Weyl Group Multiple Dirichlet Series IV: The Stable Twisted Case *

Ben Brubaker, Daniel Bump, Solomon Friedberg ${ }^{\dagger}$

June 15, 2006

Abstract

Weyl group multiple Dirichlet series were associated with a root system Φ and a number field F containing the n-th roots of unity by Brubaker, Bump, Chinta, Friedberg and Hoffstein [3] and Brubaker, Bump and Friedberg [4] provided n is sufficiently large; their coefficients involve n-th order Gauss sums and reflect the combinatorics of the root system. Conjecturally, these functions coincide with Whittaker coefficients of metaplectic Eisenstein series, but they are studied in these papers by a method that is independent of this fact. The assumption that n is large is called stability and allows a simple description of the Dirichlet series. "Twisted" Dirichet series were introduced in Brubaker, Bump, Friedberg and Hoffstein [5] without the stability assumption, but only for root systems of type A_{r}. Their description is given differently, in terms of Gauss sums associated to Gelfand-Tsetlin patterns. In this paper, we reimpose the stability assumption and study the twisted multiple Dirichlet series for general Φ by introducing a description of the coefficients in terms of the root system similar to that given in the untwisted case in [4]. We prove the analytic continuation and functional equation of these series, and when $\Phi=A_{r}$ we also relate the two different descriptions of multiple Dirichlet series given here and in [5] in the stable case.

1 Introduction

Fourier-Whittaker coefficients of Eisenstein series on reductive algebraic groups G contain Dirichlet series in several complex variables with arithmetic interest. Metaplectic groups, certain central extensions of split G by n-th roots of unity, have Whittaker coefficients that contain Dirichlet series that are "twisted" by n-th order characters. For example, nonvanishing of twists of GL(2) automorphic forms by quadratic or cubic characters may be proved in this way. (See Bump, Friedberg and Hoffstein [8] and Brubaker, Friedberg and Hoffstein [6].) Unfortunately, computing these Whittaker coefficients on higher rank metaplectic groups yields intractable exponential sums. So even though the resulting Dirichlet series inherits a Weyl group of functional equations, it is extremely difficult to directly realize it as explicitly consisting of recognizable arithmetic functions.

Motivated by the theory of metaplectic Eisenstein series, one may attempt to construct Dirichlet series in several complex variables with similar properties. In [3] and [4], a family of "Weyl group

[^0]multiple Dirichlet series" are described using data consisting of a fixed positive integer n and a number field F containing the group $\mu_{2 n}$ of $2 n$-th roots of unity, together with a reduced root system Φ. The group of functional equations of these multiple Dirichlet series is similarly isomorphic to the Weyl group W of Φ.

Conjecturally, the Weyl group multiple Dirichlet series are Whittaker coefficients of metaplectic Eisenstein series. To be precise, let G be a split simply-connected semisimple algebraic group whose root system is the dual root system $\hat{\Phi}$, and let $\tilde{G}(\mathbb{A})$ be the n-fold metaplectic cover of $G(\mathbb{A})$, where \mathbb{A} is the adele ring of F, constructed by Kubota [11] and Matsumoto [13]. Let U be the unipotent radical of the standard Borel subgroup of G. The metaplectic cover splits over U, and we identify $U(\mathbb{A})$ with its image in $\tilde{G}(\mathbb{A})$. If α is a root of Φ, let $i_{\alpha}: \mathrm{SL}_{2} \longrightarrow G$ be the embedding corresponding to a Chevalley basis of $\operatorname{Lie}(G)$. We consider the additive character $\psi_{U}: U(\mathbb{A}) / U(F) \longrightarrow \mathbb{C}$ such that for each simple positive root α, the composite $\psi_{U} \circ i_{\alpha}\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)$ is a fixed additive character ψ of \mathbb{A} / F; it is assumed that the conductor of ψ is \mathfrak{o}_{v} for any prime $v \notin S$, where S is a finite set of places to be described in further detail below.

Now let $E\left(g, s_{1}, \cdots, s_{r}\right)$ be an Eisenstein series of Borel type on $\tilde{G}(\mathbb{A})$. The coefficient

$$
Z\left(s_{1}, \cdots, s_{r}\right)=\int_{U(\mathbb{A}) / U(F)} E\left(u, s_{1}, \cdots, s_{r}\right) \psi_{U}(u) d u
$$

is a multiple Dirichlet series whose group of functional equations is isomorphic to W. Conjecturally, this is the same as the multiple Dirichlet series described in [3], [4], and [5].

This paper builds on the results of [4] and [5] as we will now describe. In [4], Weyl group multiple Dirichlet series are defined for any reduced root system Φ and shown to possess a Weyl group of functional equations. However, the setting is specialized in two ways.

- We require that the integer n is "large enough," depending on Φ. We refer to this condition as the "stability assumption."
- The Dirichlet series is "untwisted" in a sense that will be made precise below upon comparison with other examples.

With these assumptions, the Dirichlet series admits a simple description. We will denote the coefficients of the Dirichlet series by $H\left(C_{1}, \cdots, C_{r}\right)$, where the C_{i} are elements of the ring \mathfrak{o}_{S} of S-integers, with S a finite set of places containing the archimedean ones and enough others that \mathfrak{o}_{S} is a principal ideal domain.

- The coefficients exhibit a twisted multiplicativity. This means that the Dirichlet series is not an Euler product, but specification of the coefficients is reduced to the specification of $H\left(p^{k_{1}}, \cdots, p^{k_{r}}\right)$, where p is a fixed prime of \mathfrak{o}_{S}.
- Given $\left(k_{1}, \cdots, k_{r}\right)$, the coefficient $H\left(p^{k_{1}}, \cdots, p^{k_{r}}\right)$ is zero unless there exists a Weyl group element $w \in W$ such that $\rho-w(\rho)=\sum k_{i} \alpha_{i}$, where ρ is half the sum of the positive roots in Φ, and $\alpha_{1}, \cdots, \alpha_{r}$ are the simple positive roots. If this is true, then $H\left(p^{k_{1}}, \cdots, p^{k_{r}}\right)$ is a product of $l(w) n$-th order Gauss sums, where $l: W \longrightarrow \mathbb{Z}$ is the length function.

We call the associated coefficients of the multiple Dirichlet series "untwisted, stable" coefficients owing to the special restrictions above.

In [5], "twisted" Weyl group multiple Dirichlet series are studied using a rather different perspective. The twisted Dirichlet series involve coefficients that we will denote $H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)$. Roughly, these are twists of the original multiple Dirichlet series by a set of n-th order characters. More specifically, if $\operatorname{gcd}\left(C_{1} \cdots C_{r}, m_{1} \cdots m_{r}\right)=1$ we have

$$
\begin{equation*}
H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)=\left(\frac{m_{1}}{C_{1}}\right)^{-\left\|\alpha_{1}\right\|^{2}} \cdots\left(\frac{m_{r}}{C_{r}}\right)^{-\left\|\alpha_{r}\right\|^{2}} H\left(C_{1}, \cdots, C_{r}\right) \tag{1}
\end{equation*}
$$

where $\|\cdot\|$ is a fixed W-invariant inner product on V and (\vdots) is the n-th order power residue symbol.
Although the coefficients $H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)$ are thus roughly twists of the original coefficients, this is only approximately true, since (1) fails when the m_{i} are not coprime to the C_{i}. It does, however, together with the twisted multiplicativity of the coefficients C_{i}, to be described below, allow us to reduce the specification of the coefficients to the case where the C_{i} and the m_{i} are all powers of the same prime p. In [5] this was only accomplished when Φ is of type A_{r}, and in that case, the description is only conjectural unless $r \leqslant 2$, or $n=2$ and $r \leqslant 5$, or $n=1$. In that case, the following is observed, in [5] and in this paper.

- The existence of stable coefficients in correspondence with Weyl group elements described above for $H\left(p^{k_{1}}, \cdots, p^{k_{r}}\right)$ persist, but the support in terms of k_{i} is changed. That is, with $m_{i}=p^{l_{i}}$ fixed and n sufficiently large, there are still $|W|$ distinct values $\left(k_{1}, \cdots, k_{r}\right)$ such that $H\left(p^{k_{1}}, \cdots, p^{k_{r}} ; p^{l_{1}}, \cdots, p^{l_{r}}\right)$ is nonzero, and the coefficient corresponding to $w \in W$ is still a product of $l(w)$ Gauss sums. But when $l_{i}>0$ the locations of the $\left(k_{1}, \cdots, k_{r}\right)$ parametrizing these stable coefficients form the vertices of a larger polytope than in the untwisted case. These coefficients will be called twisted, stable coefficients.
- If n is not sufficiently large, further nonzero coefficients appear inside the polytope whose vertices are spanned by the stable coefficients. In [5], these coefficients are described as products of Gauss sums parametrized by strict Gelfand-Tsetlin patterns. These coefficients are given a uniform description for all n, but due to the properties of Gauss sums they can vanish, and if n is sufficiently large, only the $|W|$ stable coefficients remain.

In the paper at hand, we will generalize the theory of [4] and prove a special case of a conjecture of [5] by studying twisted, stable multiple Dirichlet series. More specifically, we explain the modifications of [4] that are needed for the statements and the proofs in the stable twisted case. Moreover, we will verify the consistency of this description with that in [5] by showing that the $|W|$ stable coefficients do agree with the Gauss sums of the "stable" strict Gelfand-Tsetlin patterns with prescribed top row, depending on l_{1}, \cdots, l_{r}. The proof amounts to a combinatorial exercise. We note that a general solution to the Gelfand-Tsetlin conjecture, that is, a proof that these Dirichlet series possess functional equations in the case where n is not necessarily sufficiently large, remains open.

In [4], the theory of Eisenstein series is suppressed, except for rank one Eisenstein series that underlie the proofs. A direct definition of the series $Z\left(s_{1}, \cdots, s_{r}\right)$ is given, though it was arrived at by considerations connected with Eisenstein series, including early versions of computations that are included in [5], where the Whittaker coefficients of metaplectic Eisenstein series on GL_{3} were worked out.

