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Abstract

Weyl group multiple Dirichlet series were associated with a root system Φ and a number
field F containing the n-th roots of unity by Brubaker, Bump, Chinta, Friedberg and Hoffstein
[3] and Brubaker, Bump and Friedberg [4] provided n is sufficiently large; their coefficients
involve n-th order Gauss sums and reflect the combinatorics of the root system. Conjecturally,
these functions coincide with Whittaker coefficients of metaplectic Eisenstein series, but they
are studied in these papers by a method that is independent of this fact. The assumption that
n is large is called stability and allows a simple description of the Dirichlet series. “Twisted”
Dirichet series were introduced in Brubaker, Bump, Friedberg and Hoffstein [5] without the
stability assumption, but only for root systems of type Ar. Their description is given differently,
in terms of Gauss sums associated to Gelfand-Tsetlin patterns. In this paper, we reimpose the
stability assumption and study the twisted multiple Dirichlet series for general Φ by introducing
a description of the coefficients in terms of the root system similar to that given in the untwisted
case in [4]. We prove the analytic continuation and functional equation of these series, and
when Φ = Ar we also relate the two different descriptions of multiple Dirichlet series given here
and in [5] in the stable case.

1 Introduction

Fourier-Whittaker coefficients of Eisenstein series on reductive algebraic groups G contain Dirichlet
series in several complex variables with arithmetic interest. Metaplectic groups, certain central
extensions of split G by n-th roots of unity, have Whittaker coefficients that contain Dirichlet
series that are “twisted” by n-th order characters. For example, nonvanishing of twists of GL(2)
automorphic forms by quadratic or cubic characters may be proved in this way. (See Bump,
Friedberg and Hoffstein [8] and Brubaker, Friedberg and Hoffstein [6].) Unfortunately, computing
these Whittaker coefficients on higher rank metaplectic groups yields intractable exponential sums.
So even though the resulting Dirichlet series inherits a Weyl group of functional equations, it is
extremely difficult to directly realize it as explicitly consisting of recognizable arithmetic functions.

Motivated by the theory of metaplectic Eisenstein series, one may attempt to construct Dirichlet
series in several complex variables with similar properties. In [3] and [4], a family of “Weyl group
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multiple Dirichlet series” are described using data consisting of a fixed positive integer n and
a number field F containing the group µ2n of 2n-th roots of unity, together with a reduced root
system Φ. The group of functional equations of these multiple Dirichlet series is similarly isomorphic
to the Weyl group W of Φ.

Conjecturally, the Weyl group multiple Dirichlet series are Whittaker coefficients of metaplectic
Eisenstein series. To be precise, let G be a split simply-connected semisimple algebraic group whose
root system is the dual root system Φ̂, and let G̃(A) be the n-fold metaplectic cover of G(A), where
A is the adele ring of F , constructed by Kubota [11] and Matsumoto [13]. Let U be the unipotent
radical of the standard Borel subgroup of G. The metaplectic cover splits over U , and we identify
U(A) with its image in G̃(A). If α is a root of Φ, let iα : SL2 −→ G be the embedding corresponding
to a Chevalley basis of Lie(G). We consider the additive character ψU : U(A)/U(F ) −→ C such

that for each simple positive root α, the composite ψU ◦ iα
(

1 x
1

)
is a fixed additive character

ψ of A/F ; it is assumed that the conductor of ψ is ov for any prime v 6∈ S, where S is a finite set
of places to be described in further detail below.

Now let E(g, s1, · · · , sr) be an Eisenstein series of Borel type on G̃(A). The coefficient

Z(s1, · · · , sr) =
∫

U(A)/U(F )

E(u, s1, · · · , sr) ψU (u) du

is a multiple Dirichlet series whose group of functional equations is isomorphic to W . Conjecturally,
this is the same as the multiple Dirichlet series described in [3], [4], and [5].

This paper builds on the results of [4] and [5] as we will now describe. In [4], Weyl group
multiple Dirichlet series are defined for any reduced root system Φ and shown to possess a Weyl
group of functional equations. However, the setting is specialized in two ways.

• We require that the integer n is “large enough,” depending on Φ. We refer to this condition
as the “stability assumption.”

• The Dirichlet series is “untwisted” in a sense that will be made precise below upon comparison
with other examples.

With these assumptions, the Dirichlet series admits a simple description. We will denote the
coefficients of the Dirichlet series by H(C1, · · · , Cr), where the Ci are elements of the ring oS of
S-integers, with S a finite set of places containing the archimedean ones and enough others that oS

is a principal ideal domain.

• The coefficients exhibit a twisted multiplicativity. This means that the Dirichlet series is
not an Euler product, but specification of the coefficients is reduced to the specification of
H(pk1 , · · · , pkr ), where p is a fixed prime of oS .

• Given (k1, · · · , kr), the coefficient H(pk1 , · · · , pkr ) is zero unless there exists a Weyl group
element w ∈ W such that ρ − w(ρ) =

∑
kiαi, where ρ is half the sum of the positive roots

in Φ, and α1, · · · , αr are the simple positive roots. If this is true, then H(pk1 , · · · , pkr ) is a
product of l(w) n-th order Gauss sums, where l : W −→ Z is the length function.

We call the associated coefficients of the multiple Dirichlet series “untwisted, stable” coefficients
owing to the special restrictions above.
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In [5], “twisted” Weyl group multiple Dirichlet series are studied using a rather different perspec-
tive. The twisted Dirichlet series involve coefficients that we will denoteH(C1, · · · , Cr;m1, · · · ,mr).
Roughly, these are twists of the original multiple Dirichlet series by a set of n-th order characters.
More specifically, if gcd(C1 · · ·Cr,m1 · · ·mr) = 1 we have

H(C1, · · · , Cr;m1, · · · ,mr) =
(
m1

C1

)−||α1||2

· · ·
(
mr

Cr

)−||αr||2

H(C1, · · · , Cr), (1)

where ‖·‖ is a fixed W -invariant inner product on V and
( ·
·
)

is the n-th order power residue symbol.
Although the coefficients H(C1, · · · , Cr;m1, · · · ,mr) are thus roughly twists of the original

coefficients, this is only approximately true, since (1) fails when the mi are not coprime to the Ci.
It does, however, together with the twisted multiplicativity of the coefficients Ci, to be described
below, allow us to reduce the specification of the coefficients to the case where the Ci and the mi

are all powers of the same prime p. In [5] this was only accomplished when Φ is of type Ar, and in
that case, the description is only conjectural unless r 6 2, or n = 2 and r 6 5, or n = 1. In that
case, the following is observed, in [5] and in this paper.

• The existence of stable coefficients in correspondence with Weyl group elements described
above for H(pk1 , · · · , pkr ) persist, but the support in terms of ki is changed. That is, with
mi = pli fixed and n sufficiently large, there are still |W | distinct values (k1, · · · , kr) such that
H(pk1 , · · · , pkr ; pl1 , · · · , plr ) is nonzero, and the coefficient corresponding to w ∈ W is still a
product of l(w) Gauss sums. But when li > 0 the locations of the (k1, · · · , kr) parametrizing
these stable coefficients form the vertices of a larger polytope than in the untwisted case.
These coefficients will be called twisted, stable coefficients.

