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Sage has considerable algorithms for computing with affine Lie
algebras, including methods computing with highest weight
integrable representations, which are the most important class.
Below are links to the Thematic Tutorial, Lie Methods and
Related Combinatorics in Sage by Bump, Salisbury and
Schilling. Note that this includes a section on affine root
systems that is of interest independent of the Sage material.

Affine Root System Basics (Web link to Sage documentation)
Integrable Highest Weight Representations of Affine Lie algebras

http://doc.sagemath.org/html/en/thematic_tutorials/lie/affine.html
http://doc.sagemath.org/html/en/thematic_tutorials/lie/integrable.html
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Kac-Moody Lie Algebras

Kac-Moody Lie algebras are generalizations of
finite-dimensional simple Lie algebras. They include
finite-dimensional simple Lie algebras as special cases but are
usually infinite-dimensional. Many concepts and results from
the representation theory of finite-dimensional Lie groups and
Lie algebras extend to Kac-Moody Lie algebras. This includes
the root system, Weyl group, weight lattice, the parametrization
of important representations (the integrable highest weight
ones) by dominant weights and the Weyl character formula for
these representations.

Among Kac-Moody Lie algebras, affine Lie algebras are an
important infinite-dimensional class. Each affine Lie algebra g
is related to a finite-dimensional Lie algebra g0. We will only
consider untwisted affine Lie algebras.
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Generalized Cartan Matrix

The basic data defining a Kac-Moody Lie algebra is a
(generalized) Cartan matrix. This is a square matrix A = (aij)
with diagonal entries equal to 2 and nonpositive off diagonal
entries such that aij = 0 if and only if aji = 0. It is useful to
assume that it is indecomposable and symmetrizable.
Indecomposable means that it cannot be arranged into two
diagonal blocks by permuting the rows and columns; and
symmetrizable means that DA is symmetric for some invertible
diagonal matrix D.
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Simple Roots and Coroots

Given a generalized Cartan matrix there is a vector space h
containing vectors α∨

i (called simple coroots) and vectors
αi ∈ h∗ (called simple roots) such that 〈α∨

i ,αj〉 = α∨
i (αj) = aij.

Moreover there exists a Kac-Moody Lie algebra g containing h
as an abelian subalgebra that is generated by h and elements
ei and fi such that

[ei, fi] = δijα
∨
i , [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi.

(These conditions do not quite characterize g, but they do if
supplemented by the Serre relations, which we will not need or
state.)
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Symmetrizable Cartan Types and their dual types

The significance of the symmetrizability assumption is that g
admits an invariant symmetric bilinear form, and hence has a
Casimir operator and a good representation theory.

The transpose of A is also a symmetrizable indecomposable
generalized Cartan matrix, so there is a dual Cartan type in
which the roots and coroots are interchanged.

If A is the Cartan type of a finite semisimple Lie group, then the
dual Cartan type is the type of the Langland dual group.
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The Cartan Matrix in Sage

In Sage, we may recover the Cartan matrix as follows:

sage: RootSystem([’B’,2]).cartan_matrix()
[ 2 -1]
[-2 2]
sage: RootSystem([’B’,2,1]).cartan_matrix()
[ 2 0 -1]
[ 0 2 -1]
[-2 -2 2]

The first example is the finite Cartan type B2, which is the
Cartan type of so(5).

If det(A) = 0 and its nullspace is one-dimensional, then g is an
affine Lie algebra as in the second example (Type B(1)

2 ).
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A note on notation

Untwisted affine Lie algebras are associated with
finite-dimensional semisimple Lie algebras. We will follow the
notation of Kac, Infinite-dimensional Lie algebras, and denote
the finite-dimensional Lie algebra as g◦ and the associated
affine Lie algebra as g.

But in future lectures we will probably follow the convention of
denoting the finite-dimensional Lie algebra as g and its
affinization as ĝ.
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Review: central extensions

Let g be a Lie algebra and a an abelian Lie algebra. A bilinear
map σ : g× g→ a is called a 2-cocycle if it is skew-symmetric
and satisfies

σ([X,Y],Z) + σ([X,Y],Z) + σ([X,Y],Z) = 0, X,Y,Z ∈ a.