The relationship of the Eisenstein series with the twisted Dirichlet series may now be explained. Given $m_{1}, \cdots, m_{r} \in \mathfrak{o}_{S}$, let $\psi_{U, m}: U(\mathbb{A}) / U(F) \longrightarrow \mathbb{C}$ be such that $\psi_{U, m} i_{\alpha_{i}}\left(\begin{array}{ll}1 & x \\ & 1\end{array}\right)$ has conduc-
tor $p^{\operatorname{ord}_{p}\left(m_{i}\right)}$ for each prime p of \mathfrak{o}_{S}. Then (conjecturally)

$$
Z\left(s_{1}, \cdots, s_{r} ; m_{1}, \cdots, m_{r}\right)=\int_{U(\mathbb{A}) / U(F)} E\left(u, s_{1}, \cdots, s_{r}\right) \psi_{U, m}(u) d u
$$

Evidence for this description may be found in the GL_{3} computations in [5], but in this paper, we follow [4] in giving an axiomatic description of the Dirichlet series, and prove its analytic continuation and functional equation without explicit reference to Eisenstein series. Again, a direct approach to these Dirichlet series based on Eisenstein series leads to combinatorial complications that we are able to avoid by the present approach. It should be understood, however, that the Eisenstein series on the n-fold metaplectic cover of SL_{2}, whose functional equations were originally proved by Kubota [12] following the methods of Selberg and Langlands, underlie the proofs.

This work was supported by NSF FRG Grants DMS-0354662, DMS-0353964 and DMS-0354534.

2 Preliminaries

2.1 Weyl group action

Let V be a real vector space of dimension r containing the rank r root system Φ. Any $\alpha \in V$ may be expressed as $\alpha=\sum_{i=1}^{r} b_{i} \alpha_{i}$ for a basis of simple positive roots α_{i} with $b_{i} \in \mathbb{R}$. Then we define the pairing $B(\alpha, \mathbf{s}): V \times \mathbb{C}^{r} \longrightarrow \mathbb{C}$ for $\alpha \in V$ and $\mathbf{s}=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{C}^{r}$ by

$$
\begin{equation*}
B(\alpha, s)=\sum b_{i} s_{i} \tag{2}
\end{equation*}
$$

Note that B is just the complexification of the usual dual pairing $V \times V^{\vee} \longrightarrow \mathbb{R}$, but we prefer the definition above for the explicit computations of subsequent sections.

The Weyl group W of Φ has a natural action on V in terms of the pairing. For a simple reflection σ_{α} in a hyperplane perpendicular to α we have $\sigma_{\alpha}: V \longrightarrow V$ given by

$$
\sigma_{\alpha}(x)=x-B\left(x, \alpha^{\vee}\right) \alpha
$$

where α^{\vee} is the corresponding element of the dual root system Φ^{\vee}. In particular, the effect of σ_{i} on roots $\alpha \in \Phi$ is

$$
\begin{equation*}
\sigma_{i}: \alpha \mapsto \alpha-\frac{2\left\langle\alpha, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i} \tag{3}
\end{equation*}
$$

where \langle,$\rangle is the standard Euclidean inner product.$
We now define a Weyl group action on $\mathbf{s} \in \mathbb{C}^{r}$. We will denote the image under this action by $w(\mathbf{s})$. Let ρ^{\vee} be the Weyl vector for the dual root system, i.e. half the sum of the positive coroots. Identifying $V_{\mathbb{C}}^{\vee}$ with \mathbb{C}^{r} we may take

$$
\begin{equation*}
\rho^{\vee}=(1,1, \ldots, 1) \tag{4}
\end{equation*}
$$

The action of W on \mathbb{C}^{r} is defined implicitly according to the identification

$$
\begin{equation*}
B\left(w \alpha, w(\boldsymbol{s})-\frac{1}{2} \rho^{\vee}\right)=B\left(\alpha, s-\frac{1}{2} \rho^{\vee}\right) \tag{5}
\end{equation*}
$$

For simple reflections, we have the following result ([4], Prop. 3.1).

Proposition 1 The action of σ_{i} on $\boldsymbol{s}=\left(s_{1}, \ldots, s_{r}\right)$ according to (5) is given by:

$$
\begin{equation*}
s_{j} \longmapsto s_{j}-\frac{2\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle}\left(s_{i}-\frac{1}{2}\right), \quad j=1, \cdots, r \tag{6}
\end{equation*}
$$

In particular, $s_{i} \longmapsto 1-s_{i}$. Note also that

$$
-\frac{2\left\langle\alpha_{j}, \alpha_{i}\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \geqslant 0 \quad \text { if } j \neq i
$$

2.2 Two Lemmas Using Root Systems

In this section, we give two lemmas concerning root systems which will be used in proving local functional equations. Let Φ be a reduced root system of rank r. Recall that $\lambda \in V$ is a weight if $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \in \mathbb{Z}$ for all $\alpha \in \Phi$, and the weight is dominant if $2\langle\lambda, \alpha\rangle /\langle\alpha, \alpha\rangle \geqslant 0$ for all $\alpha \in \Phi^{+}$. It is well-known that ρ is a dominant weight; in fact it is the sum of the fundamental dominant weights ([7], Proposition 21.16).

Let $\varepsilon_{1}, \ldots, \varepsilon_{r}$ be the fundamental dominant weights, which satisfy

$$
\begin{equation*}
\frac{2\left\langle\varepsilon_{i}, \alpha_{j}\right\rangle}{\left\langle\alpha_{j}, \alpha_{j}\right\rangle}=\delta_{i j} \quad\left(\delta_{i j}=\text { Kronecker delta. }\right) \tag{7}
\end{equation*}
$$

Let $\Lambda_{\text {weight }}$ be the weight lattice, generated by the ε_{i}. It contains the root lattice $\Lambda_{\text {root }}$ generated by the α_{i}.

We will fix non-negative integers l_{1}, \cdots, l_{r} and let $\lambda=\sum l_{i} \varepsilon_{i}$ be the corresponding weight.

Lemma 1 Let $w \in W$.

(i) The cardinality of Φ_{w} is the length $l(w)$ of w.
(ii) Express $\rho+\lambda-w(\rho+\lambda)$ as a linear combination of the simple positive roots:

$$
\begin{equation*}
\rho+\lambda-w(\rho+\lambda)=\sum_{i=1}^{r} k_{i} \alpha_{i} \tag{8}
\end{equation*}
$$

Then the k_{i} are nonnegative integers.
(iii) If $w, w^{\prime} \in W$ such that $\rho+\lambda-w(\rho+\lambda)=\rho+\lambda-w^{\prime}(\rho+\lambda)$ then $w=w^{\prime}$.

Proof Part (i) follows from Proposition 21.2 of [7]. For (ii), note that the expression (8) as an integral linear combination is valid by Proposition 21.14 of [7]. To show that this is a non-negative linear combination, note that $\rho+\lambda$ lies inside positive Weyl chamber, as the l_{i} used to define λ are non-negative. Hence, in the partial ordering, $\rho+\lambda \succ w(\rho+\lambda)$ for all $w \in W$, and the claim follows.

For (iii), we again use the fact that $\rho+\lambda$ is in the interior of the positive Weyl chamber, so $w(\rho+\lambda)=w^{\prime}(\rho+\lambda)$ means that the positive Weyl chamber is fixed by $w^{-1} w^{\prime}$ which implies $w^{-1} w^{\prime}=1$.

Define the function d_{λ} on Φ^{+}by

$$
\begin{equation*}
d_{\lambda}(\alpha)=\frac{2\langle\rho+\lambda, \alpha\rangle}{\langle\alpha, \alpha\rangle}=B\left(\rho+\lambda, \alpha^{\vee}\right) \tag{9}
\end{equation*}
$$

Lemma 2 We have $d_{\lambda}(\alpha) \in \mathbb{Z}^{+}$for all $\alpha \in \Phi^{+}$, and $d_{\lambda}\left(\alpha_{i}\right)=l_{i}+1$ if α_{i} is a simple positive root.
Proof This follows from (7), expressing ρ as the sum of the fundamental dominant weights.

2.3 Hilbert symbols

Let $n>1$ be an integer and let F be a number field containing the n-th roots of unity. Let S be a finite set of places of F such that S contains all archimedean places, all places ramified over \mathbb{Q}, and that is sufficiently large that the ring of S-integers \mathfrak{o}_{S} is a principal ideal domain. Embed \mathfrak{o}_{S} in $F_{S}=\prod_{v \in S} F_{v}$ diagonally.

The product of local Hilbert symbols gives rise to a pairing $(,)_{S}: F_{S}^{\times} \times F_{S}^{\times} \longrightarrow \mu_{n}$ by $(a, b)_{S}=\prod_{v \in S}(a, b)_{v}$. A subgroup Ω of F_{S}^{\times}is called isotropic if $(\varepsilon, \delta)_{S}=1$ for $\varepsilon, \delta \in \Omega$. Let Ω be the subgroup $\mathfrak{o}_{S}^{\times} F_{S}^{\times, n}$, which is maximal isotropic. If t is a positive integer, let $\mathcal{M}_{t}(\Omega)$ be the vector space of functions $\Psi: F_{\text {fin }}^{\times} \longrightarrow \mathbb{C}$ that satisfy

$$
\begin{equation*}
\Psi(\varepsilon c)=(c, \varepsilon)_{S}^{-t} \Psi(c) \tag{10}
\end{equation*}
$$

when $\varepsilon \in \Omega$. We denote $\mathcal{M}_{1}(\Omega)$ by $\mathcal{M}(\Omega)$. Note that if ε is sufficiently close to the identity in $F_{\text {fin }}^{\times}$ it is an n-th power at every place in $S_{\text {fin }}$, so such a function is locally constant. It is easy to see that the dimension of $\mathcal{M}(\Omega)$ is $\left[F_{S}^{\times}: \Omega\right]<\infty$.

2.4 Gauss sums

If $a \in \mathfrak{o}_{S}$ and \mathfrak{b} is an ideal of \mathfrak{o}_{S} let $\left(\frac{a}{\mathfrak{b}}\right)$ be the nth order power residue symbol as defined in [4]. (This depends on S, but we suppress this dependence from the notation.) If $a, c \in \mathfrak{o}_{S}$ and $c \neq 0$, and if t is a positive integer, define the Gauss sum $g_{t}(a, c)$ as follows. We choose a nontrivial additive character ψ of F_{S} such that $\psi\left(x \boldsymbol{o}_{S}\right)=1$ if and only if $x \in \mathfrak{o}_{S}$. (See Brubaker and Bump [2], Lemma 1.) Then the Gauss sum is given by

$$
\begin{equation*}
g_{t}(a, c)=\sum_{d \bmod c}\left(\frac{d}{c \boldsymbol{o}_{S}}\right)^{t} \psi\left(\frac{a d}{c}\right) \tag{11}
\end{equation*}
$$

We will also denote $g_{1}(a, c)=g(a, c)$.