• If n is not sufficiently large, further nonzero coefficients appear inside the polytope whose
vertices are spanned by the stable coefficients. In [5], these coefficients are described as
products of Gauss sums parametrized by strict Gelfand-Tsetlin patterns. These coefficients
are given a uniform description for all n, but due to the properties of Gauss sums they can
vanish, and if n is sufficiently large, only the |W | stable coefficients remain.

In the paper at hand, we will generalize the theory of [4] and prove a special case of a conjecture of [5]
by studying twisted, stable multiple Dirichlet series. More specifically, we explain the modifications
of [4] that are needed for the statements and the proofs in the stable twisted case. Moreover,
we will verify the consistency of this description with that in [5] by showing that the |W | stable
coefficients do agree with the Gauss sums of the “stable” strict Gelfand-Tsetlin patterns with
prescribed top row, depending on l1, · · · , lr. The proof amounts to a combinatorial exercise. We
note that a general solution to the Gelfand-Tsetlin conjecture, that is, a proof that these Dirichlet
series possess functional equations in the case where n is not necessarily sufficiently large, remains
open.

In [4], the theory of Eisenstein series is suppressed, except for rank one Eisenstein series that
underlie the proofs. A direct definition of the series Z(s1, · · · , sr) is given, though it was arrived at
by considerations connected with Eisenstein series, including early versions of computations that
are included in [5], where the Whittaker coefficients of metaplectic Eisenstein series on GL3 were
worked out.

The relationship of the Eisenstein series with the twisted Dirichlet series may now be explained.

Given m1, · · · ,mr ∈ oS , let ψU,m : U(A)/U(F ) −→ C be such that ψU,m iαi

(
1 x

1

)
has conduc-

3



tor pordp(mi) for each prime p of oS . Then (conjecturally)

Z(s1, · · · , sr;m1, · · · ,mr) =
∫

U(A)/U(F )

E(u, s1, · · · , sr) ψU,m(u) du.

Evidence for this description may be found in the GL3 computations in [5], but in this paper, we fol-
low [4] in giving an axiomatic description of the Dirichlet series, and prove its analytic continuation
and functional equation without explicit reference to Eisenstein series. Again, a direct approach
to these Dirichlet series based on Eisenstein series leads to combinatorial complications that we
are able to avoid by the present approach. It should be understood, however, that the Eisenstein
series on the n-fold metaplectic cover of SL2, whose functional equations were originally proved by
Kubota [12] following the methods of Selberg and Langlands, underlie the proofs.

This work was supported by NSF FRG Grants DMS-0354662, DMS-0353964 and DMS-0354534.

2 Preliminaries

2.1 Weyl group action

Let V be a real vector space of dimension r containing the rank r root system Φ. Any α ∈ V may
be expressed as α =

∑r
i=1 biαi for a basis of simple positive roots αi with bi ∈ R. Then we define

the pairing B(α, s) : V × Cr −→ C for α ∈ V and s = (s1, . . . , sr) ∈ Cr by

B(α, s) =
∑

bisi. (2)

Note that B is just the complexification of the usual dual pairing V × V ∨ −→ R, but we prefer the
definition above for the explicit computations of subsequent sections.

The Weyl group W of Φ has a natural action on V in terms of the pairing. For a simple reflection
σα in a hyperplane perpendicular to α we have σα : V −→ V given by

σα(x) = x−B(x, α∨) α

where α∨ is the corresponding element of the dual root system Φ∨. In particular, the effect of σi

on roots α ∈ Φ is

σi : α 7→ α− 2〈α, αi〉
〈αi, αi〉

αi, (3)

where 〈 , 〉 is the standard Euclidean inner product.
We now define a Weyl group action on s ∈ Cr. We will denote the image under this action by

w(s). Let ρ∨ be the Weyl vector for the dual root system, i.e. half the sum of the positive coroots.
Identifying V ∨

C with Cr we may take

ρ∨ = (1, 1, . . . , 1). (4)

The action of W on Cr is defined implicitly according to the identification

B

(
wα,w(s)− 1

2
ρ∨
)

= B

(
α, s− 1

2
ρ∨
)
. (5)

For simple reflections, we have the following result ([4], Prop. 3.1).
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Proposition 1 The action of σi on s = (s1, . . . , sr) according to (5) is given by:

sj 7−→ sj −
2 〈αj , αi〉
〈αi, αi〉

(
si −

1
2

)
, j = 1, · · · , r. (6)

In particular, si 7−→ 1− si. Note also that

−2 〈αj , αi〉
〈αi, αi〉

> 0 if j 6= i.

2.2 Two Lemmas Using Root Systems

In this section, we give two lemmas concerning root systems which will be used in proving local
functional equations. Let Φ be a reduced root system of rank r. Recall that λ ∈ V is a weight if
2 〈λ, α〉 / 〈α, α〉 ∈ Z for all α ∈ Φ, and the weight is dominant if 2 〈λ, α〉 / 〈α, α〉 > 0 for all α ∈ Φ+.
It is well-known that ρ is a dominant weight; in fact it is the sum of the fundamental dominant
weights ([7], Proposition 21.16).

Let ε1, . . . , εr be the fundamental dominant weights, which satisfy

2 〈εi, αj〉
〈αj , αj〉

= δij (δij =Kronecker delta.) (7)

Let Λweight be the weight lattice, generated by the εi. It contains the root lattice Λroot generated
by the αi.

We will fix non-negative integers l1, · · · , lr and let λ =
∑
liεi be the corresponding weight.

Lemma 1 Let w ∈W .
(i) The cardinality of Φw is the length l(w) of w.
(ii) Express ρ+ λ− w(ρ+ λ) as a linear combination of the simple positive roots:

ρ+ λ− w(ρ+ λ) =
r∑

i=1

kiαi. (8)

Then the ki are nonnegative integers.
(iii) If w,w′ ∈W such that ρ+ λ− w(ρ+ λ) = ρ+ λ− w′(ρ+ λ) then w = w′.

Proof Part (i) follows from Proposition 21.2 of [7]. For (ii), note that the expression (8) as an
integral linear combination is valid by Proposition 21.14 of [7]. To show that this is a non-negative
linear combination, note that ρ+ λ lies inside positive Weyl chamber, as the li used to define λ are
non-negative. Hence, in the partial ordering, ρ+λ � w(ρ+λ) for all w ∈W , and the claim follows.

For (iii), we again use the fact that ρ + λ is in the interior of the positive Weyl chamber, so
w(ρ + λ) = w′(ρ + λ) means that the positive Weyl chamber is fixed by w−1w′ which implies
w−1w′ = 1. �

Define the function dλ on Φ+ by

dλ(α) =
2 〈ρ+ λ, α〉
〈α, α〉

= B(ρ+ λ, α∨). (9)

Lemma 2 We have dλ(α) ∈ Z+ for all α ∈ Φ+, and dλ(αi) = li + 1 if αi is a simple positive root.

