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Hermitian (self-adjoint) operators on a Hilbert space are a key
concept in QM.

In classical mechanics, an observable is a real-valued quantity
that may be measured from a system. Examples are position,
momentum, energy, angular momentum.

In QM, a state of the system is a vector in a Hilbert space.
Every classical observable A has a QM counterpart Â that is a
Hermitian (self-adjoint) operator. Before discussing QM we
discuss operators.
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Hermitian operators

If H is a Hilbert space, a bounded operator T is an
endomorphism of H such that |T(v)| 6 c|v| for some constant c.
The minimum value of c is the norm |T |.

If y ∈ H the functional x→ 〈Tx, y〉 is bounded, i.e. there is a
constant c with 〈Tx, y〉 6 c|x|. (c=|T | will work.) By the Riesz
representation theorem there exists T†y such that

〈Tx, y〉 = 〈x,T†y〉.

Then T† is the adjoint of T. If T = T† then T is called Hermitian
(or self-adjoint).



Operators on Hilbert space Quantum Mechanics The path integral

Unbounded operators

We will also encounter unbounded operators on a Hilbert space
H. An unbounded operator T is defined on a dense linear
subspace D ⊂ H.

Let
D† = {y ∈ H|x 7→ (Tx, y) is bounded on D} .

The adjoint T† is then defined on D† by

(Tx, y) = (x,T†y).

Since D is dense, T†y is uniquely determined. T is symmetric if
D ⊆ D∗ and T∗ = T on D. Thus

(Tx, y) = (x,Ty), x, y ∈ D.

Then T is Hermitian if D∗ = D and T∗ = T.



Operators on Hilbert space Quantum Mechanics The path integral

Spectral theorem

Let T : D→ H be an unbounded Hermitian operator. The
spectrum T is the set of λ ∈ C such that λI − T does not have a
bounded inverse. This implies that λ is real.

If T is a Hermitian unbounded operator, then there is a spectral
theorem. First assume that the spectrum is discrete. Let λi be
the eigenvalues of T. Then if v is in the spectrum, it is an
eigenvector. Thus when the spectrum is discrete the spectrum
is the set {λi} of eigenvalues. The spectral theorem in this case
asserts that every v ∈ H has an eigenvector expansion:

v =
∑

i

vi, Tvi = λivi.

If the spectrum is not assumed discrete, there is still a spectral
theorem but we will not formulate it.
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Self-adjoint extensions

The spectral theorem applies to self-adjoint operators, not
symmetric operators. So it is worth noting that every symmetric
operator has a self-adjoint extension. That is, we can enlarge
the domain D to obtain a Hermitian operator.

Many operators can be defined with domain the Schwartz
space S(R) consisting of functions f such that f and all its
derivatives f (n) are of faster than polynomial decay. S(R) has a
topology as a Frechet space, and a continuous linear functional
is called a tempered distribution.
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Continuous spectrum: position and momentum

We consider the following unbounded operators on H = L2(R).
Both will have domain initially S(R).

q̂f (x) = xf (x), p̂f (x) = −i hf ′(x).

These are symmetric operators. For q̂, this is easy. for p̂, it
follows by integration by parts: if f1 and f2 are Schwartz
functions then

(p̂f1, f2) = −i h
∫∞
−∞ f ′1 (x)f2(x) dx = i h

∫∞
−∞ f1(x)f ′2 (x) dx = (f1, p̂f2).

The spectrum of both q̂ (position)and p̂ (momentum) are all of
R, and they have no eigenvectors in H. However they have
eigenfunctions in the space of tempered distributions: δ(x − a)
for q̂, and eiax for p̂.
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The oscillator Hamiltonian

Although the unbounded operators q̂ and p̂ do not have a
discrete spectrum, by contrast (taking  h = 1) consider the
Hamiltonian of the harmonic oscillator:

Ĥ =
1
2
(p̂2 + q̂2) =

1
2

(
x2 −

d2

dx2

)
This operator does have a discrete spectrum{

1
2
,

3
2
,

5
2
, · · ·
}
.