2.5 Kubota Dirichlet series

If $\Psi \in \mathcal{M}_{t}(\Omega)$, the space of functions defined in (10), let

$$
\mathcal{D}_{t}(s, \Psi, a)=\sum_{0 \neq c \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times}} g_{t}(a, c) \Psi(c) \mathbb{N}(c)^{-2 s}
$$

We will also denote $\mathcal{D}_{1}(s, \Psi, a)=\mathcal{D}(s, \Psi, a)$. Here $\mathbb{N}(c)$ is the order of $\mathfrak{o}_{S} / c \mathfrak{o}_{S}$. The term $g_{t}(a, c) \Psi(c) \mathbb{N}(c)^{-2 s}$ is independent of the choice of representative c modulo S-units. It follows easily from standard estimates for Gauss sums that the series is convergent if $\Re(s)>\frac{3}{4}$.

Let

$$
\begin{equation*}
\boldsymbol{G}_{n}(s)=(2 \pi)^{-2(n-1) s} n^{2 n s} \prod_{j=1}^{n-1} \Gamma\left(2 s-1+\frac{j}{n}\right) \tag{12}
\end{equation*}
$$

In view of the multiplication formula for the Gamma function, we may also write

$$
\boldsymbol{G}_{n}(s)=(2 \pi)^{-(n-1)(2 s-1)} \frac{\Gamma(n(2 s-1))}{\Gamma(2 s-1)}
$$

Let

$$
\begin{equation*}
\mathcal{D}_{t}^{*}(s, \Psi, a)=\boldsymbol{G}_{m}(s)^{[F: \mathbb{Q}] / 2} \zeta_{F}(2 m s-m+1) \mathcal{D}_{t}(s, \Psi, a) \tag{13}
\end{equation*}
$$

where $m=n / \operatorname{gcd}(n, t), \frac{1}{2}[F: \mathbb{Q}]$ is the number of archimedean places of the totally complex field F, and ζ_{F} is the Dedekind zeta function of F.

If $v \in S_{\text {fin }}$ let q_{v} denote the cardinality of the residue class field $\mathfrak{o}_{v} / \mathfrak{p}_{v}$, where \mathfrak{o}_{v} is the local ring in F_{v} and \mathfrak{p}_{v} is its prime ideal. By an S-Dirichlet polynomial we mean a polynomial in q_{v}^{-s} as v runs through the finite number of places in $S_{\text {fin }}$.

If $\Psi \in \mathcal{M}(\Omega)$ and $\eta \in F_{S}^{\times}$denote

$$
\begin{equation*}
\tilde{\Psi}_{\eta}(c)=(\eta, c)_{S} \Psi\left(c^{-1} \eta^{-1}\right) \tag{14}
\end{equation*}
$$

It is easy to check that $\tilde{\Psi}_{\eta} \in \mathcal{M}(\Omega)$ and that it depends only on the class of η in $F_{S}^{\times} / F_{S}^{\times, n}$.
Then we have the following result, which follows easily from the work of Brubaker and Bump [2].
Theorem 1 Let $\Psi \in \mathcal{M}_{t}(\Omega)$, and let $a \in \mathfrak{o}_{S}$. Let $m=n / \operatorname{gcd}(n, t)$. Then $\mathcal{D}_{t}^{*}(s, \Psi, a)$ has meromorphic continuation to all s, analytic except possibly at $s=\frac{1}{2} \pm \frac{1}{2 m}$, where it might have simple poles. There exist S-Dirichlet polynomials $P_{\eta}^{t}(s)$ that depend only on the image of η in $F_{S}^{\times} / F_{S}^{\times, n}$ such that

$$
\begin{equation*}
\mathcal{D}_{t}^{*}(s, \Psi, a)=\mathbb{N}(a)^{1-2 s} \sum_{\eta \in F_{S}^{\times} / F_{S}^{\times, n}} P_{a \eta}^{t}(s) \mathcal{D}_{t}^{*}\left(1-s, \tilde{\Psi}_{\eta}, a\right) . \tag{15}
\end{equation*}
$$

This result, based on ideas of Kubota [12], relies on the theory of Eisenstein series. The case $t=1$ is to be found in [2]; the general case follows as discussed in the proof of Proposition 5.2 of [4]. Importantly, the factor $\mathbb{N}(a)^{1-2 s}$ does not depend on t.

2.6 Normalizing factors

As a final preliminary, we record the zeta and gamma factors that will be needed to normalize the Weyl group multiple Dirichlet series. These will be used to prove global functional equations.

Let Φ be a reduced root system of rank r, with inner product \langle,$\rangle chosen such that \|\alpha\|=$ $\sqrt{\langle\alpha, \alpha\rangle}$ and $2\langle\alpha, \beta\rangle$ are integral for all $\alpha, \beta \in \Phi$. Let

$$
\begin{equation*}
n(\alpha)=\frac{n}{\operatorname{gcd}\left(n,\|\alpha\|^{2}\right)} \tag{16}
\end{equation*}
$$

If Φ is simply-laced, then we may take all roots to have length 1 and then $n(\alpha)=n$ for every $\alpha \in \Phi$. If Φ is not simply-laced but irreducible, and if \langle,$\rangle is normalized so that the short roots have$ length 1, then

$$
n(\alpha)= \begin{cases}n & \text { if } \alpha \text { is a short root, } \\ n & \text { if } \alpha \text { is a long root and } \Phi \neq G_{2}, \text { and } n \text { is odd } \\ \frac{n}{2} & \text { if } \alpha \text { is a long root and } \Phi \neq G_{2}, \text { and } n \text { is even } \\ n & \text { if } \alpha \text { is a long root and } \Phi=G_{2}, \text { and } 3 \nmid n \\ \frac{n}{3} & \text { if } \alpha \text { is a long root and } \Phi=G_{2}, \text { and } 3 \mid n\end{cases}
$$

If α is a positive root, write $\alpha=\sum k_{i} \alpha_{i}$ as before. Let

$$
\begin{equation*}
\zeta_{\alpha}(s)=\zeta_{F}\left(1+2 n(\alpha) \sum_{i=1}^{r} k_{i}\left(s_{i}-\frac{1}{2}\right)\right)=\zeta_{F}\left(1+2 n(\alpha) B\left(\alpha, s-\frac{1}{2} \rho^{\vee}\right)\right) \tag{17}
\end{equation*}
$$

Also let

$$
G_{\alpha}(\boldsymbol{s})=\boldsymbol{G}_{n(\alpha)}\left(\frac{1}{2}+\sum_{i=1}^{r} k_{i}\left(s_{i}-\frac{1}{2}\right)\right)=\boldsymbol{G}_{n(\alpha)}\left(\frac{1}{2}+B\left(\alpha, \boldsymbol{s}-\frac{1}{2} \rho^{\vee}\right)\right)
$$

where $\boldsymbol{G}_{n}(s)$ is defined as in (12). Define the normalized multiple Dirichlet series by

$$
\begin{equation*}
Z_{\Psi}^{*}(s)=\left[\prod_{\alpha \in \Phi^{+}} G_{\alpha}(s) \zeta_{\alpha}(s)\right] Z_{\Psi}(s) \tag{18}
\end{equation*}
$$

3 Stability Assumption

All of our subsequent computations rely on a critical assumption that n, the order of the power residue symbols appearing in all our definitions, is sufficiently large. This dependence appears only once in the section on global functional equations, but is crucial in simplifying the proof that the multiple Dirichlet series can be understood in terms of Kubota Dirichlet series. This dependence is also crucial in making the bridge between Weyl group multiple Dirichlet series and those series defined by Gelfand-Tsetlin patterns.

Let $\sigma_{i} \in W$ be a fixed simple reflection about $\alpha_{i} \in \Phi$. Let m_{1}, \cdots, m_{r} be fixed. For p a prime, let $l_{i}=\operatorname{ord}_{p}\left(m_{i}\right)$. (For convenience, we suppress the dependence of l_{i} on p in the notation.) Let

$$
\begin{equation*}
\lambda_{p}=\sum_{i=1}^{r} l_{i} \varepsilon_{i} . \tag{19}
\end{equation*}
$$

Stability Assumption. The positive integer n satisfies the following property. Let $\alpha=\sum_{i=1}^{r} t_{i} \alpha_{i}$ be the largest positive root in the partial ordering. Then for every prime p,

$$
\begin{equation*}
n \geq \operatorname{gcd}\left(n,\|\alpha\|^{2}\right) \cdot d_{\lambda_{p}}(\alpha)=\operatorname{gcd}\left(n,\|\alpha\|^{2}\right) \cdot \sum_{i=1}^{r} t_{i}\left(l_{i}+1\right) \tag{20}
\end{equation*}
$$

Note that the right-hand side of (20) is clearly bounded for fixed choice of m_{1}, \cdots, m_{r}. We fix an n satisfying this assumption for the rest of the paper.

For example, if $\Phi=A_{r}$ and the inner product is chosen so that that $\|\alpha\|=1$ for each root α, the condition (20) becomes $n \geqslant \sum_{i=1}^{r} l_{i}$.

4 Definition of the twisted multiple Dirichlet series

Let $\mathcal{M}\left(\Omega^{r}\right)$ be as in [4], and let $\Psi \in \mathcal{M}\left(\Omega^{r}\right)$. We will define

$$
\begin{equation*}
Z_{\Psi}\left(s_{1}, \cdots, s_{r} ; m_{1}, \cdots, m_{r}\right)=\sum_{\mathfrak{c}_{1}, \cdots, \mathfrak{c}_{r}} H \Psi\left(\mathfrak{c}_{1}, \cdots, \mathfrak{c}_{r} ; m_{1}, \cdots, m_{r}\right) \mathbb{N}_{1}^{-2 s_{1}} \cdots \mathbb{N}_{r}^{-2 s_{r}} \tag{21}
\end{equation*}
$$

where the coefficients H will be described next; as in [4], the product

$$
H \Psi\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)=H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right) \Psi\left(C_{1}, \cdots, C_{r}\right)
$$

will be unchanged if C_{i} is multiplied by a unit, so (21) can be regarded as either a sum over $C_{i} \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times}$or of the ideals \mathfrak{c}_{i} that the C_{i} generate.

