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Singular Vectors Minimal Models I

Review: Kac determinant

References: Kac-Raina, Chapters 3, 8 and 12, and [DMS]
Chapters 6,7,8, and Belavin-Polyakov-Zamolodchikov, Infinite
conformal symmetry in two-dimensional QFT (1984) [BPZ].

Let M(c, h) be the Virasoro Verma module with highest weight
element |h〉. Since L0 is self-adjoint, its eigenspaces are
orthogonal. The vectors of eigenvalue h + N comprise the level
N eigenspace. Let k = (k1, · · · , kn) be a partition of N,
k1 > k2 > · · · . Denote |k〉 = L−kn · · ·L−k1 |h〉. The Kac
determinant detN(c, h) is the p(N)× p(N) matrix of inner
products

(L−kn · · ·L−k1 |h〉, L−lm · · ·L−l1 |h〉) =

〈h|Lk1 · · ·LknL−lm · · ·L−k1 |h〉 = 〈k|l〉.
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Review: Kac determinant

We will show that if detN(c, h) = 0, and if detN−1(c, h) 6= 0, then
M(c, h) has a singular vector of level N. Indeed, there is a vector
v of level N that is orthogonal to all vectors of level N, hence to
all of M(c, h). Then if k > 0 the vector Lkv is of lower level and is
also orthogonal to M(c, h), hence Lkv = 0 so v is singular.

Thus we may use the Kac determinant formula

detN(c, h) = K
∏

r,s>0
16rs6n

(h − hr,s)
p(n−rs)

to detect singular vectors. We will define hr,s later. The constant
K is nonnegative. We see that if h = hr,s for some r, s, then
M(c, h) has a singular vector of level rs.
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The singular values hr,s

Last time we defined

hr,s =
[(m + 1)r − ms]2 − 1

4m(m + 1)

where m is chosen so that

q = 1 −
6

m(m + 2)
.

In this connection, we mentioned the theorem of
Qiu-Friedan-Shenkar that if m is an integer and h = hr,s then
L(q, h) is unitary.
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An alternative formula for hr,s

Now we are interested in more general values of q where m is
not an integer. Then other formulas for hr,s may be more
convenient. For example, there is the following formula when

q = 1 −
6(p − p ′)2

pp ′ .

Then

hr,s =
(pr − p ′s)2 − (p − p ′)

4pp ′ .
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Proof of the alternative formula for hr,s

To check this, we must show that if p, p ′ and m satisfy
0 < p < p ′, 0 < m and

pp ′

(p − p ′)2 = m(m + 1)

then
[(m + 1)r − ms]2 − 1

4m(m + 1)
=

(pr − p ′s)2 − (p − p ′)2

4pp ′ .

To see this, note that both

pp ′

(p − p ′)2 ,
(pr − p ′s)2 − (p − p ′)2

4pp ′

are invariant under scaling (p, p ′) −→ (λp, λp ′) so we may
arrange that p − p ′ = 1 and then we must have p = m + 1,
p ′ = m.
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Consequences of the alternative formula for hr,s

Now assume that p, p ′ are coprime integers and p > p ′. We
have checked that if

c = 1 − 6
(p − p ′)2

pp ′

where p, p ′ are coprime integers and p > p ′ then

hr,s =
(pr − p ′s)2 − (p − p ′)

4pp ′ .

We now assume that p, p ′ are integers. We note the symmetry

hr,s = hp ′−r,p−s.
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Consequences, continued

From the Kac determinant formula, the Verma module M(c, hr,s)
has a singular vector of level rs. This generates a highest
weight representation that is a quotient of M(c, hr,s + rs).
Similarly since hr,s = hp ′−r,p−s it has a singular vector of level
(p ′ − r) (p − s), generating a quotient of
M (c, hr,s + (p ′ − r) (p − s)).
Now we have the symmetry properties

hr,s + rs = hp ′+r,p−s = hp ′−r,p+s

hrs +
(
p ′ − r

)
(p − s) = hr,2p−s = h2p ′−r,s

so these Verma modules M(c, hr,s + rs) and
M (c, hr,s + (p ′ − r) (p − s)) are themselves singular.
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The lattice of submodules

Assuming still that p, p ′ are coprime integers and p > p ′,

c = 1 − 6
(p − p ′)2

4pp ′

we get a lattice of subgroups of M(c, hr,s):

(r, s)

(p ′ + r, p − s) (r, 2p − s)

(2p ′ + r, s) (r, 2p + s)

...
...
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Virasoro modules in a CFT

We turn now to a conformal field theory.