Proof This follows from (7), expressing ρ as the sum of the fundamental dominant weights. �
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2.3 Hilbert symbols

Let n > 1 be an integer and let F be a number field containing the n-th roots of unity. Let S be
a finite set of places of F such that S contains all archimedean places, all places ramified over Q,
and that is sufficiently large that the ring of S-integers oS is a principal ideal domain. Embed oS

in FS =
∏

v∈S Fv diagonally.
The product of local Hilbert symbols gives rise to a pairing ( , )S : F×

S × F×
S −→ µn by

(a, b)S =
∏

v∈S(a, b)v. A subgroup Ω of F×
S is called isotropic if (ε, δ)S = 1 for ε, δ ∈ Ω. Let Ω

be the subgroup o×SF
×,n
S , which is maximal isotropic. If t is a positive integer, let Mt(Ω) be the

vector space of functions Ψ : F×
fin −→ C that satisfy

Ψ(εc) = (c, ε)−t
S Ψ(c), (10)

when ε ∈ Ω. We denote M1(Ω) by M(Ω). Note that if ε is sufficiently close to the identity in F×
fin

it is an n-th power at every place in Sfin, so such a function is locally constant. It is easy to see
that the dimension of M(Ω) is [F×

S : Ω] <∞.

2.4 Gauss sums

If a ∈ oS and b is an ideal of oS let
(

a
b

)
be the nth order power residue symbol as defined in [4].

(This depends on S, but we suppress this dependence from the notation.) If a, c ∈ oS and c 6= 0, and
if t is a positive integer, define the Gauss sum gt(a, c) as follows. We choose a nontrivial additive
character ψ of FS such that ψ(xoS) = 1 if and only if x ∈ oS . (See Brubaker and Bump [2],
Lemma 1.) Then the Gauss sum is given by

gt(a, c) =
∑

d mod c

(
d

coS

)t

ψ

(
ad

c

)
. (11)

We will also denote g1(a, c) = g(a, c).

2.5 Kubota Dirichlet series

If Ψ ∈Mt(Ω), the space of functions defined in (10), let

Dt(s,Ψ, a) =
∑

0 6=c∈oS/o×S

gt(a, c) Ψ(c) N(c)−2s .

We will also denote D1(s,Ψ, a) = D(s,Ψ, a). Here N(c) is the order of oS/coS . The term
gt(a, c) Ψ(c) N(c)−2s is independent of the choice of representative c modulo S-units. It follows
easily from standard estimates for Gauss sums that the series is convergent if <(s) > 3

4 .
Let

Gn(s) = (2π)−2(n−1)sn2ns
n−1∏
j=1

Γ
(

2s− 1 +
j

n

)
. (12)

In view of the multiplication formula for the Gamma function, we may also write

Gn(s) = (2π)−(n−1)(2s−1) Γ(n(2s− 1))
Γ(2s− 1)

.
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Let
D∗

t (s,Ψ, a) = Gm(s)[F :Q]/2 ζF (2ms−m+ 1) Dt(s,Ψ, a), (13)

where m = n/ gcd(n, t), 1
2 [F : Q] is the number of archimedean places of the totally complex field

F , and ζF is the Dedekind zeta function of F .
If v ∈ Sfin let qv denote the cardinality of the residue class field ov/pv, where ov is the local ring

in Fv and pv is its prime ideal. By an S-Dirichlet polynomial we mean a polynomial in q−s
v as v

runs through the finite number of places in Sfin.
If Ψ ∈M(Ω) and η ∈ F×

S denote

Ψ̃η(c) = (η, c)S Ψ(c−1η−1). (14)

It is easy to check that Ψ̃η ∈M(Ω) and that it depends only on the class of η in F×
S /F

×,n
S .

Then we have the following result, which follows easily from the work of Brubaker and Bump [2].

Theorem 1 Let Ψ ∈ Mt(Ω), and let a ∈ oS. Let m = n/ gcd(n, t). Then D∗
t (s,Ψ, a) has mero-

morphic continuation to all s, analytic except possibly at s = 1
2 ±

1
2m , where it might have simple

poles. There exist S-Dirichlet polynomials P t
η(s) that depend only on the image of η in F×

S /F
×,n
S

such that
D∗

t (s,Ψ, a) = N(a)1−2s
∑

η∈F×S /F×,n
S

P t
aη(s)D∗

t (1− s, Ψ̃η, a). (15)

This result, based on ideas of Kubota [12], relies on the theory of Eisenstein series. The case
t = 1 is to be found in [2]; the general case follows as discussed in the proof of Proposition 5.2 of
[4]. Importantly, the factor N(a)1−2s does not depend on t.

2.6 Normalizing factors

As a final preliminary, we record the zeta and gamma factors that will be needed to normalize the
Weyl group multiple Dirichlet series. These will be used to prove global functional equations.

Let Φ be a reduced root system of rank r, with inner product 〈 , 〉 chosen such that ||α|| =√
〈α, α〉 and 2〈α, β〉 are integral for all α, β ∈ Φ. Let

n(α) =
n

gcd(n, ‖α‖2)
. (16)

If Φ is simply-laced, then we may take all roots to have length 1 and then n(α) = n for every α ∈ Φ.
If Φ is not simply-laced but irreducible, and if 〈 , 〉 is normalized so that the short roots have
length 1, then

n(α) =


n if α is a short root,
n if α is a long root and Φ 6= G2, and n is odd
n
2 if α is a long root and Φ 6= G2, and n is even
n if α is a long root and Φ = G2, and 3 - n
n
3 if α is a long root and Φ = G2, and 3|n.

If α is a positive root, write α =
∑
kiαi as before. Let

ζα(s) = ζF

(
1 + 2n(α)

r∑
i=1

ki(si −
1
2
)

)
= ζF

(
1 + 2n(α) B

(
α, s− 1

2
ρ∨
))

. (17)
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Also let

Gα(s) = Gn(α)

(
1
2

+
r∑

i=1

ki

(
si −

1
2

))
= Gn(α)

(
1
2

+B

(
α, s− 1

2
ρ∨
))

,

where Gn(s) is defined as in (12). Define the normalized multiple Dirichlet series by

Z∗
Ψ(s) =

[ ∏
α∈Φ+

Gα(s) ζα(s)

]
ZΨ(s). (18)

3 Stability Assumption

All of our subsequent computations rely on a critical assumption that n, the order of the power
residue symbols appearing in all our definitions, is sufficiently large. This dependence appears only
once in the section on global functional equations, but is crucial in simplifying the proof that the
multiple Dirichlet series can be understood in terms of Kubota Dirichlet series. This dependence
is also crucial in making the bridge between Weyl group multiple Dirichlet series and those series
defined by Gelfand-Tsetlin patterns.

Let σi ∈W be a fixed simple reflection about αi ∈ Φ. Let m1, · · · ,mr be fixed. For p a prime,
let li = ordp(mi). (For convenience, we suppress the dependence of li on p in the notation.) Let

λp =
r∑

i=1

liεi. (19)

Stability Assumption. The positive integer n satisfies the following property. Let α =
∑r

i=1 tiαi

be the largest positive root in the partial ordering. Then for every prime p,

n ≥ gcd(n, ||α||2) · dλp(α) = gcd(n, ||α||2) ·
r∑

i=1

ti( li + 1) . (20)

Note that the right-hand side of (20) is clearly bounded for fixed choice of m1, · · · ,mr. We fix an
n satisfying this assumption for the rest of the paper.

For example, if Φ = Ar and the inner product is chosen so that that ‖α‖ = 1 for each root α,
the condition (20) becomes n >

∑r
i=1 li.