It remains to describe the twisted coefficients H. If

$$
\begin{equation*}
\operatorname{gcd}\left(C_{1} \cdots C_{r}, C_{1}^{\prime} \cdots C_{r}^{\prime}\right)=1 \tag{22}
\end{equation*}
$$

then

$$
\begin{gather*}
\frac{H\left(C_{1} C_{1}^{\prime}, \cdots, C_{r} C_{r}^{\prime} ; m_{1}, \cdots, m_{r}\right)}{H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right) H\left(C_{1}^{\prime}, \cdots, C_{r}^{\prime} ; m_{1}, \cdots, m_{r}\right)}= \\
\prod_{i=1}^{r}\left(\frac{C_{i}}{C_{i}^{\prime}}\right)^{\left\|\alpha_{i}\right\|^{2}}\left(\frac{C_{i}^{\prime}}{C_{i}}\right)^{\left\|\alpha_{i}\right\|^{2}} \prod_{i<j}\left(\frac{C_{i}}{C_{j}^{\prime}}\right)^{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}\left(\frac{C_{i}^{\prime}}{C_{j}}\right)^{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle} \tag{23}
\end{gather*}
$$

Moreover if $\operatorname{gcd}\left(m_{1}^{\prime} \cdots m_{r}^{\prime}, C_{1} \cdots C_{r}\right)=1$ we will have the multiplicativity

$$
\begin{array}{r}
H\left(C_{1}, \cdots, C_{r} ; m_{1} m_{1}^{\prime}, \cdots, m_{r} m_{r}^{\prime}\right)= \\
\left(\frac{m_{1}^{\prime}}{C_{1}}\right)^{-\left\|\alpha_{1}\right\|^{2}} \cdots\left(\frac{m_{r}^{\prime}}{C_{r}}\right)^{-\left\|\alpha_{r}\right\|^{2}} H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right) \tag{24}
\end{array}
$$

Equations (23) and (24) reduce the specification of the coefficients $H\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)$ to those of the form $H\left(p^{k_{1}}, \cdots, p^{k_{r}} ; p^{l_{1}}, \cdots, p^{l_{r}}\right)$ where p is a prime. To give these, let Φ_{w} be the set of all positive roots α such that $w(\alpha)$ is a negative root. The cardinality of Φ_{w} is equal to the length $l(w)$ of w in the Weyl group. Then we define

$$
\begin{equation*}
H\left(p^{k_{1}}, \ldots, p^{k_{r}} ; p^{l_{1}}, \ldots, p^{l_{r}}\right)=\prod_{\alpha \in \Phi_{w}} g_{\|\alpha\|^{2}}\left(p^{d_{\lambda_{p}}(\alpha)-1}, p^{d_{\lambda_{p}}(\alpha)}\right) \tag{25}
\end{equation*}
$$

where $d_{\lambda_{p}}(\alpha)$ is given by (9).

5 Local computations

In this section, we analyze our multiple Dirichlet series coefficients at powers of a single fixed prime p, and show that they contain Gauss sums. These will be used to form Kubota Dirichlet series in the next section.

For the remainder of this section, let l_{1}, \cdots, l_{r} be fixed non-negative integers, and let

$$
\lambda=\sum_{i=1}^{r} l_{i} \varepsilon_{i}
$$

as in the previous section.
We recall that on prime powers, the choices of k_{i} for which $H\left(p^{k_{1}}, \cdots, p^{k_{r}} ; p^{l_{1}}, \cdots, p^{l_{r}}\right)$ is non-zero are in one-to-one correspondence with elements $w \in W$, the Weyl group. We say that $\left(k_{1}, \cdots, k_{r}\right) \in \mathbb{Z}^{r}$ is associated to $w \in W$ with respect to λ if (8) is satisfied; in this case, we write

$$
\left(k_{1}, \cdots, k_{r}\right)=\operatorname{assoc}_{\lambda}(w)
$$

The following results are generalizations of Propositions 4.1, 4.2 of [4].

Proposition 2 Let $w \in W$ be such that $l\left(\sigma_{i} w\right)=l(w)+1$. Suppose that $\operatorname{assoc}_{\lambda}(w)=\left(k_{1}, \cdots, k_{r}\right) \in$ \mathbb{Z}^{r} and $\operatorname{assoc}_{\lambda}\left(\sigma_{i} w\right)=\left(h_{1}, \cdots, h_{r}\right)$. Let $d_{\lambda}=d_{\lambda}\left(w^{-1} \alpha_{i}\right)$ in the notation (9). Then

$$
h_{j}= \begin{cases}k_{i}+d_{\lambda} & \text { if } j=i \tag{26}\\ k_{i} & \text { if } j \neq i,\end{cases}
$$

and

$$
\begin{equation*}
H\left(p^{h_{1}}, \ldots, p^{h_{r}}\right)=g_{\left\|\alpha_{i}\right\|^{2}}\left(p^{d_{\lambda}-1}, p^{d_{\lambda}}\right) H\left(p^{k_{1}}, \ldots, p^{k_{r}}\right) \tag{27}
\end{equation*}
$$

Proof This is proved similarly to Prop. 4.1 of [4], but replacing ρ by $\rho+\lambda$ and d by d_{λ}.

Proposition 3 Let $d_{\lambda}=d_{\lambda}\left(w^{-1}\left(\alpha_{i}\right)\right)$ and let l_{1}, \ldots, l_{r} be fixed as above. For any $w \in W$, the monomial in the r complex variables $\boldsymbol{s}=\left(s_{1}, \ldots, s_{r}\right)$

$$
\mathbb{N} p^{\left(s_{i}-\frac{1}{2}\right)\left(d_{\lambda}-l_{i}-1\right)} \prod_{\alpha \in \Phi_{w}} \mathbb{N} p^{-2 B(\rho+\lambda-w(\rho+\lambda), \mathbf{s})}
$$

is invariant under the action of σ_{i} given in (6).
Proof The statement is equivalent to showing that

$$
\begin{equation*}
\frac{1}{2}\left(d_{\lambda}-l_{i}-1\right) \alpha_{i}+\rho+\lambda-w(\rho+\lambda) \tag{28}
\end{equation*}
$$

is orthogonal to α_{i}. Hence, it suffices to show (28) is fixed by σ_{i}, i.e.,

$$
\begin{equation*}
\sigma_{i}(\rho+\lambda)-\sigma_{i} w(\rho+\lambda)=\left(d_{\lambda}-l_{i}-1\right) \alpha_{i}+(\rho+\lambda)-w(\rho+\lambda) \tag{29}
\end{equation*}
$$

Since $\rho+\lambda-\sigma_{i}(\rho+\lambda)=\left(1+l_{i}\right) \alpha_{i}$ we can write (29) as $w(\rho+\lambda)-\sigma_{i} w(\rho+\lambda)=d_{\lambda} \alpha_{i}$, and indeed applying the definition (9)

$$
d_{\lambda} \alpha_{i}=\frac{2\left\langle w^{-1} \alpha_{i}, \rho+\lambda\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i}=\frac{2\left\langle\alpha_{i}, w(\rho+\lambda)\right\rangle}{\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \alpha_{i}=w(\rho+\lambda)-\sigma_{i} w(\rho+\lambda) .
$$

6 Preparing the global Dirichlet series

We preserve the notations above. In particular, m_{1}, \cdots, m_{r} are fixed integers with corresponding λ_{p} defined for each prime p as in (19). In our local computations, we showed a connection between the prime-power coefficients $H\left(p^{k_{1}}, \cdots, p^{k_{r}}\right)$ associated to pairs of Weyl group elements w and $\sigma_{i} w$ for a fixed simple reflection σ_{i} and Gauss sums. The next step is to translate this into a global notion. Once the correct definitions are given, it turns out to be relatively straightforward to generalize the proofs in [4], so we will omit many proof details which follow by very similar methods to [4].

In [4], the notion of admissibility for r-tuples of integers $\left(C_{1}, \cdots, C_{r}\right)$ in $\left(\mathfrak{o}_{S}\right)^{r}$ was defined. We generalize this in the following definition.

Definition 1 We say that $\left(C_{1}, \cdots, C_{r}\right)$ in $\left(\mathfrak{o}_{S}\right)^{r}$ is admissible with respect to λ if, for each prime p, there exists a Weyl group element $w_{p} \in W$ such that

$$
\left(\operatorname{ord}_{p}\left(C_{1}\right), \cdots, \operatorname{ord}_{p}\left(C_{r}\right)\right)=\operatorname{assoc}_{\lambda_{p}}\left(w_{p}\right) .
$$

For such $\left(C_{1}, \cdots, C_{r}\right)$, we say that C_{i} is i-reduced $i f$, for every p, we have $l\left(\sigma_{i} w_{p}\right)=l\left(w_{p}\right)+1$.
We note that if C_{1}, \ldots, C_{r} are nonzero elements of \mathfrak{o}_{S}, then $\left(C_{1}, \ldots, C_{r}\right)$ is admissible with respect to λ if and only if $H\left(C_{1}, \ldots, C_{r} ; m_{1}, \ldots, m_{r}\right) \neq 0$. This is immediate from the definition of H.

We have the following results.
Proposition 4 Let $C_{1}, \cdots, C_{i-1}, C_{i+1}, \cdots, C_{r}$ be nonzero elements of \mathfrak{o}_{S}. If there exists a C_{i} such that $\left(C_{1}, \cdots, C_{r}\right)$ is admissible with respect to λ, then there exists a C_{i}^{\prime} (modulo the action of $\mathfrak{o}_{S}^{\times}$) that is i-reduced. This C_{i}^{\prime} divides C_{i} and is uniquely determined up to multiplication by a unit. Moreover, for each prime p, if w_{p}^{\prime} is determined by the equality

$$
\left(\operatorname{ord}_{p}\left(C_{1}\right), \cdots, \operatorname{ord}_{p}\left(C_{i}^{\prime}\right), \cdots, \operatorname{ord}_{p}\left(C_{r}\right)\right)=\left(k_{1}, \cdots, k_{r}\right)=\operatorname{assoc}_{\lambda_{p}}\left(w_{p}^{\prime}\right)
$$

then either $\operatorname{ord}_{p}\left(C_{i}\right)=k_{i}$ or $\operatorname{ord}_{p}\left(C_{i}\right)=k_{i}+d_{\lambda}$, where $d_{\lambda}=d_{\lambda}\left(\left(w_{p}^{\prime}\right)^{-1} \alpha_{i}\right)$.
Proof The proof is similar to Proposition 5.2 of [4], replacing admissible by admissible with respect to λ and d by d_{λ}.