In this case we may define a Lie algebra structure on g⊕ a by

[(X, a), (Y, b)] = ([X,Y],σ(X,Y)).

Denoting this Lie algebra g ′ we have a central extension

0 −→ a −→ g ′ −→ g −→ 0.
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Adding a derivation

Suppose we have a derivation d of a Lie algebra g. This means

d([x, y]) = [dx, y] + [x, dy].

We may then construct a Lie algebra g ′ = g⊕ Cd in which
[d, x] = d(x) for x ∈ g.

This is a special case of a more general construction, the
semidirect product.
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Affine Lie algebras as Central Extensions

Although the affine Lie algebra g may be constructed from its
Cartan matrix, another construction described in Chapter 7 of
Kac begins with the finite-dimensional simple Lie algebra g◦ of
rank `. Tensoring with the Laurent polynomial ring gives the
loop Lie algebra g◦ ⊗ C[t, t−1]. This is the Lie algebra of vector
fields in g◦ on the circle. Then one may make a central
extension:

0→ C · K → g ′ → C[t, t−1]⊗ g◦ → 0.

After that, one usually adjoins another basis element, which
acts on g ′ as a derivation d. This gives the full affine Lie
algebra g.



Kac-Moody Lie Algebras (Untwisted) Affine Kac-Moody Lie Algebras Representations and modular forms Sage methods

The cocycle

To describe the central extension we need a 2-cocycle on
g◦⊗C[t, t−1]. (See Lecture 3.) We will denote by ( | ) the unique
(up to scalar) ad-invariant bilinear form on g◦. We extend it to a
bilinear form ( | )t on g◦ ⊗ C[t, t−1] taking values in C[t, t−1] by

(tn ⊗ x|tm ⊗ y)t = tn+m(x|y).

If a =
∑

tn ⊗ an (a finite sum) let

da
dt

=
∑

ntn−1 ⊗ an,

and define the cocycle

ψ(a, b) = Res
(

da
dt

|b
)

t
,

where the residue is the coefficient of t−1.
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The central extension

Now that we have the cocycle we can define the central
extension g ′ = C[t, t−1]⊗ g⊕ C · K where K is to be a central
element and

[a + λK, b + µK] = [a, b]0 +ψ(a, b)K.

Here we are denoting [a, b]0 the Lie bracket on C⊗ [t, t−1]⊗ g,
to distinguish it from the new bracket that is being defined.

To g ′ we may adjoin a derivation d = t d/dt to obtain the full
affine Lie algebra g.
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Enlargement by Vir

Instead of enlarging g ′ by the derivation d we may form the
semidirect product of g ′ by the entire Virasoro algebra

[di, dj] = (i − j)di+j +
1
12

(i3 − i)δi,−j · C

where di acts as the derivation −ti+1d/dt. This contains the
affine Lie algebra g with d = −d0.
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The affine root system

The roots may be defined to be the nonzero weights in h∗ in the
adjoint representation of g.

Let h◦ be the Cartan subalgebra of the finite-dimensional Lie
algebra h◦. We enlarge it by adding K and d. Thus the simple
roots α1, · · · ,α` become roots of g.

There is an “imaginary root” δ which is defined to be zero on h
and K but δ(d) = 1. Now we may describe all the roots. There
are two kinds.
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The affine root system (continued)

Real Roots: These have the form α+ nδ where α is in the root
system ∆◦ of g◦ and n ∈ Z. They have multiplicity one in that
the α-eigenspace of h in g is one-dimensional.

Imaginary Roots: These have the form nδ where n ∈ Z and
n 6= 0. They have multiplicity `.

Here is the ŝl(2) affine root system. Positive roots: • Negative
roots: ◦

−α0 α1

−α1

α1 + δ

−δ
δ 2δ

α0

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
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The root α0 and the Coxeter numbers

Let θ be the highest root in the finite root system g◦. Then δ− θ
is a root, the affine root α0. The simple roots are

{α0,α1, · · · ,α`}.