4 Definition of the twisted multiple Dirichlet series

Let M(Ωr) be as in [4], and let Ψ ∈M(Ωr). We will define

ZΨ(s1, · · · , sr;m1, · · · ,mr) =
∑

c1,··· ,cr

HΨ(c1, · · · , cr;m1, · · · ,mr) Nc−2s1
1 · · ·Nc−2sr

r , (21)

where the coefficients H will be described next; as in [4], the product

HΨ(C1, · · · , Cr;m1, · · · ,mr) = H(C1, · · · , Cr;m1, · · · ,mr) Ψ(C1, · · · , Cr)

will be unchanged if Ci is multiplied by a unit, so (21) can be regarded as either a sum over
Ci ∈ oS/o

×
S or of the ideals ci that the Ci generate.
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It remains to describe the twisted coefficients H. If

gcd(C1 · · ·Cr, C
′
1 · · ·C ′

r) = 1, (22)

then

H(C1C
′
1, · · · , CrC

′
r;m1, · · · ,mr)

H(C1, · · · , Cr;m1, · · · ,mr) H(C ′
1, · · · , C ′

r;m1, · · · ,mr)
=

r∏
i=1

(
Ci

C ′
i

)‖αi‖2 (
C ′

i

Ci

)‖αi‖2 ∏
i<j

(
Ci

C ′
j

)2〈αi,αj〉(
C ′

i

Cj

)2〈αi,αj〉

. (23)

Moreover if gcd(m′
1 · · ·m′

r, C1 · · ·Cr) = 1 we will have the multiplicativity

H(C1, · · · , Cr;m1m
′
1, · · · ,mrm

′
r) =(

m′
1

C1

)−||α1||2

· · ·
(
m′

r

Cr

)−||αr||2

H(C1, · · · , Cr;m1, · · · ,mr). (24)

Equations (23) and (24) reduce the specification of the coefficients H(C1, · · · , Cr;m1, · · · ,mr) to
those of the form H(pk1 , · · · , pkr ; pl1 , · · · , plr ) where p is a prime. To give these, let Φw be the set of
all positive roots α such that w(α) is a negative root. The cardinality of Φw is equal to the length
l(w) of w in the Weyl group. Then we define

H(pk1 , . . . , pkr ; pl1 , . . . , plr ) =
∏

α∈Φw

g‖α‖2(pdλp (α)−1, pdλp (α)), (25)

where dλp
(α) is given by (9).

5 Local computations

In this section, we analyze our multiple Dirichlet series coefficients at powers of a single fixed prime
p, and show that they contain Gauss sums. These will be used to form Kubota Dirichlet series in
the next section.

For the remainder of this section, let l1, · · · , lr be fixed non-negative integers, and let

λ =
r∑

i=1

liεi

as in the previous section.
We recall that on prime powers, the choices of ki for which H(pk1 , · · · , pkr ; pl1 , · · · , plr ) is

non-zero are in one-to-one correspondence with elements w ∈ W , the Weyl group. We say that
(k1, · · · , kr) ∈ Zr is associated to w ∈W with respect to λ if (8) is satisfied; in this case, we write

(k1, · · · , kr) = assocλ(w).

The following results are generalizations of Propositions 4.1, 4.2 of [4].
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Proposition 2 Let w ∈W be such that l(σiw) = l(w)+1. Suppose that assocλ(w) = (k1, · · · , kr) ∈
Zr and assocλ(σiw) = (h1, · · · , hr). Let dλ = dλ(w−1αi) in the notation (9). Then

hj =
{
ki + dλ if j = i;
ki if j 6= i, (26)

and
H(ph1 , . . . , phr ) = g‖αi‖2(pdλ−1, pdλ) H(pk1 , . . . , pkr ). (27)

Proof This is proved similarly to Prop. 4.1 of [4], but replacing ρ by ρ+ λ and d by dλ. �

Proposition 3 Let dλ = dλ(w−1(αi)) and let l1, . . . , lr be fixed as above. For any w ∈ W , the
monomial in the r complex variables s = (s1, . . . , sr)

Np(si− 1
2 )(dλ−li−1)

∏
α∈Φw

Np−2B(ρ+λ−w(ρ+λ),s)

is invariant under the action of σi given in (6).

Proof The statement is equivalent to showing that

1
2
(dλ − li − 1)αi + ρ+ λ− w(ρ+ λ) (28)

is orthogonal to αi. Hence, it suffices to show (28) is fixed by σi, i.e.,

σi(ρ+ λ)− σiw(ρ+ λ) = (dλ − li − 1)αi + (ρ+ λ)− w(ρ+ λ). (29)

Since ρ+ λ− σi(ρ+ λ) = (1 + li)αi we can write (29) as w(ρ+ λ)− σiw(ρ+ λ) = dλαi, and indeed
applying the definition (9)

dλαi =
2
〈
w−1αi, ρ+ λ

〉
〈αi, αi〉

αi =
2 〈αi, w(ρ+ λ)〉

〈αi, αi〉
αi = w(ρ+ λ)− σiw(ρ+ λ).

�

6 Preparing the global Dirichlet series

We preserve the notations above. In particular, m1, · · · ,mr are fixed integers with corresponding λp

defined for each prime p as in (19). In our local computations, we showed a connection between the
prime-power coefficients H(pk1 , · · · , pkr ) associated to pairs of Weyl group elements w and σiw for
a fixed simple reflection σi and Gauss sums. The next step is to translate this into a global notion.
Once the correct definitions are given, it turns out to be relatively straightforward to generalize the
proofs in [4], so we will omit many proof details which follow by very similar methods to [4].

In [4], the notion of admissibility for r-tuples of integers (C1, · · · , Cr) in (oS)r was defined. We
generalize this in the following definition.
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Definition 1 We say that (C1, · · · , Cr) in (oS)r is admissible with respect to λ if, for each
prime p, there exists a Weyl group element wp ∈W such that

(ordp(C1), · · · , ordp(Cr)) = assocλp(wp).

For such (C1, · · · , Cr), we say that Ci is i-reduced if, for every p, we have l(σiwp) = l(wp) + 1.

We note that if C1, . . . , Cr are nonzero elements of oS , then (C1, . . . , Cr) is admissible with
respect to λ if and only if H(C1, . . . , Cr;m1, . . . ,mr) 6= 0. This is immediate from the definition
of H.

We have the following results.

Proposition 4 Let C1, · · · , Ci−1, Ci+1, · · · , Cr be nonzero elements of oS. If there exists a Ci such
that (C1, · · · , Cr) is admissible with respect to λ, then there exists a C ′

i (modulo the action of o×S )
that is i-reduced. This C ′

i divides Ci and is uniquely determined up to multiplication by a unit.
Moreover, for each prime p, if w′

p is determined by the equality

(ordp(C1), · · · , ordp(C ′
i), · · · , ordp(Cr)) = (k1, · · · , kr) = assocλp(w′

p),

then either ordp(Ci) = ki or ordp(Ci) = ki + dλ, where dλ = dλ((w′
p)
−1αi).