The multiple Dirichlet series is built out of H-coefficients of the form $H\left(C_{1}, \ldots, C_{r} ; m_{1}, \ldots, m_{r}\right)$ satisfying the multiplicativity relation (24). However, for convenience we will suppress the m_{i} 's from the notation. By Proposition $4, Z_{\Psi}\left(s_{1}, \cdots, s_{r}\right)=$

$$
\begin{align*}
& =\sum_{\substack{ \\
0 \neq C_{j} \in \mathfrak{o}_{S}^{\times} \backslash \mathfrak{o}_{S} \\
1 \leq j \leq r}} \mathbb{N} C_{1}^{-2 s_{1}} \cdots \mathbb{N} C_{r}^{-2 s_{r}} H\left(C_{1}, \cdots, C_{r}\right) \sum_{0 \neq D \in \mathfrak{o}_{S}^{\times} \backslash \mathfrak{o}_{S}}\left(D, C_{i}\right)_{S}^{\left\|\alpha_{i}\right\|^{2}} \\
& C_{1}, \cdots, C_{r} \text { admissible w.r.t. } \lambda \\
& C_{i} i \text { i-reduced } \tag{30}\\
& \times \frac{H\left(C_{1}, C_{2}, \cdots, D C_{i}, \cdots, C_{r}\right)}{H\left(C_{1}, C_{2}, \cdots, C_{i}, \cdots, C_{r}\right)} \prod_{j>i}\left(D, C_{j}\right)_{S}^{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle} \Psi_{i}^{C_{1}, \cdots, C_{r}}(D) \mathbb{N} D^{-2 s_{i}},
\end{align*}
$$

where we define

$$
\begin{equation*}
\Psi_{i}^{C_{1}, \ldots, C_{r}}(D)=\Psi\left(C_{1}, \ldots, C_{i} D, \ldots, C_{r}\right)\left(D, C_{i}\right)_{S}^{-\left\|\alpha_{i}\right\|^{2}} \prod_{j>i}\left(D, C_{j}\right)_{S}^{-2\left\langle\alpha_{i}, \alpha_{j}\right\rangle} \tag{31}
\end{equation*}
$$

to emphasize the dependence on D for fixed parameters C_{1}, \ldots, C_{r} in the inner sum. We recall
Lemma 3 ([4], Lemma 5.3) Let C_{1}, \ldots, C_{r} be fixed nonzero elements of \mathfrak{o}_{S}. Then with the notation (31), the function $\Psi_{i}^{C_{1}, \ldots, C_{r}} \in \mathcal{M}_{\left\|\alpha_{i}\right\|^{2}}(\Omega)$.

One can now show that the inner sum in (30) is a Kubota Dirichlet series. The key is to identify the quotient of H 's and Hilbert symbols in (30) as a Gauss sum. If the C_{i} and D are powers of a single prime p, this is (27), which is generalized in (33) below.

Lemma 4 Fix an integer $i \in\{1, \ldots, r\}$ and integers $\left(m_{1}, \ldots, m_{r}\right)$. If $\left(C_{1}, \ldots, C_{r}\right) \in \mathfrak{o}_{S}^{r}$ is admissible with respect to λ with C_{i} i-reduced, then

$$
\begin{equation*}
B_{i}=\prod_{j=1}^{r} C_{j}^{-2\left\langle\alpha_{j}, \alpha_{i}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle} \tag{32}
\end{equation*}
$$

is an \mathfrak{o}_{S} integer and for every $D \in \mathfrak{o}_{S}$ we have

$$
\begin{equation*}
\frac{H\left(C_{1}, \ldots, D C_{i}, \ldots, C_{r}\right)}{H\left(C_{1}, \ldots, C_{r}\right)}\left(D, C_{i}\right)_{S}^{\left\|\alpha_{i}\right\|^{2}} \prod_{j>i}\left(D, C_{j}\right)_{S}^{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}=g_{\left\|\alpha_{i}\right\|^{2}}\left(m_{i} B_{i}, D\right) \tag{33}
\end{equation*}
$$

Moreover for each prime p of \mathfrak{o}_{S} we have

$$
\begin{equation*}
\operatorname{ord}_{p}\left(B_{i}\right)=d_{\lambda_{p}}\left(w_{p}^{-1} \alpha_{i}\right)-l_{i}-1 \tag{34}
\end{equation*}
$$

where λ_{p} corresponds to the m_{j} as in (19), and w_{p} is determined by the condition

$$
\operatorname{assoc}_{\lambda_{p}}\left(w_{p}\right)=\left(\operatorname{ord}_{p}\left(C_{1}\right), \cdots, \operatorname{ord}_{p}\left(C_{r}\right)\right)
$$

The proof of this is similar to Lemma 5.3 of [4], with modifications similar to those above, and is omitted.

Using Lemmas 3 and 4, we may rewrite the Dirichlet series $Z_{\Psi}\left(s_{1}, \ldots, s_{r}\right)$ in terms of a Kubota Dirichlet series in the variable s_{i}.

Proposition 5 With notations as above, we have

$$
\begin{aligned}
& Z_{\Psi}\left(s_{1}, \ldots, s_{r}\right)= \\
& \sum_{\substack{0 \neq C_{j} \in \mathfrak{o}_{S} / \mathfrak{o}_{S}^{\times} \\
\left(C_{1}, \cdots, C_{r}\right) \text { admissible } \\
C_{i} \text { i-reduced }}} \mathbb{N} C_{1}^{-2 s_{1}} \cdots \mathbb{N} C_{r}^{-2 s_{r}} H\left(C_{1}, \ldots, C_{r}\right) \mathcal{D}_{\left\|\alpha_{i}\right\|^{2}}\left(s_{i}, \Psi_{i}^{C_{1}, \ldots, C_{r}}, m_{i} B_{i}\right),
\end{aligned}
$$

where, for fixed C_{1}, \cdots, C_{r}, the coefficient B_{i} is defined in (32).
Proof We have already rewritten the Dirichlet series $Z_{\Psi}\left(s_{1}, \ldots, s_{r}\right)$ in equation (30) in terms of sums over $C_{j}, j=1, \ldots, r$ with $C_{i} i$-reduced. The proposition then follows immediately from the previous two lemmas and the definition of $\mathcal{D}_{t}(s, \Psi, C)$ for S-integer C and $\Psi \in \mathcal{M}_{t}(\Omega)$, where $t=\left\|\alpha_{i}\right\|^{2}$.

7 Global functional equations

Using Proposition 5 as our starting point, we are finally ready to prove functional equations corresponding to the transformations σ_{i} defined in (6), for each $i=1, \cdots, r$. First we recall some notation from [4].

Let \mathcal{A} be the ring of (Dirichlet) polynomials in $q_{v}^{ \pm 2 s_{1}}, \ldots, q_{v}^{ \pm 2 s_{r}}$ where v runs through the finite set of places $S_{\text {fin }}$, and let $\mathfrak{M}=\mathcal{A} \otimes \mathcal{M}\left(\Omega^{r}\right)$. We may regard elements of \mathfrak{M} as functions $\Psi: \mathbb{C}^{r} \times\left(F_{S}^{\times}\right)^{r} \longrightarrow \mathbb{C}$ such that for any fixed $\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{C}^{r}$ the function

$$
\left(C_{1}, C_{2}, \ldots, C_{r}\right) \longmapsto \Psi\left(s_{1}, \ldots, s_{r} ; C_{1}, \ldots, C_{r}\right)
$$

defines an element of $\mathcal{M}\left(\Omega^{r}\right)$, while for any $\left(C_{1}, \ldots, C_{r}\right) \in\left(F_{S}^{\times}\right)^{r}$, the function

$$
\left(s_{1}, \ldots, s_{r}\right) \longmapsto \Psi\left(s_{1}, \ldots, s_{r} ; C_{1}, \ldots, C_{r}\right)
$$

is an element of \mathcal{A}. We will sometimes use the notation

$$
\begin{equation*}
\Psi_{s}\left(C_{1}, \ldots, C_{r}\right)=\Psi\left(s_{1}, \ldots, s_{r} ; C_{1}, \ldots, C_{r}\right), \quad s=\left(s_{1}, \ldots, s_{r}\right) \in \mathbb{C}^{r} \tag{35}
\end{equation*}
$$

We identify $\mathcal{M}\left(\Omega^{r}\right)$ with its image $1 \otimes \mathcal{M}\left(\Omega^{r}\right)$ in \mathfrak{M}; this just consists of the Ψ_{s} that are independent of $s \in \mathbb{C}^{r}$.

The operators σ_{i} on \mathbb{C}^{r} are defined in (6). Define corresponding operators σ_{i} on \mathfrak{M} by

$$
\begin{array}{r}
\left(\sigma_{i} \Psi_{s}\right)\left(C_{1}, \cdots, C_{r}\right)=\left(\sigma_{i} \Psi\right)\left(s_{1}, \cdots, s_{r} ; C_{1}, \cdots, C_{r}\right)= \\
\sum_{\eta \in F_{S}^{\times} / F_{S}^{\times, n}}\left(\eta, C_{i}\right)_{S}^{\left\|\alpha_{i}\right\|^{2}} \prod_{j>i}\left(\eta, C_{j}^{2\left\langle\alpha_{i}, \alpha_{j}\right\rangle}\right)_{S} P_{\eta m_{i} B_{i}}\left(s_{i}\right) \\
\Psi\left(\sigma_{i}\left(s_{1}, \cdots, s_{r}\right) ; C_{1}, C_{2}, \cdots, \eta^{-1} C_{i}, \cdots, C_{r}\right) \tag{36}
\end{array}
$$

where, as in (32),

$$
B_{i}=\prod_{j} C_{j}^{-2\left\langle\alpha_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle}=C_{i}^{-2} \prod_{j \neq i} C_{j}^{-2\left\langle\alpha_{i}, \alpha_{j}\right\rangle /\left\langle\alpha_{i}, \alpha_{i}\right\rangle}
$$

We have arranged this definition to give a clean formulation of the functional equations. Note that the Dirichlet polynomials P are associated to nth power classes which depend on the fixed parameter m_{i} in $\left(m_{1}, \cdots, m_{r}\right)$, though we suppress this from the notation for the action σ_{i} on \mathfrak{M}.

Proposition 6 If $\Psi \in \mathfrak{M}$, then $\sigma_{i} \Psi$ is in \mathfrak{M}.
Proof See [4], Prop. 8, for a proof (replace all instances of C_{0} there by $m_{i} B_{i}$ to obtain the present result).

Each functional equation corresponding to $\sigma_{i} \in W$ is inherited from a functional equation for the Kubota Dirichlet series appearing in Proposition 5. These functional equations are formalized in the following result.

Lemma 5 Given an element $\Psi_{s}\left(C_{1}, \ldots, C_{r}\right) \in \mathfrak{M}$, we have

$$
\mathcal{D}_{\left\|\alpha_{i}\right\|^{2}}^{*}\left(s_{i}, \Psi_{i}^{C_{1}, \ldots, C_{r}}, m_{i} B_{i}\right)=\mathbb{N}\left(m_{i} B_{i}\right)^{1-2 s_{i}} \mathcal{D}_{\left\|\alpha_{i}\right\|^{2}}^{*}\left(1-s_{i},\left(\sigma_{i} \Psi\right)_{i}^{C_{1}, \ldots, C_{r}}, m_{i} B_{i}\right)
$$

where $\mathcal{D}_{\left\|\alpha_{i}\right\|^{2}}^{*}$ is as in (13).