We write

δ =
∑̀
i=0

aiαi,

where the labels or marks ai may be found in tables in Kac’s
book or many other places. For ŝl(n) they are all equal to 1.
There are also dual marks a∨i . The numbers

h =
∑

ai, h∨ =
∑

a∨i

are called the Coxeter number and dual Coxeter number,
respectively.
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The Weyl vector ρ

In the representation theory of a finite-dimensional semisimple
Lie group, the vector ρ can be defined as half the sum of the
positive roots. It appears everywhere, for example in the Weyl
character formula:

χλ(z) = ∆−1
∑
w∈W

(−1)`(w)zw(λ+ρ).

Here λ is a dominant weight and the Weyl denominator

∆−1
∑
w∈W

(−1)`(w)zw(ρ) =
∏
α∈∆+

zρ(1 − z−α).

For affine Weyl groups, or more generally infinite-dimensional
Kac-Moody groups, ρ still exists but cannot be defined as half
the sum of the positive roots. It can be characterized by
(ρ|α∨

i ) = 1.
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Triangular decomposition

The root system ∆ may be partitioned into positive roots and
negative roots. Let ∆+ and ∆− be the positive and negative
roots.

If α is a root, let gα be the α eigenspace of h on g. Thus

g = h⊕
⊕
α∈∆

gα.

Moreover we have a triangular decomposition

g = n− ⊕ h⊕ n+

where
n+ =

⊕
α∈∆+

gα, n− =
⊕
α∈∆−

gα.

So there is a Category O, Verma modules, etc. (Kac
Chapter 9.)
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The affine Weyl group

There is an affine Weyl group, an infinite Coxeter group that can
optionally be enlarged to an “extended” group that is not a
Coxeter group but sometimes important to work with.

We recall that the Weyl group W◦ of g◦ acts on (h◦)∗ as follows.
There are generators s1, · · · , s` and si is the reflection

x→ x − 〈x|α∨
i 〉αi,

where ( , ) is an invariant inner product on (h◦)∗. The inner
product ( | ) is positive definite.

The inner product may be enlarged to an inner product on h∗. It
is no longer definite since (δ|δ) = 0. The affine Weyl group adds
a single reflection s0.
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Overview

In conformal field theory, we encounter theories whose fields
are modular forms. Such a theory depends on two things: a
finite-dimensional Lie algebra g◦ with corresponding affine Lie
algebra g, and a level k. The primary fields in such a theory are
in bijection with certain representations of g – those of level k –
and the characters of these representations are modular forms.
This was proved by Kac and Peterson (1984) and is the topic of
Chapter 14 of FMS. Chapters 15-17 of FMS discuss the role of
affine Lie algebras in the WZW conformal field theories.
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Modular forms

The group SL(2,R) acts on the upper half plane by linear
fractional transformations:

γ =

(
a b
c d

)
: z→ az + b

cz + d
.

The group Γ0(N) is the subgroup where c ≡ 0 mod N.

A function f on the upper half plane is called a (weakly) modular
form of weight k and level N if it is holomorphic and satisfies

f
((

a b
c d

))
= (cz + d)kf (z), γ ∈ Γ0(N).

This implies f (z + 1) = f (z) so f has a Fourier expansion

f (z) =
∑

n

anqn, q = e2πiz.
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Dominant integral weights

A integral weight λ is an element of h∗ such that (α∨
i |λ) ∈ Z for

all simple coroots. We will denote by P the weight lattice of
integral weights. If (αi|λ) > 0 we call the weight dominant. The
dominant integral weights form a cone P+.

As in Lecture 4, if λ ∈ h∗ then the Verma module M(λ) has a
unique irreducible quotient V = L(λ). If λ ∈ P+, then V is called
integral. These are the most important irreducible
representations, infinite-dimensional but analogous to the
finite-dimensional irreducible representations of a Lie group.
Their characters are given by Kac’s generalization of the Weyl
character formula.
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Integrable representations

The term integral means that these representations “integrate”
to representations of the loop group. The weight multiplicities
are invariant under the affine Weyl group.