Proof The proof is similar to Proposition 5.2 of [4], replacing admissible by admissible with respect
to λ and d by dλ. �

The multiple Dirichlet series is built out of H-coefficients of the form H(C1, . . . , Cr;m1, . . . ,mr)
satisfying the multiplicativity relation (24). However, for convenience we will suppress the mi’s from
the notation. By Proposition 4, ZΨ(s1, · · · , sr) =

=
∑

0 6= Cj ∈ o×S \oS

1 6 j 6 r
C1, · · · , Cr admissible w.r.t. λ

Ci i-reduced

NC−2s1
1 · · ·NC−2sr

r H(C1, · · · , Cr)
∑

0 6=D∈o×S \oS

(D,Ci)
‖αi‖2

S

×H(C1, C2, · · · , DCi, · · · , Cr)
H(C1, C2, · · · , Ci, · · · , Cr)

∏
j>i

(D,Cj)
2〈αi,αj〉
S ΨC1,··· ,Cr

i (D) ND−2si , (30)

where we define

ΨC1,...,Cr

i (D) = Ψ(C1, . . . , CiD, . . . , Cr)(D,Ci)
−‖αi‖2

S

∏
j>i

(D,Cj)
−2〈αi,αj〉
S (31)

to emphasize the dependence on D for fixed parameters C1, . . . , Cr in the inner sum. We recall

Lemma 3 ([4], Lemma 5.3) Let C1, . . . , Cr be fixed nonzero elements of oS. Then with the no-
tation (31), the function ΨC1,...,Cr

i ∈M‖αi‖2(Ω).

One can now show that the inner sum in (30) is a Kubota Dirichlet series. The key is to identify
the quotient of H’s and Hilbert symbols in (30) as a Gauss sum. If the Ci and D are powers of a
single prime p, this is (27), which is generalized in (33) below.
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Lemma 4 Fix an integer i ∈ {1, . . . , r} and integers (m1, . . . ,mr). If (C1, . . . , Cr) ∈ or
S is admis-

sible with respect to λ with Ci i-reduced, then

Bi =
r∏

j=1

C
−2〈αj ,αi〉/〈αi,αi〉
j (32)

is an oS integer and for every D ∈ oS we have

H(C1, . . . , DCi, . . . , Cr)
H(C1, . . . , Cr)

(D,Ci)
‖αi‖2

S

∏
j>i

(D,Cj)
2〈αi,αj〉
S = g‖αi‖2(miBi, D). (33)

Moreover for each prime p of oS we have

ordp(Bi) = dλp
(w−1

p αi)− li − 1, (34)

where λp corresponds to the mj as in (19), and wp is determined by the condition

assocλp(wp) = (ordp(C1), · · · , ordp(Cr)).

The proof of this is similar to Lemma 5.3 of [4], with modifications similar to those above, and
is omitted.

Using Lemmas 3 and 4, we may rewrite the Dirichlet series ZΨ(s1, . . . , sr) in terms of a Kubota
Dirichlet series in the variable si.

Proposition 5 With notations as above, we have

ZΨ(s1, . . . , sr) =

∑
0 6= Cj ∈ oS/o×S

(C1, · · · , Cr) admissible w.r.t. λ
Ci i-reduced

NC−2s1
1 · · ·NC−2sr

r H(C1, . . . , Cr) D‖αi‖2(si,Ψ
C1,...,Cr

i ,miBi),

where, for fixed C1, · · · , Cr, the coefficient Bi is defined in (32).

Proof We have already rewritten the Dirichlet series ZΨ(s1, . . . , sr) in equation (30) in terms
of sums over Cj , j = 1, . . . , r with Ci i-reduced. The proposition then follows immediately from
the previous two lemmas and the definition of Dt(s,Ψ, C) for S-integer C and Ψ ∈ Mt(Ω), where
t = ‖αi‖2. �

7 Global functional equations

Using Proposition 5 as our starting point, we are finally ready to prove functional equations cor-
responding to the transformations σi defined in (6), for each i = 1, · · · , r. First we recall some
notation from [4].
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Let A be the ring of (Dirichlet) polynomials in q±2s1
v , . . . , q±2sr

v where v runs through the
finite set of places Sfin, and let M = A ⊗M(Ωr). We may regard elements of M as functions
Ψ : Cr × (F×

S )r −→ C such that for any fixed (s1, . . . , sr) ∈ Cr the function

(C1, C2, . . . , Cr) 7−→ Ψ(s1, . . . , sr;C1, . . . , Cr)

defines an element of M(Ωr), while for any (C1, . . . , Cr) ∈ (F×
S )r, the function

(s1, . . . , sr) 7−→ Ψ(s1, . . . , sr;C1, . . . , Cr)

is an element of A. We will sometimes use the notation

Ψs(C1, . . . , Cr) = Ψ(s1, . . . , sr;C1, . . . , Cr), s = (s1, . . . , sr) ∈ Cr. (35)

We identify M(Ωr) with its image 1⊗M(Ωr) in M; this just consists of the Ψs that are independent
of s ∈ Cr.

The operators σi on Cr are defined in (6). Define corresponding operators σi on M by

(σiΨs)(C1, · · · , Cr) = (σiΨ)(s1, · · · , sr;C1, · · · , Cr) =∑
η∈F×S /F×,n

S

(η, Ci)
‖αi‖2

S

∏
j>i

(η, C2〈αi,αj〉
j )SPηmiBi(si)

Ψ(σi(s1, · · · , sr);C1, C2, · · · , η−1Ci, · · · , Cr) (36)

where, as in (32),

Bi =
∏
j

C
−2〈αi,αj〉/〈αi,αi〉
j = C−2

i

∏
j 6=i

C
−2〈αi,αj〉/〈αi,αi〉
j .

We have arranged this definition to give a clean formulation of the functional equations. Note
that the Dirichlet polynomials P are associated to nth power classes which depend on the fixed
parameter mi in (m1, · · · ,mr), though we suppress this from the notation for the action σi on M.

Proposition 6 If Ψ ∈ M, then σiΨ is in M.

Proof See [4], Prop. 8, for a proof (replace all instances of C0 there by miBi to obtain the present
result). �

Each functional equation corresponding to σi ∈ W is inherited from a functional equation for
the Kubota Dirichlet series appearing in Proposition 5. These functional equations are formalized
in the following result.

Lemma 5 Given an element Ψs(C1, . . . , Cr) ∈ M, we have

D∗
‖αi‖2(si,Ψ

C1,...,Cr

i ,miBi) = N(miBi)1−2siD∗
‖αi‖2(1− si, (σiΨ)C1,...,Cr

i ,miBi),

where D∗
‖αi‖2 is as in (13).
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Proof This follows from (15). To check the way in which the Ψ function changes under the func-
tional equation, this follows from the definition in (36) as in Lemma 5.7 of [4], with the substitution
C0 = miBi in every instance it appears. �

Let W denote the group of automorphisms of M generated by σi. This will turn out to be
the group of functional equations for the multiple Dirichlet series. The natural homomorphism
W −→W gives an action of W on Cr induced by the action of W , and if w ∈ W we will denote by
ws the effect of w on s ∈ Cr in this induced action. Further, recall the definition of n(α) for α ∈ Φ
given in (16) by

n(α) =
n

gcd(n, ‖α‖2)
.