Proof This follows from (15). To check the way in which the Ψ function changes under the functional equation, this follows from the definition in (36) as in Lemma 5.7 of [4], with the substitution $C_{0}=m_{i} B_{i}$ in every instance it appears.

Let \mathfrak{W} denote the group of automorphisms of \mathfrak{M} generated by σ_{i}. This will turn out to be the group of functional equations for the multiple Dirichlet series. The natural homomorphism $\mathfrak{W} \longrightarrow W$ gives an action of \mathfrak{W} on \mathbb{C}^{r} induced by the action of W, and if $w \in \mathfrak{W}$ we will denote by $w \boldsymbol{s}$ the effect of w on $\boldsymbol{s} \in \mathbb{C}^{r}$ in this induced action. Further, recall the definition of $n(\alpha)$ for $\alpha \in \Phi$ given in (16) by

$$
n(\alpha)=\frac{n}{\operatorname{gcd}\left(n,\|\alpha\|^{2}\right)}
$$

Theorem 2 The function $Z_{\Psi}^{*}\left(\mathbf{s} ; m_{1}, \ldots, m_{r}\right)$ has meromorphic continuation to the complex space \mathbb{C}^{r}. Moreover, for each $w \in \mathfrak{W}$ we may identify w with its image in the Weyl group and writing $w=\sigma_{j_{1}} \cdots \sigma_{j_{k}}$ as a product of simple reflections, $Z_{\Psi}^{*}\left(\mathbf{s} ; m_{1}, \ldots, m_{r}\right)$ satisfies the functional equation

$$
\begin{equation*}
Z_{w \Psi}^{*}\left(w \boldsymbol{s} ; m_{1}, \ldots, m_{r}\right)=\prod_{i=1}^{k} m_{j_{i}}^{1-2\left(\sigma_{j_{1}} \cdots \sigma_{j_{i-1}}\right)\left(s_{j_{i}}\right)} Z_{\Psi}^{*}\left(s ; m_{1}, \ldots, m_{r}\right) \tag{37}
\end{equation*}
$$

where the action of w on \mathfrak{M} is similarly given by the composition of simple reflections σ_{i}. It is analytic except along the hyperplanes $B\left(\alpha ; s-\frac{1}{2} \rho^{\vee}\right)=\frac{1}{2 n(\alpha)}$, where α runs through $\Phi, \frac{1}{2} \rho^{\vee}=$ $\left(\frac{1}{2}, \cdots, \frac{1}{2}\right)$, and B is defined by (2); along these hyperplanes it can have simple poles.

Observe that the equation $B\left(-\alpha ; s-\frac{1}{2} \rho^{\vee}\right)=\frac{1}{2 n(\alpha)}$ is equivalent to $B\left(\alpha ; s-\frac{1}{2} \rho^{\vee}\right)=-\frac{1}{2 n(\alpha)}$, so the polar hyperplanes occur in parallel pairs.
Proof The proof is based on Bochner's tube-domain Theorem. We sketch this argument below, and refer the reader to [3] where the case $\Phi=A_{2}$ is worked out in full detail, and to [4] where a similar argument to the one below is applied for $\left(m_{1}, \cdots, m_{r}\right)=(1, \cdots, 1)$.

From the standard estimates for the Gauss sums and Proposition 5, it follows that the original Dirichlet series defining Z_{Ψ} is absolutely convergent in a translate of the fundamental Weyl chamber, denoted

$$
\Lambda_{0}=\left\{s=\left(s_{1}, \cdots, s_{r}\right) \quad \left\lvert\, \quad \Re\left(s_{j}\right)>\frac{3}{4}\right., \quad j=1, \cdots, r\right\}
$$

Using standard growth estimates for the Kubota Dirichlet series, one sees that the expression in Proposition 5 is analytic in the convex hull of $\Lambda_{0} \cup \sigma_{i} \Lambda_{0}$, which we will denote by Λ_{i}. On this region, we claim that for the simple reflection σ_{i} one has

$$
Z_{\sigma_{i} \Psi}^{*}\left(\sigma_{i} s\right)=\mathbb{N}\left(m_{i}\right)^{1-2 s_{i}} Z_{\Psi}^{*}(s) .
$$

Recalling the effect of the transformation σ_{i} on \mathbb{C}^{r} from (6), we note that the Kubota Dirichlet series appearing in Proposition 5 is essentially invariant under this transformation by Lemma 5, with the implicit Ψ function mapped to the appropriately defined $\sigma_{i} \Psi$. That is, the Kubota Dirichlet series functional equation produces a factor of $\mathbb{N}\left(m_{i} B_{i}\right)^{1-2 s_{i}}$. Thus, it remains to show that for each of the r-tuples $\left(C_{1}, \cdots, C_{r}\right)$ that are admissible with respect to λ with $C_{i} i$-reduced, the corresponding terms on the right-hand side of Proposition 5 , multiplied by $\mathbb{N}\left(m_{i} B_{i}\right)^{1 / 2-s_{i}}$ are invariant under
$\boldsymbol{s} \mapsto \sigma_{i}(\boldsymbol{s})$ given explicitly in (6). This follows from Proposition 3, since with our definitions, when C_{1}, \cdots, C_{r} is admissible with respect to λ and C_{i} is i-reduced,

$$
\mathbb{N} C_{1}^{-2 s_{1}} \cdots \mathbb{N} C_{r}^{-2 s_{r}}=\prod_{p} \prod_{\alpha \in \Phi_{w}} \mathbb{N} p^{-2 B(\rho+\lambda-w(\rho+\lambda), \mathbf{s})}
$$

and, by (34)

$$
\mathbb{N} B_{i}=\mathbb{N} m_{i}^{-1} \prod_{p} \mathbb{N} p^{d_{\lambda_{p}}\left(w_{p}^{-1} \alpha_{i}\right)-1}
$$

Finally, regarding the normalizing factor, one factor $G_{\alpha_{i}}(s) \zeta_{\alpha_{i}}(s)$ from (18) is needed to normalize $\mathcal{D}_{\left\|\alpha_{i}\right\|^{2}}^{*}\left(s_{i}, \Psi_{i}^{C_{1}, \ldots, C_{r}}, C_{0}\right)$ in Proposition 5 ; the remaining factors are permuted amongst themselves since σ_{i} permutes $\Phi^{+}-\left\{\alpha_{i}\right\}$.

Arguing as in [3] we obtain analytic continuation to any simply-connected region Λ^{\prime} that is a union of W-translates of the Λ_{i} obtained by composing functional equations. We may choose Λ^{\prime} so that its convex hull is all of \mathbb{C}^{r}. The meromorphic continuation to all of \mathbb{C}^{r} follows from Bochner's tube-domain Theorem (Bochner [1] or Hörmander [9], Theorem 2.5.10). As in [3], one actually applies Bochner's theorem to the function

$$
Z_{\Psi}(s) \prod_{\alpha \in \Phi}\left(B\left(\alpha ; s-\frac{1}{2} \rho^{\vee}\right)-\frac{1}{2 n(\alpha)}\right)
$$

since inclusion of the factors to cancel the poles of Z_{Ψ} gives a function that is everywhere analytic.

We have not proved that the natural map $\mathfrak{W} \longrightarrow W$ is an isomorphism. It is highly likely that this is true, but not too important for the functional equations as we will now see. We recall from the introduction that we defined \mathfrak{M}^{\prime} to be the quotient of \mathfrak{M} by the kernel of the map $\Psi \longmapsto Z_{\Psi}$.

Corollary 1 If $w \in \mathfrak{W}$ is in the kernel of the map $\mathfrak{W} \longrightarrow W$ then $Z_{\Psi}=Z_{w \Psi}$. Thus there is an action of W on \mathfrak{M}^{\prime} that is compatible with the action of \mathfrak{W} on \mathfrak{M}.

Proof Since such a w acts trivially on \mathbb{C}^{r}, (37) implies that Z_{Ψ} and $Z_{w \Psi}$ are multiple Dirichlet series that agree in the region of absolute convergence. Hence they are equal.

Thus Z_{Ψ} can be regarded as depending on $\Psi \in \mathfrak{M}^{\prime}$, on which W acts, and so W can truly be regarded as the group of functional equations of the Weyl group multiple Dirichlet series. This completes the generalization of results from [4].

8 The Gelfand-Tsetlin pattern conjecture

In this section, we turn to the case $\Phi=A_{r}$ that was investigated in [5]. In this section $\Phi=A_{r}$ and $\|\alpha\|=1$ for all roots α. We will then show that the multiple Dirichlet series constructed above (now known to have a group of functional equations according to Theorem 2) are in fact the same as the multiple Dirichlet series given in [5] via a combinatorial prescription in terms of strict Gelfand-Tsetlin patterns.

Let us recall the description of these Weyl group multiple Dirichlet series in [5]. Recall that a Gelfand-Tsetlin pattern is a triangular array of integers

$$
\mathfrak{T}=\left\{\begin{array}{cccccccc}
a_{00} & & a_{01} & & a_{02} & \ldots & & a_{0 r} \tag{38}\\
& a_{11} & & a_{12} & & & a_{1 r} & \\
& & \ddots & & & . & & \\
& & & & a_{r r} & & &
\end{array}\right\}
$$

where the rows interleave; that is, $a_{i-1, j-1} \geqslant a_{i, j} \geqslant a_{i-1, j}$. The pattern is strict if each row is strictly decreasing. The strict Gelfand-Tsetlin pattern \mathfrak{T} in (38) is left-leaning at (i, j) if $a_{i, j}=a_{i-1, j-1}$, right-leaning at (i, j) if $a_{i, j}=a_{i-1, j}$, and special at (i, j) if $a_{i-1, j-1}>a_{i, j}>a_{i-1, j}$.