The eigenstate of the lowest eigenvalue 1
2 is

ψ1/2 =
1√
2π

e−x2/2.

If ψk+1/2 (k = 0, 1, 2, · · · ) is the k + 1
2 -eigenvector of norm 1,

then the ψk+1/2 are an orthonormal basis of L2(R).
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Proofs

To derive the properties of the oscillator Hamiltonian, introduce
the creation and annihilation operators

a =
1√
2
(q̂ + ip̂), a† =

1√
2
(q̂ − ip̂).

Since q̂ and p̂ are Hermitian, a and a† are adjoints. They are not
Hermitian, so when they arise in QM they are not observables.
As we will see they give a “ladder” relating the different
eigenfunctions of Ĥ.

0 ψ1/2 ψ3/2 ψ5/2 · · ·a

a†

a

a†

a

a†

a
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Proofs (continued)

Denote N = a†a. This is obviously self-adjoint and positive
definite. Using [q̂, p̂] = i

[a, a†] = 1, Ĥ =
1
2
(aa† + a†a) = N +

1
2
.

Since N is positive-definite, the spectrum of H is bounded
below by 1

2 . We can exhibit one eigenfunction

ψ1/2(x) = π
−1/4e−x2/2, Nψ1/2 = 0, Ĥψ1/2 =

1
2
ψ1/2.
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Proofs (continued)

The eigenfunctions of N must be nonnegative integers by the
following argument. We have

Na = a(N − 1)

which implies that if Nv = kv then Nav = (k − 1)av. Unless k is a
positive integer, we may repeatedly apply a and obtain an
eigenvector with negative eigenvalue, a contradiction since N is
positive definite.

On the other hand, using the identity

Na† = a†(N − 1)

applying a† increases the eigenvalue of N (or of Ĥ) by 1.
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Proofs (continued)

We have
(a†ψ, a†ψ) = (ψ,Nψ)

from which we see that the eigenfunctions

ψn+1/2(x) =
1√
n!
(a†)nψ1/2

are orthonormal. In terms of the Hermite polynomials Hn we
have

ψn+1/2(x) =
(√
π2nn!

)−1/2 Hn(x)e−x2/2.

These are an orthonormal basis of L2(R). See Messiah,
Quantum Mechanics Chapter XII and Appendix B.

(Note: there are different normalizations for Hermite
polynomials in the literature.)
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Amplitudes

A basic concept in QM is that of an amplitude. In a nutshell, an
amplitude is a complex number a such that |a|2 is the probability
(density) of an event, say the probability that measuring a
quantity q returns the value x. Thus a = a(x) depends on x.

If X is the measure space of all possible values of a, then since
|a(x)|2 is a probability, we must have∫

X
|a(x)|2 dx = 1.

Thus a ∈ L2(X). We already see that QM will involve Hilbert
space.
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Bra-Ket notation

The bra-ket notation was invented by Dirac. In mathematics it is
customary for an inner product ( , ) to be linear in the first
component and anti linear in the second. In physics the
expression 〈x|y〉 is linear in the second component and
antilinear in the second. So

〈x|y〉 = (y, x).

If x ∈ H we denote |x〉 = x; in this notation |x〉 is called a ket.

Let H∗ be the Hilbert space dual of bounded linear functionals
on H. As a real vector space it is isomorphic to H. Indeed the
Riesz representation theorem asserts that every bounded
linear functional on H is of the form x 7→ (x, y) = 〈y|x〉 for some
y ∈ H. Denote this functional 〈y| ∈ H∗. It is called a bra.



Operators on Hilbert space Quantum Mechanics The path integral

QM systems

A quantum mechanical system presupposes a Hilbert space H.
A vector v of length 1 in H determines a state of the system.
Note what happens to amplitudes when we multiply the vector
representing the vector v by a complex number λ of absolute
value 1. The amplitude a is replaced by λa but its probabilistic
interpretation that |a|2 is a probability (or probability density) is
unchanged. Since all physical meaning of the state v is derived
from the amplitudes, the physical meaning of the state is
unchanged.

