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Operator Product Expansions

Before Wilson (1968) it was understood that if z and w are
nearby points, then local fields in QFT can be expanded in
terms of local fields

[A(z),B(w)] =
∑

fi(z − w)Ci(w).

Motivated by problems in particle physics Wilson proposed that
instead one may try to expand the product of the operators
themselves:

A(z)B(w) =
∑

gi(z − w)Ci(w).

This proved to be a powerful idea. The key point is to
understand better the divergences as z→ w.



Overview Preliminaries Proof of Associativity

Reminder: Locality

Let φ(z) and ψ(w) be fields and v ∈ V. Then
φ(z)ψ(w)v ∈ V((z))((w)). We define φ(z), ψ(w) to be mutually
local if for all v ∈ V

φ(z)φ(w)v, ψ(w)φ(z)v

are expansions the same element of V[[z,w]][z−1,w−1, (z−w)−1]
in V((z))((w)) and V((w))((z)) respectively.

An equivalent condition is that

(z − w)Nφ(z)ψ(w) = (z − w)Nψ(w)φ(z)

as an identity in End(V)[[z,w]][z−1,w−1] for sufficiently large N.
See [FBZ] Proposition 1.2.5.
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Associativity in Vertex Algebras

If we regard the vertex algebra V as an analog of a
commutative and associative ring, the analog of commutativity
AB = BA is locality: the commutator [A(z),B(w)] is not zero, but
the next best thing, it is a distribution concentrated on the
diagonal z = w.

Associativity A(BC) = (AB)C asserts imprecisely that

Y(A, z)Y(B,w)C = Y(Y(A, z − w)B,w)C.

To be precisely, both sides represent the same element of
V[[z,w]][z−1,w−1, (z − w)−1] coerced into V((z))((w)) and
V((w))((z − w)), respectively. We will prove this today.
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Where they live

We claim Y(A, z)Y(B,w)C ∈ V((z))((w)). Indeed, write this∑
m

(∑
n

A(n)B(m)Cz−n−1

)
w−m−1.

Note that B(m)C = 0 for m sufficiently large. Moreover for fixed
m, The expression in brackets is in V((z)). So
Y(A, z)Y(B,w)C ∈ V((z))((w)).

On the other hand

Y(A, z − w)B =
∑

n

A(n)B(z − w)−n−1,

Y(Y(A, z − w)B,w)C =
∑

n

Y(A(n)B,w)C(z − w)−n−1.

This is in V((w))((z − w)).
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Caveat

To say that Y(A, z) and Y(B,w) are local is not quite the same as
saying that Y(A, z)Y(B,w) = Y(B,w)Y(A, z). It only means that
Y(A, z)Y(B,w) − Y(B,w)Y(A, z) is a distribution concentrated on
the diagonal; instead it can be a linear combination of δ(z − w)
and its derivatives. Similarly we will prove that

Y(A, z)Y(B,w)C, Y(Y(A, z − w)B,w)C

are the same element of V[[z,w]][z−1,w−1, (z − w)−1] coerced
into V((z))((w)) and V((w))((z − w)) does not mean they are
equal. So associativity is in a weak sense similar to locality.
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Associativity and the OPE

The meaning of the statement

Y(A, z)Y(B,w)C = Y(Y(A, z − w)B)C

is that both elements of (respectively) V((z))((w)) and
V((w))((z − w)) correspond to the same element of
V[[z,w]][z−1,w−1, (z − w)−1].

Formally we may write

Y(A, z)Y(B,w) = Y(Y(A, z − w)B) =
∑

n

Y(A(n)B,w)(z − w)−n−1.

This is the operator product expansion expanding the product
of two fields Y(A, z)Y(B,w) in terms of fields at w, with
coefficients at worst polar in z − w, of bounded order, since
A(n)B = 0 for sufficiently large n.
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Review: Translation Identity

We will follow [FBZ] Section 3.2.

Let us prove in a vertex algebra the Translation Identity

ewTY(A, z)e−wT = Y(A, z + w). (TI)

Indeed by the Baker-Campbell-Hausdorff formula

ewTY(A, z)e−wT =

∞∑
n=0

1
n!
(ad wT)n · Y(A, z),

where ad(X)Y = XY − YX. Using [T,Y(A, z)] = ∂zY(A, z),

ewTY(A, z)e−wT =

∞∑
n=0

1
n!

wn∂n
z Y(A, z),

and the statement follows from Taylor’s theorem.
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Translation and the Vacuum

Next we prove for any state A:

ezTA = Y(A, z)|0〉.

Switching z and w in the last identity

ezTY(A,w)|0〉 = Y(A, z + w)ezT |0〉.

By the vacuum axiom

A = Y(A,w)|0〉|w=0.

Furthermore etZ |0〉 = |0〉 since T |0〉 = 0. Hence taking w = 0
gives the required formula.
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Skew-Symmetry

Next we prove
Y(A, z)B = ezTY(B,−z)A.

By locality

(z − w)NY(A, z)Y(B,w)|0〉 = (z − w)NY(B,w)Y(A, z)|0〉,

for sufficiently large N. From the previous slide and (TI)

(z−w)NY(A, z)ewTB = (z−w)NY(B,w)ezTA = (z−w)NezTY(B,w−z)A.

The negative powers of w − z that can appear on the right-hand
side are bounded, so if we take N large this is an identity in
V((z))[w] and we can take w = 0, then multiply by z−N to obtain
the advertised identity.
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The left-hand side

Our goal is to prove that

Y(A, z)Y(B,w)C = Y(Y(A, z − w)B,w)C

in the weak sense that both sides represent the same element
of V[[z,w]][z−1,w−1, (z − w)−1] coerced into V((z))((w)) and
V((w))((z − w)), respectively.

Using skew-symmetry and e−TwY(A, z)eTw = Y(A, z − w) we have

Y(A, z)Y(B,w)C = Y(A, z)eTwY(C,−w)B = eTwY(A, z−w)Y(C,−w)B.

That is, Y(A, z)Y(B,w)C and eTwY(A, z − w)Y(C,−w)B are the
expansions in V((z))((w)) and V((z − w))((w)) respectively of
the same element of V[[z,w]][z−1,w−1, (z − w)−1].
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The right-hand side

On the other hand

Y(Y(A, z − w)B,w)C =
∑

n

(z − w)−n−1Y(A(n)B,w)C

and using skew-symmetry this equals

ewT
∑

n

(z − w)−n−1Y(C,−w)A(n)B = ewTY(C,−w)Y(A, z − w)B.

This is an element of V((w))((z − w)). By locality, this and

eTwY(A, z − w)Y(C,−w)B

represent the same element of V[[z,w]][z−1,w−1, (z − w)−1]
coerced into V((w))((z − w)) and V((z − w))((z)), respectively.
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Comparison

Using the binomial theorem we may identify the power series
spaces V[[z,w]] and V[[z − w,w]] We have shown
Y(A, z)Y(B,w)C and Y(Y(A, z − w)B,w)C represent the same
element of

V[[z,w]][z−1,w−1, (z − w)−1] = V[[z − w,w]][z−1,w−1, (z − w)−1]

coerced into V((z))((w)) and V((w))((z − w)), respectively, and
we are done.
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