Given a strict Gelfand-Tsetlin pattern, for $j \geq i$ let

$$
\begin{equation*}
s_{i j}=\sum_{k=j}^{r} a_{i k}-\sum_{k=j}^{r} a_{i-1, k}, \tag{39}
\end{equation*}
$$

and define

$$
\gamma(i, j)= \begin{cases}\mathbb{N} p^{s_{i j}} & \text { if } \mathfrak{T} \text { is right-leaning at }(i, j) \\ g\left(p^{s_{i j}-1}, p^{s_{i j}}\right) & \text { if } \mathfrak{T} \text { is left-leaning at }(i, j) \\ \mathbb{N} p^{s_{i j}}\left(1-\mathbb{N} p^{-1}\right) & \text { if }(i, j) \text { is special and } n \mid s_{i j} \\ 0 & \text { if }(i, j) \text { is special and } n \nmid s_{i j}\end{cases}
$$

Also, define

$$
\begin{equation*}
G(\mathfrak{T})=\prod_{j \geqslant i \geqslant 1} \gamma(i, j) \tag{40}
\end{equation*}
$$

Given non-negative integers $k_{i}, l_{i}, 1 \leq i \leq r$, and a prime p, we define the p-th contribution to the coefficient of a multiple Dirichlet series by

$$
\begin{equation*}
H_{G T}\left(p^{k_{1}}, \cdots, p^{k_{r}} ; p^{l_{1}}, \cdots, p^{l_{r}}\right)=\sum_{\mathfrak{T}} G(\mathfrak{T}) \tag{41}
\end{equation*}
$$

where the sum is over all strict Gelfand-Tsetlin patterns \mathfrak{T} with top row

$$
l_{1}+\ldots+l_{r}+r, l_{2}+\ldots+l_{r}+r-1, \cdots, l_{r}+1,0
$$

such that for each $i, 1 \leq i \leq r$,

$$
\begin{equation*}
\sum_{j=i}^{r}\left(a_{i j}-a_{0, j}\right)=k_{i} \tag{42}
\end{equation*}
$$

Note that $\left(k_{1}, \cdots, k_{r}\right)=k(\mathfrak{T})$ in the notation of [5]. The general coefficient of the multiple Dirichlet series, $H_{G T}\left(C_{1}, \cdots, C_{r} ; m_{1}, \cdots, m_{r}\right)$, is then defined by means of twisted multiplicativity as in (23), (24). In [5] we conjecture that these multiple Dirichlet series have meromorphic continuation and satisfy functional equations. We prove this below for n satisfying the Stability Assumption.

We begin by relating the Stability Assumption to the Gelfand-Tsetlin patterns. We recall from [5] that a strict Gelfand-Tsetlin pattern is stable if every entry equals one of the two directly above it (unless, of course, it is in the top row). If the top row is fixed, there are $(r+1)$! strict stable patterns.

Proposition 7 Suppose that the Stability Assumption (20) holds. If \mathfrak{T} appearing in the sum (41) is not stable, then $G(\mathfrak{T})=0$.

Proof Suppose that \mathfrak{T} is special at (i, j) and that (20) holds. Recall that $s_{i j}$ is given by (39). Since $a_{i, k} \geq a_{i-1, k}$ for all $k \geq i$ and $a_{i, j}>a_{i-1, j}$ it follows that $s_{i j}>0$. Similarly, since $a_{i, k} \leq a_{i-1, k-1}$ for all $k \geq i$ and $a_{i, j}<a_{i-1, j-1}$, it follows that

$$
s_{i j}=\sum_{k=j}^{r} a_{i k}-\sum_{k=j}^{r} a_{i-1, k}<\sum_{k=j}^{r} a_{i-1, k-1}-\sum_{k=j}^{r} a_{i-1, k}=a_{i-1, j-1}-a_{i-1, r}
$$

Since each entry of \mathfrak{T} is at most $l_{1}+\cdots+l_{r}+r$, it follows that $s_{i, j}<n$. But then $0<s_{i j}<n$, and this implies that n does not divide $s_{i j}$. Hence $\gamma(i, j)=0$, and $G(\mathfrak{T})=0$, as claimed.

We identify the A_{r} root system with the set of vectors $\mathrm{e}_{i}-\mathrm{e}_{j}$ with $i \neq j$ where

$$
\mathrm{e}_{i}=(0, \cdots, 1, \cdots, 0) \in \mathbb{R}^{r+1}, \quad 1 \text { in the } i \text {-th position. }
$$

The simple positive roots are $\alpha_{i}=\mathrm{e}_{i}-\mathrm{e}_{i+1}$. The root system lies in the hyperplane V of \mathbb{R}^{r+1} orthogonal to the vector $\sum \mathrm{e}_{i}$. Particularly $\rho=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha$ and the fundamental dominant weights ε_{i} are given by

$$
\rho=\left(\frac{r}{2}, \frac{r}{2}-1, \cdots,-\frac{r}{2}\right), \quad \varepsilon_{i}=(1, \cdots, 1,0, \cdots, 0)-\frac{i}{r}(1, \cdots, 1),
$$

where in the definition of ε_{i} there are i 1's in the first vector. The action of $W=S_{r+1}$ on vectors in \mathbb{R}^{r+1} is by

$$
w\left(t_{1}, t_{2}, t_{3}, \cdots, t_{r+1}\right)=\left(t_{w^{-1}(1)}, t_{w^{-1}(2)}, t_{w^{-1}(3)}, t_{w^{-1}(4)}, \cdots, t_{w^{-1}(r+1)}\right)
$$

Suppose that \mathfrak{T} is a strict Gelfand-Tsetlin pattern with $a_{0 r}=0$. We may find nonnegative integers l_{i} so that the top row of the pattern is

$$
\begin{equation*}
l(r), \cdots, l(0) \tag{43}
\end{equation*}
$$

with

$$
l(k)=k+l_{r-k+1}+\cdots+l_{r}, \quad 1 \leqslant k \leqslant r, \quad l(0)=0
$$

Thus $a_{0 j}=l(r-j)$. Let $\lambda=\sum l_{i} \varepsilon_{i}$. We call λ the dominant weight associated with \mathfrak{T}. We will associate a Weyl group element $w \in W$ with each \mathfrak{T} that is stable in the next result.

Proposition 8 Let \mathfrak{T} be a stable strict Gelfand-Tsetlin pattern with $a_{0 r}=0$, and with associated dominant weight vector λ. Define nonnegative integers k_{1}, \cdots, k_{r} by (42) and also let $k_{r+1}=k_{0}=0$. Then there exists a unique element $w \in W=S_{r+1}$ such that

$$
\begin{equation*}
\rho+\lambda-w(\rho+\lambda)=\left(k_{1}, k_{2}-k_{1}, k_{3}-k_{2}, \cdots,-k_{r}\right)=\sum k_{i} \alpha_{i} . \tag{44}
\end{equation*}
$$

In fact, for $0 \leqslant i \leqslant r$

$$
\begin{equation*}
k_{i}-k_{i+1}+l(r-i)=l\left(r+1-w^{-1}(i+1)\right) \tag{45}
\end{equation*}
$$

is the unique element in the i-th row that is not in the $(i+1)$-th row. We have

$$
\begin{array}{r}
\rho+\lambda-w(\rho+\lambda)= \\
\left(l(r)-l\left(r+1-w^{-1}(1)\right), \cdots, l(0)-l\left(r+1-w^{-1}(r+1)\right)\right) \tag{46}
\end{array}
$$

Proof Let R be the top row (43) of \mathfrak{T}. With $\lambda=\sum l_{i} \varepsilon_{i}$ the vector $\rho+\lambda$ differs from the top row (43) by a multiple of $(1, \cdots, 1)$, which is canceled away when we compute $\rho+\lambda-w(\rho+\lambda)$. Thus it is equivalent to show that $R-w(R)=\sum k_{i} \alpha_{i}$ for a unique permutation $w \in S_{r+1}$, or in other words, that $R-\sum k_{i} \alpha_{i}$ is a permutation of R. By (42)

$$
k_{i}-k_{i+1}+l(r-i)=k_{i}-k_{i+1}+a_{0, i}=\left(\sum_{j=i}^{r} a_{i, j}\right)-\left(\sum_{j=i+1}^{r} a_{i+1, j}\right)
$$

Remembering the pattern is stable, the terms in the second sum may all be found in the first sum, so

$$
k_{i}-k_{i+1}+l(r-i)=a_{i j}
$$

where $a_{i j}$ is the unique element of the i-th row that is not in the $(i+1)$-th row. Now (46) and (45) are also clear.

We now develop some facts necessary to compare the Gelfand-Tsetlin multiple Dirichlet series to the Weyl group multiple Dirichlet series in the twisted stable case.

Lemma 6 Let \mathfrak{T} be a stable strict Gelfand-Tsetlin pattern with $a_{0 r}=0$. For $j \geq 1$, we have

$$
\begin{array}{r}
\left\{a_{j j}, a_{j, j+1}, \cdots, a_{j, r}\right\}= \\
\left\{k_{j}-k_{j+1}+l(r-j), k_{j+1}-k_{j+2}+l(r-j-1), \cdots, k_{r-1}-k_{r}+l(1), k_{r}+l(0)\right\}= \\
\left\{l\left(r+1-w^{-1}(j+1)\right), l\left(r+1-w^{-1}(j+2)\right), \cdots, l\left(r+1-w^{-1}(r+1)\right)\right\}
\end{array}
$$

Proof The statement follows by induction from the fact that $k_{i}-k_{i+1}+l(r-i)$ is the unique element of the i-th row that is not in the $(i-1)$-th row.

For $w \in S_{r+1}$, an i-inversion is a j such that $i<j \leq r+1$ but $w(i)>w(j)$.
Proposition 9 Let \mathfrak{T} be a stable strict Gelfand-Tsetlin pattern with $a_{0 r}=0$, and let $w \in S_{r+1}$ be associated to \mathfrak{T} as in Proposition 8. Then the number of i-inversions of w^{-1} equals the number of left-leaning entries in the i-th row of \mathfrak{T}.