Thus a state of the system is a ray in H, that is, a
one-dimensional subspace. By the above all vectors of length 1
in the ray have the same physical meaning, this is reasonable.
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Classical limit

Quantum mechanics depends on a quantity  h, Planck’s
constant. Classical Mechanics, which in its simplest form is
Newton’s law F = ma (force equals mass times acceleration) is
the limiting theory  h→ 0. Since  h is small compared to the
observer, the universe appears to the observer to obey the laws
of classical mechanics.

There is another parameter c that appears in both quantum and
classical mechanics. This is the speed of light. The limit c→∞
is nonrelativistic (classical or quantum) mechanics. Our first
examples will be nonrelativistic but ultimately one must find
relativistic formulations.
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Observables

Given a classical system, there should be a corresponding QM
system. In many cases this can be obtained by applying a
simple recipe. Let H be the underlying Hilbert space of the QM
system.

In classical mechanics, an observable is a real-valued quantity
A that can be measured from the state of a system. But in QM
an observable is a Hermitian operator Â on H.

Now if we can find a state φ ∈ H that is an Eigenvector of Â,
say Âφ = λφ then λ is real since Â is Hermitian (self-adjoint). In
this case the observable A has a definite value, λ. That means
that if the observable A is measured the value will be λ, with
probability 1.



Operators on Hilbert space Quantum Mechanics The path integral

Eigenfunction expansions

Let us consider the case where Â has discrete spectrum. This
means that there is a sequence λ1 < λ2 < · · · of eigenvalues
such that

H =
⊕

Vλi

where Vi is the λi-eigenspace. Given a state φ we expand
φ =

∑
i aiφi where φi ∈ Vi. Then ai is the amplitude of

obtaining the value λi on measuring A, so |ai|
2 is the probability

of this measurement. Note that∑
|ai|

2 = |φ|2 = 1,

as required by this probabilistic interpretation.
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Commuting operators

Suppose that A and B are observables whose corresponding
operator Â and B̂ commute. Then each Â eigenspace is
invariant under B̂ so the two operators can be simultaneously
diagonalized. This means that H has a basis of elements that
are simultaneously eigenvectors for both operators, that is, for
which both observables have definite values. The converse is
also obviously true: if such a basis exists then Â and B̂
commute.

In terms of measurements, this means that Â and B̂ commute if
and only if the observables A and B can be measured
simultaneously. An example of operators that do not commute
are the angular momenta of a particle in two different directions.
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The Hamiltonian

In classical mechanics, Emmy Noether proved that
corresponding to every one-parameter subgroup of symmetries
of a physical system there is a corresponding conserved
quantity, an observable. The observable corresponding to
symmetry under space translations, is momentum;
corresponding to space rotations is angular momentum; and
corresponding to time translations is energy.

The QM observable corresponding to energy is the Hamiltonian
operator Ĥ. Let Ψ(t) be the state of the system at time t. The
time evolution of the (nonrelativistic) system is given by
Schrödinger’s equation

i h
∂

dt
Ψ(t) = ĤΨ(t).
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Eigenstates of the Hamiltonian

From Schrödinger’s equation,

i h
∂

dt
Ψ(t) = ĤΨ(t) ,

if Ψ0 is an eigenstate of the Hamiltonian, say ĤΨ0 = EΨ0, we
have a stationary solution of the Hamiltonian with Ψ(0) = Ψ0:

Ψ(t) = ei hEtΨ0.

This is a solution with a definite energy E.

Assume that the Hamiltonian has a discrete spectrum. To be
physically realistic, should have a smallest eigenvalue λ0. The
corresponding eigenstate (typically unique up to phase) is
called the vacuum typically denoted |0〉 or |λ0〉.
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Canonical quantization

A method of converting a classical system to a QM one is as
follows. Consider particles moving in Rd. Suppose that
xi = (x1

i , · · · , xd
i ) (i = 1, · · · ,N) are the positions of the particles

of mass mi and pi are the corresponding momenta. These are
all observables. Consider the Hilbert space H = L2(RNd), where
xj

i are the coordinate functions on RNd). The operators q̂j
i and p̂j

i
are unbounded operators, defined on the Schwartz space
S(RNd) of smooth functions f that are, with all their derivatives,
of faster-than-polynomial decay.