Theorem 2 The function Z∗
Ψ(s;m1, . . . ,mr) has meromorphic continuation to the complex space

Cr. Moreover, for each w ∈ W we may identify w with its image in the Weyl group and writing
w = σj1 · · ·σjk

as a product of simple reflections, Z∗
Ψ(s;m1, . . . ,mr) satisfies the functional equation

Z∗
wΨ(ws;m1, . . . ,mr) =

k∏
i=1

m
1−2(σj1 ···σji−1 )(sji

)

ji
Z∗

Ψ(s;m1, . . . ,mr) (37)

where the action of w on M is similarly given by the composition of simple reflections σi. It is
analytic except along the hyperplanes B(α; s − 1

2ρ
∨) = 1

2n(α) , where α runs through Φ, 1
2ρ

∨ =(
1
2 , · · · ,

1
2

)
, and B is defined by (2); along these hyperplanes it can have simple poles.

Observe that the equation B(−α; s− 1
2ρ

∨) = 1
2n(α) is equivalent to B(α; s− 1

2ρ
∨) = − 1

2n(α) , so
the polar hyperplanes occur in parallel pairs.

Proof The proof is based on Bochner’s tube-domain Theorem. We sketch this argument below,
and refer the reader to [3] where the case Φ = A2 is worked out in full detail, and to [4] where a
similar argument to the one below is applied for (m1, · · · ,mr) = (1, · · · , 1).

From the standard estimates for the Gauss sums and Proposition 5, it follows that the original
Dirichlet series defining ZΨ is absolutely convergent in a translate of the fundamental Weyl chamber,
denoted

Λ0 =
{

s = (s1, · · · , sr) | <(sj) >
3
4
, j = 1, · · · , r

}
.

Using standard growth estimates for the Kubota Dirichlet series, one sees that the expression in
Proposition 5 is analytic in the convex hull of Λ0 ∪ σiΛ0, which we will denote by Λi. On this
region, we claim that for the simple reflection σi one has

Z∗
σiΨ(σis) = N(mi)1−2siZ∗

Ψ(s).

Recalling the effect of the transformation σi on Cr from (6), we note that the Kubota Dirichlet series
appearing in Proposition 5 is essentially invariant under this transformation by Lemma 5, with the
implicit Ψ function mapped to the appropriately defined σiΨ. That is, the Kubota Dirichlet series
functional equation produces a factor of N(miBi)1−2si . Thus, it remains to show that for each of the
r-tuples (C1, · · · , Cr) that are admissible with respect to λ with Ci i-reduced, the corresponding
terms on the right-hand side of Proposition 5, multiplied by N(miBi)1/2−si are invariant under
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s 7→ σi(s) given explicitly in (6). This follows from Proposition 3, since with our definitions, when
C1, · · · , Cr is admissible with respect to λ and Ci is i-reduced,

NC−2s1
1 · · ·NC−2sr

r =
∏
p

∏
α∈Φw

Np−2B(ρ+λ−w(ρ+λ),s)

and, by (34)
NBi = Nm−1

i

∏
p

Npdλp (w−1
p αi)−1.

Finally, regarding the normalizing factor, one factor Gαi(s)ζαi(s) from (18) is needed to normalize
D∗
‖αi‖2(si,Ψ

C1,...,Cr

i , C0) in Proposition 5; the remaining factors are permuted amongst themselves
since σi permutes Φ+ − {αi}.

Arguing as in [3] we obtain analytic continuation to any simply-connected region Λ′ that is a
union of W -translates of the Λi obtained by composing functional equations. We may choose Λ′ so
that its convex hull is all of Cr. The meromorphic continuation to all of Cr follows from Bochner’s
tube-domain Theorem (Bochner [1] or Hörmander [9], Theorem 2.5.10). As in [3], one actually
applies Bochner’s theorem to the function

ZΨ(s)
∏
α∈Φ

(
B

(
α; s− 1

2
ρ∨
)
− 1

2n(α)

)
,

since inclusion of the factors to cancel the poles of ZΨ gives a function that is everywhere analytic.
�

We have not proved that the natural map W −→W is an isomorphism. It is highly likely that
this is true, but not too important for the functional equations as we will now see. We recall from
the introduction that we defined M′ to be the quotient of M by the kernel of the map Ψ 7−→ ZΨ.

Corollary 1 If w ∈ W is in the kernel of the map W −→ W then ZΨ = ZwΨ. Thus there is an
action of W on M′ that is compatible with the action of W on M.

Proof Since such a w acts trivially on Cr, (37) implies that ZΨ and ZwΨ are multiple Dirichlet
series that agree in the region of absolute convergence. Hence they are equal. �

Thus ZΨ can be regarded as depending on Ψ ∈ M′, on which W acts, and so W can truly be
regarded as the group of functional equations of the Weyl group multiple Dirichlet series. This
completes the generalization of results from [4].

8 The Gelfand-Tsetlin pattern conjecture

In this section, we turn to the case Φ = Ar that was investigated in [5]. In this section Φ = Ar

and ‖α‖ = 1 for all roots α. We will then show that the multiple Dirichlet series constructed
above (now known to have a group of functional equations according to Theorem 2) are in fact the
same as the multiple Dirichlet series given in [5] via a combinatorial prescription in terms of strict
Gelfand-Tsetlin patterns.
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Let us recall the description of these Weyl group multiple Dirichlet series in [5]. Recall that a
Gelfand-Tsetlin pattern is a triangular array of integers

T =


a00 a01 a02 · · · a0r

a11 a12 a1r

. . . . . .

arr

 (38)

where the rows interleave; that is, ai−1,j−1 > ai,j > ai−1,j . The pattern is strict if each row is strictly
decreasing. The strict Gelfand-Tsetlin pattern T in (38) is left-leaning at (i, j) if ai,j = ai−1,j−1,
right-leaning at (i, j) if ai,j = ai−1,j , and special at (i, j) if ai−1,j−1 > ai,j > ai−1,j .

Given a strict Gelfand-Tsetlin pattern, for j ≥ i let

sij =
r∑

k=j

aik −
r∑

k=j

ai−1,k, (39)

and define

γ(i, j) =


Npsij if T is right-leaning at (i, j),
g(psij−1, psij ) if T is left-leaning at (i, j),
Npsij (1− Np−1) if (i, j) is special and n|sij ;
0 if (i, j) is special and n - sij .

Also, define
G(T) =

∏
j>i>1

γ(i, j). (40)

Given non-negative integers ki, li, 1 ≤ i ≤ r, and a prime p, we define the p-th contribution to the
coefficient of a multiple Dirichlet series by

HGT (pk1 , · · · , pkr ; pl1 , · · · , plr ) =
∑
T

G(T) (41)

where the sum is over all strict Gelfand-Tsetlin patterns T with top row

l1 + . . .+ lr + r, l2 + . . .+ lr + r − 1, · · · , lr + 1, 0

such that for each i, 1 ≤ i ≤ r,
r∑

j=i

(aij − a0,j) = ki. (42)

Note that (k1, · · · , kr) = k(T) in the notation of [5]. The general coefficient of the multiple Dirichlet
series, HGT (C1, · · · , Cr;m1, · · · ,mr), is then defined by means of twisted multiplicativity as in (23),
(24). In [5] we conjecture that these multiple Dirichlet series have meromorphic continuation and
satisfy functional equations. We prove this below for n satisfying the Stability Assumption.

We begin by relating the Stability Assumption to the Gelfand-Tsetlin patterns. We recall
from [5] that a strict Gelfand-Tsetlin pattern is stable if every entry equals one of the two directly
above it (unless, of course, it is in the top row). If the top row is fixed, there are (r + 1)! strict
stable patterns.
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Proposition 7 Suppose that the Stability Assumption (20) holds. If T appearing in the sum (41)
is not stable, then G(T) = 0.

