Lecture 11: OPE and associativity for VA

Daniel Bump

January 1, 2020

Operator Product Expansions

Before Wilson (1968) it was understood that if z and w are nearby points, then local fields in QFT can be expanded in terms of local fields

$$
[A(z), B(w)]=\sum f_{i}(z-w) C_{i}(w)
$$

Motivated by problems in particle physics Wilson proposed that instead one may try to expand the product of the operators themselves:

$$
A(z) B(w)=\sum g_{i}(z-w) C_{i}(w) .
$$

This proved to be a powerful idea. The key point is to understand better the divergences as $z \rightarrow w$.

Reminder: Locality

Let $\phi(z)$ and $\psi(w)$ be fields and $v \in V$. Then $\phi(z) \psi(w) v \in V((z))((w))$. We define $\phi(z), \psi(w)$ to be mutually local if for all $v \in V$

$$
\phi(z) \phi(w) v, \quad \psi(w) \phi(z) v
$$

are expansions the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ in $V((z))((w))$ and $V((w))((z))$ respectively.

An equivalent condition is that

$$
(z-w)^{N} \phi(z) \psi(w)=(z-w)^{N} \psi(w) \phi(z)
$$

as an identity in $\operatorname{End}(V)[[z, w]]\left[z^{-1}, w^{-1}\right]$ for sufficiently large N. See [FBZ] Proposition 1.2.5.

Associativity in Vertex Algebras

If we regard the vertex algebra V as an analog of a commutative and associative ring, the analog of commutativity $A B=B A$ is locality: the commutator $[A(z), B(w)]$ is not zero, but the next best thing, it is a distribution concentrated on the diagonal $z=w$.

Associativity $A(B C)=(A B) C$ asserts imprecisely that

$$
Y(A, z) Y(B, w) C=Y(Y(A, z-w) B, w) C .
$$

To be precisely, both sides represent the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ coerced into $V((z))((w))$ and $V((w))((z-w))$, respectively. We will prove this today.

Where they live

We claim $Y(A, z) Y(B, w) C \in V((z))((w))$. Indeed, write this

$$
\sum_{m}\left(\sum_{n} A_{(n)} B_{(m)} C z^{-n-1}\right) w^{-m-1}
$$

Note that $B_{(m)} C=0$ for m sufficiently large. Moreover for fixed m, The expression in brackets is in $V((z))$. So
$Y(A, z) Y(B, w) C \in V((z))((w))$.
On the other hand

$$
\begin{aligned}
Y(A, z-w) B & =\sum_{n} A_{(n)} B(z-w)^{-n-1} \\
Y(Y(A, z-w) B, w) C & =\sum_{n} Y\left(A_{(n)} B, w\right) C(z-w)^{-n-1}
\end{aligned}
$$

This is in $V((w))((z-w))$.

Caveat

To say that $Y(A, z)$ and $Y(B, w)$ are local is not quite the same as saying that $Y(A, z) Y(B, w)=Y(B, w) Y(A, z)$. It only means that $Y(A, z) Y(B, w)-Y(B, w) Y(A, z)$ is a distribution concentrated on the diagonal; instead it can be a linear combination of $\delta(z-w)$ and its derivatives. Similarly we will prove that

$$
Y(A, z) Y(B, w) C, \quad Y(Y(A, z-w) B, w) C
$$

are the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ coerced into $V((z))((w))$ and $V((w))((z-w))$ does not mean they are equal. So associativity is in a weak sense similar to locality.

Associativity and the OPE

The meaning of the statement

$$
Y(A, z) Y(B, w) C=Y(Y(A, z-w) B) C
$$

is that both elements of (respectively) $V((z))((w))$ and $V((w))((z-w))$ correspond to the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$.

Formally we may write

$$
Y(A, z) Y(B, w)=Y(Y(A, z-w) B)=\sum_{n} Y\left(A_{(n)} B, w\right)(z-w)^{-n-1} .
$$

This is the operator product expansion expanding the product of two fields $Y(A, z) Y(B, w)$ in terms of fields at w, with coefficients at worst polar in $z-w$, of bounded order, since $A_{(n)} B=0$ for sufficiently large n.