The i-th position operator q̂j
i multiplies f ∈ S(RNd) by the (i, j)-th

coordinate function. And the i-th momentum operator

p̂j
i = −i h

∂

∂xj
i

.



Operators on Hilbert space Quantum Mechanics The path integral

Heisenberg Lie algebra

The operators q̂i and p̂i defined by

[q̂if (x1, · · · , xd) = xi f (x), p̂j
i f (x) = −i h

∂f

∂xj
i

satisfy the Heisenberg commutation relations

[q̂i, q̂j] = [p̂i, p̂j] = 0, [q̂i, p̂j] = δij.

These relations define the (2d + 1)-dimensional Heisenberg Lie
algebra.
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Example: The particle in one dimension

Let us consider the system consisting of a single particle
moving in a potential V(x) in one dimension. In the classical
system, if the particle has position x and momentum p, its
kinetic and potential energies are

T =
p2

2m
, V = V(x)

and as the system evolves in time energy T + V is conserved.

To obtain the corresponding quantum mechanical Hamiltonian
we substitute for x and p the position and momentum operators

q̂ψ(x) = xψ(x), p̂ = −i h
∂

∂x
.
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Example: The harmonic oscillator

The classical harmonic oscillator corresponds to a quadratic
potential, V(x) = k

2 x2. The classical energy is

T + V =
p2

2m
+

k
2

x2.

Thus we obtain the Hamiltonian

− h2 ∂
2

∂x2 +
k
2

x2 .

This is the operator we gave as an example of an unbounded
Hermitian operator with a discrete spectrum.
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From quantum to classical

We have given a recipe for turning a classical system into a
quantum one. But why does this work? Why does sending
 h→ 0 recover the classical system?

In quantum mechanics, position and velocity of a particle are
not localized. But if  h is small the position can be described by
a wave packet such as a Gaussian, localized in a small region
of space. As the system evolves by Schrödinger’s equation, the
wave packet may move but stay compact, approximating the
motion of the classical particle.

But how can we see this in practice?
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The path integral

The path integral formulation of quantum mechanics originated
in Feynman’s dissertation, though it may have been understood
earlier by Dirac. It has advantages:

It easily gives relativistic formulations
It works well in quantum field theory

Roughly a particle moves from an initial state to a final state. To
calculate the amplitude of this process, one sums the
amplitudes for every possible path.
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The slit experiment

Light
source

barrier screen

In the two-slit experiment particles (photons or massive
particles such as electrons or atoms) are fired towards a barrier
containing two slits. A diffraction pattern appears.
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The slit experiment (continued)

x0 x1

This is understood as a wave associated with the particle
stream interfering with itself. The phenomenon persists even if
the particles are sent only one at a time. This is paradoxical,
but if we accept it we are led to the conclusion that both paths
are followed. And this conclusion remains if the screen is
removed entirely: every possible path is followed.
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Action

The path integral formulation is closely related to the principle
of least action in classical mechanics. Consider a classical
particle of mass m moving in RN subject to a potential V.
Assume the particle moves from q0 at time t0 to q1 at time t1.
Thus it follows a path q(t). Its kinetic and potential energies are

T =
1
2

mq̇2, V = V(q).

The Lagrangian is L(q, q̇) = T − V. The action is

S =

∫ t1

t0
L(q, q̇) dt.

q and q̇ are independent variables in the definition of L but
given a path q(t) both have definite values for t0 6 t 6 t1.
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About q̇

The meaning of q̇ in these formulas depends on context.