Let Λ ∈ P+ and let V = L(Λ) be the integrable representation
with highest weight Λ. If µ is another weight, let mult(µ) denote
the multiplicity of the weight µ in L(Λ). Define the *support* of
the representation supp(V) to be the set of µ such that
mult(µ) > 0.

If mult(µ) > 0 then λ− µ is a linear combination of the simple
roots with nonnegative integer coefficients. Moreover supp(V) is
contained in the paraboloid

(Λ+ ρ|Λ+ ρ) − (µ+ ρ|µ+ ρ) > 0
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We organize the weight multiplicities into sequences called
string functions or strings as follows. By Kac Proposition 11.3
or Corollary 11.9, for fixed µ the function mult(µ− kδ) of k is an
increasing sequence. We adjust µ by a multiple of δ to the
beginning of the positive part of the sequence. Thus we define
µ to be maximal if mult(µ) 6= 0 but mult(µ+ δ) = 0.

Since δ is fixed under the action of the affine Weyl group, and
since the weight multiplicities are Weyl group invariant, the
function k 7→ mult(µ− kδ) is unchanged if µ is replaced by w(µ)
for some Weyl group element w. Now every Weyl orbit contains
a dominant weight. Therefore in enumerating the string we may
assume that the weight µ is dominant. There are only a finite
number of dominant maximal weights. Thus there are only a
finite number of such strings to be computed.



Kac-Moody Lie Algebras (Untwisted) Affine Kac-Moody Lie Algebras Representations and modular forms Sage methods

Modular characteristics

In 1984, Kac and Peterson showed that each string is the set of
Fourier coefficients of a weakly holomorphic modular form; see
also Kac Chapters 12 and 13. Here weakly holomorphic
modular means that the form is allowed to have poles at cusps.

To this end we define the modular characteristic, which
originally appeared in string theory (I think):

mΛ =
|Λ+ ρ|2

2(k + h∨)
−

|ρ|2

2h∨
.

Here k = (Λ|δ) is the level of the representation and h∨ is the
dual Coxeter number, defined above. If µ is a weight, define

mΛ,µ = mΛ −
|µ|2

2k
.
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String Functions as modular forms

Let Λ be a dominant integral weight, and let µ be maximal
weight, defined above. Then Kac and Peterson defined the
string function

cΛµ = qmΛ,µ
∑
n∈Z

mult(µ− nδ)qn.

Although these do arise as partition functions in string theory,
the term "string" here does not refer to physical strings.

The string function cΛµ is a weakly holomorphic modular form,
possibly of half-integral weight. See Kac, Corollary 13.10, or
Kac and Peterson (1984). It can have poles at infinity, but
multiplying cΛµ by η(τ)dim g◦ gives a holomorphic modular form
(for some weight and level). Here η = q1/24 ∏∞

k=1(1 − qk) is the
Dedekind eta function.
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Advertisement: Sage methods

Sage has methods for working with integrable representations
of affine Lie algebras.

Integrable Highest Weight Representations of Affine Lie algebras

In the following example, we work with the integrable
representation with highest weight 2Λ0 for ŝl2, that is, A(1)

1 . First
we create a dominant weight in the extended weight lattice,
then create the IntegrableRepresentation class.

We compute the string functions. There are two, since there are
two dominant maximal weights. One of them is the highest
weight 2Λ0, and the other is 2Λ1 − δ.

http://doc.sagemath.org/html/en/thematic_tutorials/lie/integrable.html
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Example

sage: L = RootSystem("A1~").weight_lattice(extended=True)
sage: Lambda = L.fundamental_weights()
sage: delta = L.null_root()
sage: W = L.weyl_group(prefix="s")
sage: s0, s1 = W.simple_reflections()
sage: V = IntegrableRepresentation(2*Lambda[0])
sage: V.strings()
{2*Lambda[0]: [1, 1, 3, 5, 10, 16, 28, 43, 70, 105, 161, 236],
2*Lambda[1] - delta: [1, 2, 4, 7, 13, 21, 35, 55, 86, 130, 196, 287]}
sage: mw1, mw2 = V.dominant_maximal_weights(); mw1, mw2
(2*Lambda[0], 2*Lambda[1] - delta)

Further examples may be found in the tutorial.
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