The vacuum |0〉 is invariant under the subalgebra
sl(2,C)⊕ sl(2,C) which contains the Virasoro generators
L−1, L0, L1 and L̄−1, L̄0, L̄1 and. Therfore the vacuum is
annihilated by Ln and L̄n when n > −1. We expect that H will be
a direct sum of modules of the form L(c, h)⊗ L(c, h̄).

The central charge c will be the same for all of these, but we
may have various h, h̄. So let us write

H =
⊕

a

L(c, ha)⊗ L(c, h̄a),

summing over primary fields Φa with conformal weights ha, h̄a.
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Operator Product Expansion

Our goal for this lecture and the next is to determine the fields
that can occur in the OPE. We may write

Φa(z, z̄)Φ(w, w̄) =∑
c

∑
k,k̄

Cc,k,k̄
ab (z − w)hc−ha−hb+

∑
ki(z̄ − w̄)h̄c−h̄a−h̄b+

∑
k̄iΨk,k̄

c (w, w̄)

where Ψk,k̄
c are descendent fields L−kn · · ·L−k1 L̄−k̄m

· · · L̄−k̄1
Φc.

The question is when Cc,k,k̄
ab is nonzero. Less precisely

Ψa(z)Ψb(w) =
∑

c

Cc
ab(z − w)Ψc(w).
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Fusion

Each component L(c, ha)⊗ L(c, h̄a) contains a unique primary
field Φa and the remaining fields, called descendents of Φa are
those that may be obtained from Φa by applying the operators
L−k and L̄−k. The fields in L(c, ha)⊗ L(c, h̄a) are said to lie in the
same conformal family , denoted {Φa}.

Given fields Ψa and Ψb from the conformal families {Φa} and
{Φb}, the operator product expansion will have the form

Ψa(z)Ψb(w) =
∑

c

Cc
ab(z − w)Ψc(w)

Informally write

{Φa}× {Φb} =
∑

c

Nc
ab{Φc},
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Fusion, continued

In the “fusion expansion”

{Φa}× {Φb} =
∑

c

Nc
ab{Φc},

Nc
ab is the number of essentially different ways the conformal

family {Φc} appears in the OPE of Φa(z)Φb(w). For the problem
at hand these multiplicities will all be 0 or 1. The complex span
of the {Φa} is a ring, called the fusion ring and the multiplication
× is called fusion.
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Minimal models

It is a special case when there are only a finite number of
conformal families and the sum

H =
⊕

a

L(c, ha)⊗ L(c, h̄a)

is finite. What [BPZ] proved is that if c = 1 −
6(p−p ′)

pp ′ where p, p ′

are coprime integers with p > p ′ then we may take

H =
⊕

16r<p ′

16s<p

L(c, hr,s)⊗ L(c, h̄r,s).

The resulting minimal model will be denote M(p, p ′).
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Statistical Mechanics

For the minimal models, what we need is for
√

c − 1 −
√

c − 25√
c − 1 +

√
c − 25

to be rational.

In a second 1984 paper [BPZ] showed that certain models from
statistical physics such as the two-dimensional Ising model at
the critical temperature are described by models of this type.
For the Ising model the relevant CFT is M(4, 3), and there are
other similar examples.
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Highest weight vectors

Let Φ (z, z) be a primary field of conformal dimensional h, h in a
conformal field theory. This generates a module for Vir⊕ Vir
but for the time being we will discuss only the holomorphic first
component and write Φ = Φ(z). The primary field satisfies

[Ln,Φ(z)] = zn+1∂zΦ(z) + h(n + 1)znΦ(z).

for all n. We consider the state |h〉 = Φ(z)|0〉 where |0〉 is the
vacuum in H. Since the vacuum is invariant under the global
conformal group SL(2,R)× SL(2,R), which is generated by
L−1, L0, L1 and L̄−1, L̄0, L̄1 we have Ln|0〉 = L̄n|0〉 = 0 if n > −1. It
follows that

L0Φ(z)|0〉 = [L0,Φ(z)] = z∂zΦ(z)|0〉+ hΦ(z)|0〉

and taking z = 0 we get L0|h〉 = h|0〉. Similarly if n > 0 we have
Ln|h〉 = 0 so |h〉 generates a highest weight module.
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Highest weight vectors

The basic idea is that if the Verma module M(c, h) has singular
vectors then terms can be omitted from the fusion expansion

{Φa}× {Φb} =
∑

c

Nc
ab{Φc}

that would ordinarily be there. making it easier to keep the
number of primary fields in the decomposition

H =
⊕

a

L(c, ha)⊗ L(c, h̄a)

finite.
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