In the definition of the Lagrangian,

L(q, q̇) =
m
2

q̇2 − V(q)

q̇ is an independent variable. But when q(t) is a parametrized
path, as in the definition of action:

S =

∫ t1

t0
L(q, q̇) dt,

the parameter q̇ has a definite value for all t, namely

q̇(t) =
dq
dt

(t).



Operators on Hilbert space Quantum Mechanics The path integral

The principle of least action

We continue to consider a particle moving in a potential well,
but the principle of least action has greater generality.

Principle of Least Action
Among all the paths between q0 and q1, the path of motion is a
local minimum of the action S.

Assume that the action is minimal. For simplicity take N = 1.
We perturb the path q(t) by an infinitessimal deformation δq(t).
Note that δ(t0) = δ(t1) = 0.

0 = δS =

∫ t2

t1

(
∂L
∂q
δ(t) +

∂L
∂q̇
δ ′(t)

)
dt =

∫ t2

t1

(
∂L
∂q

−
∂

∂t
∂L
∂q̇

)
δ(t)dt

where we integrated by parts.
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Euler Lagrange equations

Thus we obtain the Euler-Lagrange equation:

∂L
∂q

−
∂

∂t
∂L
∂q̇

= 0.

Let us check that these give the right equations of motion for a
particle in a potential well. In this case

∂L
∂q

= −V ′(q) = force on the particle ,

∂L
∂q̇

=
∂

∂q̇
T =

∂

∂q̇
1
2

mq̇2 = mq̇,
∂

∂t
∂L
∂q̇

= mq̈

so the Euler Lagrange equation boils down to:

“ Force equals mass times acceleration.”
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From classical to quantum

We have considered the classical system of a particle moving
in a potential V on RN . A state of the classical system assigns
values in RN to q and q̇, positition and velocity. The subsequent
evolution of the system as a function of t is then determined by
the Euler-Lagrange equations.

The analog in nonrelativistic quantum mechanics depends on a
Hilbert space H which we can take to be L2(RN). A state of the
system is a one-dimensional subspace, represented by a
vector ψ. We normalize ψ so its L2 norm 〈ψ|ψ〉 = 1. Multiplying
ψ by a phase factor eiθ does not change its physical meaning.
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Review: Amplitudes

To reiterate a unit vector in the Hilbert space H = L2(RN)
represents a state of the system consisting of a single particle
in RN . The inner product is written

〈ψ1|ψ2〉 =
∫
RN
ψ1(x)ψ2(x) dx.

The precise location of the particle is not determined by ψ.
Instead, the probability density of the particle being at the point
x is |ψ(x)|2. The value ψ(x) is called an amplitude.

More generally an amplitude is a complex number whose norm
square has interpretation as a probability or probability density.
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Position versus momentum

The relation between the quantum and classical systems is
controlled by a positive number  h. The classical system
emerges when  h −→ 0.

The momentum similarly has a wave function φ which is the
Fourier transform of ψ :

φ(p) =
1

(2π h)N/2

∫
RN
ψ(q)e−ip·q/ hdq.

The Fourier transform is an isometry L2(RN) −→ L2(RN) so we
may regard either ψ or φ as a vector in an abstract Hilbert
space H. The position and momentum realizations of H may
be thought of different views of the same system.
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Hermitian operators and the spectral theorem

A bounded operator T : H→ H is Hermitian or self-adjoint if

〈Tψ1|ψ2〉 = 〈ψ1|Tψ2〉.

In this case we use the notation 〈ψ1|T |ψ2〉.

Theorem
T is compact and Hermitian, then H decomposes into the
eigenspaces of T, which are all finite-dimensional (except
perhaps the 0-eigenspace) and orthogonal.

We also encounter unbounded operators, defined on a dense
subspace. There is a spectral theorem for unbounded
Hermitian operators.
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Review: Observables

An observable is a quantity A such as position, momentum,
energy, or angular momentum that can be measured from a
physical system.

In a quantum system the observable A corresponds to a
Hermitian operator Â. If ψ is an eigenfunction then its
eigenvalue λ is the measured value of A. If ψ is not an
eigenfunction then measuring A does not have a deterministic
outcome. Two observables can be measured simultaneously if
and only if their operators commute.