Proof Suppose that T is special at (i, j) and that (20) holds. Recall that sij is given by (39). Since
ai,k ≥ ai−1,k for all k ≥ i and ai,j > ai−1,j it follows that sij > 0. Similarly, since ai,k ≤ ai−1,k−1

for all k ≥ i and ai,j < ai−1,j−1, it follows that

sij =
r∑

k=j

aik −
r∑

k=j

ai−1,k <

r∑
k=j

ai−1,k−1 −
r∑

k=j

ai−1,k = ai−1,j−1 − ai−1,r.

Since each entry of T is at most l1 + · · ·+ lr + r, it follows that si,j < n. But then 0 < sij < n, and
this implies that n does not divide sij . Hence γ(i, j) = 0, and G(T) = 0, as claimed. �

We identify the Ar root system with the set of vectors ei − ej with i 6= j where

ei = (0, · · · , 1, · · · , 0) ∈ Rr+1, 1 in the i-th position.

The simple positive roots are αi = ei − ei+1. The root system lies in the hyperplane V of Rr+1

orthogonal to the vector
∑

ei. Particularly ρ = 1
2

∑
α∈Φ+ α and the fundamental dominant weights

εi are given by

ρ =
(r

2
,
r

2
− 1, · · · ,−r

2

)
, εi = (1, · · · , 1, 0, · · · , 0)− i

r
(1, · · · , 1),

where in the definition of εi there are i 1’s in the first vector. The action of W = Sr+1 on vectors
in Rr+1 is by

w(t1, t2, t3, · · · , tr+1) = (tw−1(1), tw−1(2), tw−1(3), tw−1(4), · · · , tw−1(r+1)).

Suppose that T is a strict Gelfand-Tsetlin pattern with a0r = 0. We may find nonnegative integers
li so that the top row of the pattern is

l(r), · · · , l(0) (43)

with
l(k) = k + lr−k+1 + · · ·+ lr, 1 6 k 6 r, l(0) = 0.

Thus a0j = l(r − j). Let λ =
∑
liεi. We call λ the dominant weight associated with T. We will

associate a Weyl group element w ∈W with each T that is stable in the next result.

Proposition 8 Let T be a stable strict Gelfand-Tsetlin pattern with a0r = 0, and with associated
dominant weight vector λ. Define nonnegative integers k1, · · · , kr by (42) and also let kr+1 = k0 = 0.
Then there exists a unique element w ∈W = Sr+1 such that

ρ+ λ− w(ρ+ λ) = (k1, k2 − k1, k3 − k2, · · · ,−kr) =
∑

kiαi. (44)

In fact, for 0 6 i 6 r
ki − ki+1 + l(r − i) = l(r + 1− w−1(i+ 1)) (45)

is the unique element in the i-th row that is not in the (i+ 1)-th row. We have

ρ+ λ− w(ρ+ λ) =
(l(r)− l(r + 1− w−1(1)), · · · , l(0)− l(r + 1− w−1(r + 1))). (46)
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Proof Let R be the top row (43) of T. With λ =
∑
liεi the vector ρ+ λ differs from the top row

(43) by a multiple of (1, · · · , 1), which is canceled away when we compute ρ+ λ− w(ρ+ λ). Thus
it is equivalent to show that R − w(R) =

∑
kiαi for a unique permutation w ∈ Sr+1, or in other

words, that R−
∑
kiαi is a permutation of R. By (42)

ki − ki+1 + l(r − i) = ki − ki+1 + a0,i =

 r∑
j=i

ai,j

−

 r∑
j=i+1

ai+1,j

 .

Remembering the pattern is stable, the terms in the second sum may all be found in the first sum,
so

ki − ki+1 + l(r − i) = aij ,

where aij is the unique element of the i-th row that is not in the (i+ 1)-th row. Now (46) and (45)
are also clear. �

We now develop some facts necessary to compare the Gelfand-Tsetlin multiple Dirichlet series
to the Weyl group multiple Dirichlet series in the twisted stable case.

Lemma 6 Let T be a stable strict Gelfand-Tsetlin pattern with a0r = 0. For j ≥ 1, we have

{ajj , aj,j+1, · · · , aj,r} =
{kj − kj+1 + l(r − j), kj+1 − kj+2 + l(r − j − 1), · · · , kr−1 − kr + l(1), kr + l(0)} =

{l(r + 1− w−1(j + 1)), l(r + 1− w−1(j + 2)), · · · , l(r + 1− w−1(r + 1))}.

Proof The statement follows by induction from the fact that ki − ki+1 + l(r − i) is the unique
element of the i-th row that is not in the (i− 1)-th row. �

For w ∈ Sr+1, an i-inversion is a j such that i < j ≤ r + 1 but w(i) > w(j).

Proposition 9 Let T be a stable strict Gelfand-Tsetlin pattern with a0r = 0, and let w ∈ Sr+1 be
associated to T as in Proposition 8. Then the number of i-inversions of w−1 equals the number of
left-leaning entries in the i-th row of T.

For example, let w−1 be the permutation (143), and take λ = 0. We find that ρ − w(ρ) =
(3, 0,−2,−1) = 3α1 + 3α2 + α3 and so the corresponding Gelfand-Tsetlin pattern is the unique
pattern with (k1, k2, k3) = (3, 3, 1). This pattern is

T =


3 2 1 0

3̂ 2̂ 1̂
3̂ 1

1

 ,

where we have marked the location of the left-leaning entries. The number of i-inversions of w−1

is:
i i-inversions of w−1 number
1 (1, 2), (1, 3), (1, 4) 3
2 (2, 3) 1
3 none 0
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As Proposition 9 states, the number of i-inversions of w−1 determines the number of left-leaning
entries in the i-th row; since the i-inversions are obviously forced to the left in a stable pattern,
this number is also the location of the last left-leaning entry.
Proof The i-th row, together with the rows immediately above and below, are:

ai−1,i−1 ai−1,i ai−1,i+1 · · · ai−1,r−1 ai−1,r

ai,i ai,i+1 · · · ai,r−1 ai,r

ai+1,i+1 ai+1,i+2 · · · ai+1,r

If we assume that there are exactly m left-leaning entries in the i-th row, then

ai,i = ai−1,i−1, · · · , ai,i+m−1 = ai−1,i−2+m (47)

while
ai,i+m = ai−1,i+m, · · · , ai,r = ai−1,r. (48)

The number of i-inversions of w−1 is the number of elements of the set

{w−1(i+ 1), · · · , w−1(r + 1)}

that are less than w−1(i). Since the function l is monotone, this equals the number of elements of
the set {

l(r + 1− w−1(i+ 1)), · · · , l(r + 1− w−1(r + 1))} (49)

that are greater than l(r + 1 − w−1(i)). By Lemma 6, the numbers in the set (49) are just the
elements of the i-th row of T, and l(r+1−w−1(i)) is the unique element of the (i− 1)-th row that
doesn’t occur in the i-th row. Thus the elements of the i-th row that are greater than l(r+1−w−1(i))
are precisely the left-leaning entries in the row. �

Theorem 3 Suppose that Φ = Ar and that 〈 , 〉 is chosen so that ‖α‖ = 1 for all α ∈ Φ. Suppose
also that the Stability Assumption (20) holds.
(i) Let T be a stable strict Gelfand-Tsetlin pattern, and let G(T) be the product of Gauss sums
defined in (40). Let w be the Weyl group element associated to T in Proposition 8. Then

G(T) =
∏

α∈Φw

g(pdλ(α)−1, pdλ(α)),

matching the definition as in (25) where dλ(α) is given by (9).
(ii)

H(C1, · · · , Cr;m1 · · · ,mr) = HGT (C1, · · · , Cr;m1 · · · ,mr).

