion in $\mathbb{C}((z))((w))$ of $(z-w)^{-2}$.

Locality (continued)

Note that since the operators b_n and b_m commute except in the diagonal case $b_n = b_{-n}$ we have $: b_n b_m :=: b_m b_n$: and so : b(z)b(w) :=: b(w)b(z). Therefore the expression

$$b(z)b(w) =: b(z)b(w) : + \frac{1}{(z-w)^2}$$

is symmetric under the interchange. This means that b(z) and b(w) are mutually local.

Dong's Lemma

Dong's Lemma If A(z), B(z) and C(z) are three fields that are pairwise mutually local, then : A(z)B(z) : and C(z) are mutually local.

This is proved using the interpretation

: A(w)B(w) : $\operatorname{Res}_{z=0}(\delta_{-}(z-w)A(z)B(w) + \delta_{+}(z-w)B(w)A(z))$.

See [FBZ] Section 2.3.5 for details

Locality of the fields Y(b, z)

We have checked that $Y(b_{-1}, z)$ and $Y(b_{-1}, w)$ are local. Next let us check that $Y(b_{-n}, z)$ and $Y(b_{-m}, w)$ are local. Since $Y(b_n, z) = ((n-1)!)^{-1}\partial^{n-1}b(z)$ it is enough to show that if A(z)and B(w) are local, so are $\partial_z A(z)$ and B(w). Indeed $(z-w)^N[A(z), B(w)] = 0$ for sufficiently large N, so differentiating the identity $(z-w)^{N+1}[A(z), B(w)] = 0$ gives $(z-w)^N[\partial_z A(z), B(w)] = 0$.