The operator Ĥ corresponding to energy is called the
Hamiltonian.
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Review:: The particle in one dimension

Let us consider the system consisting of a single particle
moving in a potential V(x) in one dimension. Position becomes
the unbounded operator q̂ which is multiplication by x:

q̂ψ(x) = xψ(x).

The momentum operator is

p̂ = −i h
∂

∂x

and we have the Heisenberg commutation relation [x̂, p̂] = i h.
The operator corresponding to the classical energy
E = T + V = p2

2m + V(x) is the Hamiltonian

Ĥ = −
 h2

2m
∂2

∂x2 + V(x).
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Review: The Hamiltonian as an evolution operator

In nonrelativistic quantum mechanics the Hamiltonian is an
evolution operator.

A system prepared in state ψ0 at time t = t0 evolves according
to Schrödinger’s equation. Let Ψ(x, t) be the state at time t so
ψ(x) = Ψ(x, t0).

i h
∂

dt
Ψ(x, t) = ĤΨ(x, t). (1)

Schrödinger’s equation describes the evolution of ψ. Thus the
state ψ1(q) = Ψ(q, t1) at a later time t1 is

ψ1 = U(t1, t0)ψ0, U(t1, t0) = ei h(t1−t2)Ĥ.
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The propagator amplitude as a Green’s function

Suppose the particle is prepared to be at location q0 at time t0
and is found to be at q0 at time t1. The amplitude for this
process is an amplitude 〈q1|U(t1, t0)|q0〉. This propagator can be
understood as a kernel

K(q1, t1, q0, t0) = 〈q1|U(t1, t0)|q0〉

for propogating solutions of the (nonrelativistic) Schrödinger
equation. It is itself a solution (in either x0 or x1 and has a mild
singularity when x0 and x1 coincide.

Intuitively 〈q1|U(t1, t0)|q0〉 is the amplitude of the process, that
the particle moves from x0 to x1.
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The path integral

So what is this amplitude? According to Feynman, it is a path
integral. For every possible path x(t) from x0 = (q0, t0) to
x1 = (q1, t1) there is an action

S(x(t)) =
∫ t1

t0
L(q, q̇) dt

where L is the Lagrangian. According to the path integral
formulation of quantum mechanics there is a measure [dx] on
the space of all possible paths x(t) from x0 to x1 such that:

〈q1|U(t1, t0)|q0〉 =
∫

exp
( i
 h

S(x(t))
)
[dx]
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The wandering particle

The path integral

〈q1|U(t1, t0)|q0〉 =
∫

exp
( i
 h

S(x(t))
)
[dx]

is unintuitive from the viewpoint of classical mechanics since it
many of the paths will be quite nonphysical ones violating the
conservation laws of energy and momentum.

x0 x1
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Stationary phase

Now let us recall the principle of stationary phase. This says
that that given an oscillatory integral the main contribution to
the integral is where the oscillations are least. For example
consider ∫ b

a
eiλφ(x) f (x)dx.

Suppose that there is a unique c ∈ (a, b) where φ ′(x) = 0, and
φ ′′(c) > 0. Then if λ is large, the integral is approximately

eiλφ(c)f (c)

√
2π

λφ ′′(c)
eiπ/4.
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Classical limit

Another manifestation of stationary phase is that if  h is small,
the main contribution to the path integral

〈q1|U(t1, t0)|q0〉 =
∫

exp
( i
 h

S(x(t))
)
[dx]

is from the classical path of least action, that is, from the path
x(t) that minimizes the action.

References for the path integral.

Polchinski, String Theory Vol.1, Appendix A: a short course
in path integrals
DiFrancesco, Senechal and Mathieu, Conformal Field
Theory, Chapter 2
Zee, Quantum Field Theory in a Nutshell, Chapter I.2.


	Operators on Hilbert space
	Quantum Mechanics
	The path integral