Review: Translation Identity

We will follow [FBZ] Section 3.2.

Let us prove in a vertex algebra the Translation Identity

$$
e^{w T} Y(A, z) e^{-w T}=Y(A, z+w)
$$

Indeed by the Baker-Campbell-Hausdorff formula

$$
e^{w T} Y(A, z) e^{-w T}=\sum_{n=0}^{\infty} \frac{1}{n!}(\mathrm{ad} w T)^{n} \cdot Y(A, z),
$$

where $\operatorname{ad}(X) Y=X Y-Y X$. Using $[T, Y(A, z)]=\partial_{z} Y(A, z)$,

$$
e^{w T} Y(A, z) e^{-w T}=\sum_{n=0}^{\infty} \frac{1}{n!} w^{n} \partial_{z}^{n} Y(A, z)
$$

and the statement follows from Taylor's theorem.

Translation and the Vacuum

Next we prove for any state A:

$$
e^{z T} A=Y(A, z)|0\rangle
$$

Switching z and w in the last identity

$$
e^{z T} Y(A, w)|0\rangle=Y(A, z+w) e^{z T}|0\rangle .
$$

By the vacuum axiom

$$
A=\left.Y(A, w)|0\rangle\right|_{w=0} .
$$

Furthermore $e^{t Z}|0\rangle=|0\rangle$ since $T|0\rangle=0$. Hence taking $w=0$ gives the required formula.

Skew-Symmetry

Next we prove

$$
Y(A, z) B=e^{z T} Y(B,-z) A
$$

By locality

$$
(z-w)^{N} Y(A, z) Y(B, w)|0\rangle=(z-w)^{N} Y(B, w) Y(A, z)|0\rangle
$$

for sufficiently large N. From the previous slide and (TI)
$(z-w)^{N} Y(A, z) e^{w T} B=(z-w)^{N} Y(B, w) e^{z T} A=(z-w)^{N} e^{z T} Y(B, w-z) A$.
The negative powers of $w-z$ that can appear on the right-hand side are bounded, so if we take N large this is an identity in $V((z))[w]$ and we can take $w=0$, then multiply by z^{-N} to obtain the advertised identity.

The left-hand side

Our goal is to prove that

$$
Y(A, z) Y(B, w) C=Y(Y(A, z-w) B, w) C
$$

in the weak sense that both sides represent the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ coerced into $V((z))((w))$ and $V((w))((z-w))$, respectively.

Using skew-symmetry and $e^{-T w} Y(A, z) e^{T w}=Y(A, z-w)$ we have

$$
Y(A, z) Y(B, w) C=Y(A, z) e^{T w} Y(C,-w) B=e^{T_{w}} Y(A, z-w) Y(C,-w) B .
$$

That is, $Y(A, z) Y(B, w) C$ and $e^{T w} Y(A, z-w) Y(C,-w) B$ are the expansions in $V((z))((w))$ and $V((z-w))((w))$ respectively of the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$.

The right-hand side

On the other hand

$$
Y(Y(A, z-w) B, w) C=\sum_{n}(z-w)^{-n-1} Y\left(A_{(n)} B, w\right) C
$$

and using skew-symmetry this equals

$$
e^{w T} \sum_{n}(z-w)^{-n-1} Y(C,-w) A_{(n)} B=e^{w T} Y(C,-w) Y(A, z-w) B .
$$

This is an element of $V((w))((z-w))$. By locality, this and

$$
e^{T w} Y(A, z-w) Y(C,-w) B
$$

represent the same element of $V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]$ coerced into $V((w))((z-w))$ and $V((z-w))((z))$, respectively.

Comparison

Using the binomial theorem we may identify the power series spaces $V[[z, w]]$ and $V[[z-w, w]]$ We have shown $Y(A, z) Y(B, w) C$ and $Y(Y(A, z-w) B, w) C$ represent the same element of

$$
V[[z, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]=V[[z-w, w]]\left[z^{-1}, w^{-1},(z-w)^{-1}\right]
$$

coerced into $V((z))((w))$ and $V((w))((z-w))$, respectively, and we are done.