That is, the Weyl group multiple Dirichlet series is the same as the series defined by the Gelfand-
Tsetlin description in the twisted stable case.

Proof Since both coefficients are obtained from their prime-power parts by means of twisted
multiplicativity, part (i) implies part (ii).

We turn to the proof of part (i). Since T is stable, we have sij = 0 if T is right-leaning at (i, j).
Thus

G(T) =
∏

(i,j)left-leaning

g(psij−1, psij ),
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where the product is over the left-leaning entries of the Gelfand-Tsetlin pattern corresponding to
w whose top row is (43).

It suffices to check that the set of sij at left-leaning entries in the Gelfand-Tsetlin pattern
corresponding to w coincides with the set of dλ(α) as α runs over Φw. In fact we shall show a
slightly sharper statement, namely that the left-leaning entries in row i correspond exactly to a
certain set of roots in Φw.

To give this more precisely, we require some notation. Recall that we have identified the roots
of Ar with the vectors ei − ej , 1 ≤ i 6= j ≤ r + 1. The action of a permutation w ∈ Sr+1 on the
corresponding vectors then becomes:

w(ei − ej) = ew(i) − ew(j).

Fix w. Observe that (i, j) is an i-inversion for w−1 (that is, i < j but w−1(j) < w−1(i)) if and only
if the root

αi,j,w := ew−1(j) − ew−1(i)

is in Φw. Indeed, αi,j,w is positive if and only if w−1(j) < w−1(i), and w(αi,j,w) = ej − ei, which
is negative if and only if j > i. We will compute the contribution from the set of αi,j,w for each
fixed i.

First, we compute dλ(αi,j,w). We have

ρ =
1
2

r+1∑
m=1

(r + 2− 2m)em.

Also, since αi = ei − ei+1, we have

αi,j,w =
w−1(i)−1∑
k=w−1(j)

αk.

Recall that λ =
∑r

i=1 liεi, where {εi} are the fundamental dominant weights. Since 〈αi,j,w, αi,j,w〉 =
2, we find that

dλ(αi,j,w) = 2
〈ρ+ λ, αi,j,w〉
〈αi,j,w, αi,j,w〉

= w−1(i)− w−1(j) +
w−1(i)−1∑
k=w−1(j)

lk.

Now we consider the set of dλ(αi,j,w) as j varies over the numbers such that (i, j) is a i-inversion
for w−1. We see that w−1(j) runs through the set

{1, · · · , w−1(i)− 1} − {w−1(1), · · · , w−1(i− 1)},

where as usual if X and Y are sets then X − Y = {x ∈ X|x 6∈ Y }. Let

Di = {dλ(αi,j,w) | (i, j) is an i-inversion for w−1}.

Then we obtain the following value for the set Di:

Di = {1 + lw−1(i)−1, 2 + lw−1(i)−2 + lw−1(i)−1, · · · , w−1(i)− 1 + l1 + · · ·+ lw−1(i)−1}
−{w−1(i)− w−1(j) + lw−1(j) + · · · lw−1(i)−1 | j < i and w−1(j) < w−1(i)}.
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Now we turn to the Gauss sums obtained from the Gelfand-Tsetlin pattern. Suppose that there
are bi i-inversions for w−1. By Proposition 9 the first bi entries of the i-th row are the left-leaning
entries, and the nontrivial Gauss sums in the i-th row come from the quantities sij , i 6 j 6 i+bi−1.
Recall that every entry in the stable strict Gelfand-Tsetlin pattern is either left-leaning or right-
leaning. We thus have aij = ai−1,j−1 for i 6 j 6 i+ bi − 1 and aij = ai−1,j for j > i+ bi. The sum
for sij telescopes:

sij = (aij − ai−1,j) + (ai,j+1 − ai−1,j+1) + · · ·+ (air − ai−1,r)
= (ai−1,j−1 − ai−1,j) + (ai−1,j − ai−1,j+1) + · · ·

+(ai−1,bi+i−2 − ai−1,bi+i−1) + 0 + · · ·+ 0
= ai−1,j−1 − ai−1,bi+i−1.

By Lemma 6, we have

ai−1,i+bi−1 = r + 1− w−1(i) + lw−1(i) + · · ·+ lr.

To compute the sij as j varies, we must subtract this quantity from ai−1,i−1+k for each k, 0 6 k 6
bi − 1. So we must compute the quantities ai−1,i−1+k. Recall that the 0-th row of the Gelfand-
Tsetlin pattern is {l(r), l(r − 1), · · · , l(0)}. By Lemma 6 again, the entries of the (i− 1)-th row of
the Gelfand-Tsetlin pattern are given by

{l(r), · · · , l(0)} − {l(r + 1− w−1(m)) | 1 6 m 6 i− 1}. (50)

We need to specify the bi entries with largest argument in the set (50); these are the elements from
which we will subtract the term l(r + 1− w−1(i)). We have

bi = |{j > i | w−1(j) < w−1(i)}| = w−1(i)− 1− |{j < i | w−1(j) < w−1(i)}|.

Let h1, · · · , hbi be the integers in the interval [1, w−1(i)− 1] that are not of the form w−1(j) with
some j, j < i. These are the only integers h in the interval [1, w−1(i)− 1] such that l(r + 1− h) is
not removed from the (i− 1)-th row of the Gelfand-Tsetlin pattern, by (50). Hence the only terms
of the form l(r+1−k) with 1 6 k < w−1(i) that are in the Gelfand-Tsetlin pattern are exactly the
numbers of the form l(r + 1 − hm), 1 6 m 6 bi. Since these are visibly the bi entries with largest
argument, we have determined the entries ai−1,i−1+k, 0 6 k 6 bi − 1. We have

l(r + 1− hm)− l(r + 1− w−1(i)) = w−1(i)− hm + lhm + · · ·+ lw−1(i)−1.

As m varies from 1 to bi, these quantities give exactly the set Di that we obtained above from the
formula for the coefficients (25).

This completes the proof of Theorem 3. �
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[9] L. Hörmander. An introduction to complex analysis in several variables, volume 7 of North-
Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition, 1990.

[10] D. A. Kazhdan and S. J. Patterson. Metaplectic forms. Inst. Hautes Études Sci. Publ. Math.,
(59):35–142, 1984.

[11] T. Kubota. Topological covering of SL(2) over a local field. J. Math. Soc. Japan, 19:114–121,
1967.

[12] T. Kubota. On automorphic functions and the reciprocity law in a number field. Lectures in
Mathematics, Department of Mathematics, Kyoto University, No. 2. Kinokuniya Book-Store
Co. Ltd., Tokyo, 1969.

[13] H. Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann.
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