For example, let w^{-1} be the permutation (143), and take $\lambda=0$. We find that $\rho-w(\rho)=$ $(3,0,-2,-1)=3 \alpha_{1}+3 \alpha_{2}+\alpha_{3}$ and so the corresponding Gelfand-Tsetlin pattern is the unique pattern with $\left(k_{1}, k_{2}, k_{3}\right)=(3,3,1)$. This pattern is

$$
\mathfrak{T}=\left\{\begin{array}{ccccccc}
3 & & 2 & & 1 & & 0 \\
& \hat{3} & & \hat{2} & & \hat{1} & \\
& & \hat{3} & & 1 & & \\
& & & 1 & & &
\end{array}\right\}
$$

where we have marked the location of the left-leaning entries. The number of i-inversions of w^{-1} is:

i	i-inversions of w^{-1}	number
1	$(1,2),(1,3),(1,4)$	3
2	$(2,3)$	1
3	none	0

As Proposition 9 states, the number of i-inversions of w^{-1} determines the number of left-leaning entries in the i-th row; since the i-inversions are obviously forced to the left in a stable pattern, this number is also the location of the last left-leaning entry.
Proof The i-th row, together with the rows immediately above and below, are:

$$
\begin{array}{cccccccccc}
a_{i-1, i-1} & & a_{i-1, i} & & a_{i-1, i+1} & & \cdots & & a_{i-1, r-1} & \\
& a_{i, i} & & a_{i, i+1} & & \cdots & & a_{i, r-1} & & a_{i-1, r} \\
& & a_{i+1, i+1} & & a_{i+1, i+2} & & \cdots & & a_{i+1, r} &
\end{array}
$$

If we assume that there are exactly m left-leaning entries in the i-th row, then

$$
\begin{equation*}
a_{i, i}=a_{i-1, i-1}, \cdots, a_{i, i+m-1}=a_{i-1, i-2+m} \tag{47}
\end{equation*}
$$

while

$$
\begin{equation*}
a_{i, i+m}=a_{i-1, i+m}, \cdots, a_{i, r}=a_{i-1, r} \tag{48}
\end{equation*}
$$

The number of i-inversions of w^{-1} is the number of elements of the set

$$
\left\{w^{-1}(i+1), \cdots, w^{-1}(r+1)\right\}
$$

that are less than $w^{-1}(i)$. Since the function l is monotone, this equals the number of elements of the set

$$
\begin{equation*}
\left\{l\left(r+1-w^{-1}(i+1)\right), \cdots, l\left(r+1-w^{-1}(r+1)\right)\right\} \tag{49}
\end{equation*}
$$

that are greater than $l\left(r+1-w^{-1}(i)\right)$. By Lemma 6 , the numbers in the set (49) are just the elements of the i-th row of \mathfrak{T}, and $l\left(r+1-w^{-1}(i)\right)$ is the unique element of the $(i-1)$-th row that doesn't occur in the i-th row. Thus the elements of the i-th row that are greater than $l\left(r+1-w^{-1}(i)\right)$ are precisely the left-leaning entries in the row.

Theorem 3 Suppose that $\Phi=A_{r}$ and that \langle,$\rangle is chosen so that \|\alpha\|=1$ for all $\alpha \in \Phi$. Suppose also that the Stability Assumption (20) holds.
(i) Let \mathfrak{T} be a stable strict Gelfand-Tsetlin pattern, and let $G(\mathfrak{T})$ be the product of Gauss sums defined in (40). Let w be the Weyl group element associated to \mathfrak{T} in Proposition 8. Then

$$
G(\mathfrak{T})=\prod_{\alpha \in \Phi_{w}} g\left(p^{d_{\lambda}(\alpha)-1}, p^{d_{\lambda}(\alpha)}\right)
$$

matching the definition as in (25) where $d_{\lambda}(\alpha)$ is given by (9).
(ii)

$$
H\left(C_{1}, \cdots, C_{r} ; m_{1} \cdots, m_{r}\right)=H_{G T}\left(C_{1}, \cdots, C_{r} ; m_{1} \cdots, m_{r}\right)
$$

That is, the Weyl group multiple Dirichlet series is the same as the series defined by the GelfandTsetlin description in the twisted stable case.

Proof Since both coefficients are obtained from their prime-power parts by means of twisted multiplicativity, part (i) implies part (ii).

We turn to the proof of part (i). Since \mathfrak{T} is stable, we have $s_{i j}=0$ if \mathfrak{T} is right-leaning at (i, j). Thus

$$
G(\mathfrak{T})=\prod_{(i, j) \text { left-leaning }} g\left(p^{s_{i j}-1}, p^{s_{i j}}\right)
$$

where the product is over the left-leaning entries of the Gelfand-Tsetlin pattern corresponding to w whose top row is (43).

It suffices to check that the set of $s_{i j}$ at left-leaning entries in the Gelfand-Tsetlin pattern corresponding to w coincides with the set of $d_{\lambda}(\alpha)$ as α runs over Φ_{w}. In fact we shall show a slightly sharper statement, namely that the left-leaning entries in row i correspond exactly to a certain set of roots in Φ_{w}.

To give this more precisely, we require some notation. Recall that we have identified the roots of A_{r} with the vectors $\mathrm{e}_{i}-\mathrm{e}_{j}, 1 \leq i \neq j \leq r+1$. The action of a permutation $w \in S_{r+1}$ on the corresponding vectors then becomes:

$$
w\left(\mathrm{e}_{i}-\mathrm{e}_{j}\right)=\mathrm{e}_{w(i)}-\mathrm{e}_{w(j)}
$$

Fix w. Observe that (i, j) is an i-inversion for w^{-1} (that is, $i<j$ but $\left.w^{-1}(j)<w^{-1}(i)\right)$ if and only if the root

$$
\alpha_{i, j, w}:=\mathrm{e}_{w^{-1}(j)}-\mathrm{e}_{w^{-1}(i)}
$$

is in Φ_{w}. Indeed, $\alpha_{i, j, w}$ is positive if and only if $w^{-1}(j)<w^{-1}(i)$, and $w\left(\alpha_{i, j, w}\right)=\mathrm{e}_{j}-\mathrm{e}_{i}$, which is negative if and only if $j>i$. We will compute the contribution from the set of $\alpha_{i, j, w}$ for each fixed i.

First, we compute $d_{\lambda}\left(\alpha_{i, j, w}\right)$. We have

$$
\rho=\frac{1}{2} \sum_{m=1}^{r+1}(r+2-2 m) \mathrm{e}_{m}
$$

Also, since $\alpha_{i}=\mathrm{e}_{i}-\mathrm{e}_{i+1}$, we have

$$
\alpha_{i, j, w}=\sum_{k=w^{-1}(j)}^{w^{-1}(i)-1} \alpha_{k}
$$

Recall that $\lambda=\sum_{i=1}^{r} l_{i} \varepsilon_{i}$, where $\left\{\varepsilon_{i}\right\}$ are the fundamental dominant weights. Since $\left\langle\alpha_{i, j, w}, \alpha_{i, j, w}\right\rangle=$ 2, we find that

$$
d_{\lambda}\left(\alpha_{i, j, w}\right)=2 \frac{\left\langle\rho+\lambda, \alpha_{i, j, w}\right\rangle}{\left\langle\alpha_{i, j, w}, \alpha_{i, j, w}\right\rangle}=w^{-1}(i)-w^{-1}(j)+\sum_{k=w^{-1}(j)}^{w^{-1}(i)-1} l_{k}
$$

Now we consider the set of $d_{\lambda}\left(\alpha_{i, j, w}\right)$ as j varies over the numbers such that (i, j) is a i-inversion for w^{-1}. We see that $w^{-1}(j)$ runs through the set

$$
\left\{1, \cdots, w^{-1}(i)-1\right\}-\left\{w^{-1}(1), \cdots, w^{-1}(i-1)\right\}
$$

where as usual if X and Y are sets then $X-Y=\{x \in X \mid x \notin Y\}$. Let

$$
D_{i}=\left\{d_{\lambda}\left(\alpha_{i, j, w}\right) \mid(i, j) \text { is an } i \text {-inversion for } w^{-1}\right\}
$$

Then we obtain the following value for the set D_{i} :

$$
\begin{aligned}
D_{i}= & \left\{1+l_{w^{-1}(i)-1}, 2+l_{w^{-1}(i)-2}+l_{w^{-1}(i)-1}, \cdots, w^{-1}(i)-1+l_{1}+\cdots+l_{w^{-1}(i)-1}\right\} \\
& -\left\{w^{-1}(i)-w^{-1}(j)+l_{w^{-1}(j)}+\cdots l_{w^{-1}(i)-1} \mid j<i \text { and } w^{-1}(j)<w^{-1}(i)\right\} .
\end{aligned}
$$

Now we turn to the Gauss sums obtained from the Gelfand-Tsetlin pattern. Suppose that there are $b_{i} i$-inversions for w^{-1}. By Proposition 9 the first b_{i} entries of the i-th row are the left-leaning entries, and the nontrivial Gauss sums in the i-th row come from the quantities $s_{i j}, i \leqslant j \leqslant i+b_{i}-1$. Recall that every entry in the stable strict Gelfand-Tsetlin pattern is either left-leaning or rightleaning. We thus have $a_{i j}=a_{i-1, j-1}$ for $i \leqslant j \leqslant i+b_{i}-1$ and $a_{i j}=a_{i-1, j}$ for $j \geqslant i+b_{i}$. The sum for $s_{i j}$ telescopes:

$$
\begin{aligned}
s_{i j} & =\left(a_{i j}-a_{i-1, j}\right)+\left(a_{i, j+1}-a_{i-1, j+1}\right)+\cdots+\left(a_{i r}-a_{i-1, r}\right) \\
& =\left(a_{i-1, j-1}-a_{i-1, j}\right)+\left(a_{i-1, j}-a_{i-1, j+1}\right)+\cdots \\
& \quad+\left(a_{i-1, b_{i}+i-2}-a_{i-1, b_{i}+i-1}\right)+0+\cdots+0 \\
& =a_{i-1, j-1}-a_{i-1, b_{i}+i-1} .
\end{aligned}
$$

By Lemma 6, we have

$$
a_{i-1, i+b_{i}-1}=r+1-w^{-1}(i)+l_{w^{-1}(i)}+\cdots+l_{r}
$$

To compute the $s_{i j}$ as j varies, we must subtract this quantity from $a_{i-1, i-1+k}$ for each $k, 0 \leqslant k \leqslant$ $b_{i}-1$. So we must compute the quantities $a_{i-1, i-1+k}$. Recall that the 0 -th row of the GelfandTsetlin pattern is $\{l(r), l(r-1), \cdots, l(0)\}$. By Lemma 6 again, the entries of the $(i-1)$-th row of the Gelfand-Tsetlin pattern are given by

$$
\begin{equation*}
\{l(r), \cdots, l(0)\}-\left\{l\left(r+1-w^{-1}(m)\right) \mid 1 \leqslant m \leqslant i-1\right\} . \tag{50}
\end{equation*}
$$

We need to specify the b_{i} entries with largest argument in the set (50); these are the elements from which we will subtract the term $l\left(r+1-w^{-1}(i)\right)$. We have

$$
b_{i}=\left|\left\{j>i \mid w^{-1}(j)<w^{-1}(i)\right\}\right|=w^{-1}(i)-1-\left|\left\{j<i \mid w^{-1}(j)<w^{-1}(i)\right\}\right| .
$$

Let $h_{1}, \cdots, h_{b_{i}}$ be the integers in the interval $\left[1, w^{-1}(i)-1\right]$ that are not of the form $w^{-1}(j)$ with some $j, j<i$. These are the only integers h in the interval $\left[1, w^{-1}(i)-1\right]$ such that $l(r+1-h)$ is not removed from the $(i-1)$-th row of the Gelfand-Tsetlin pattern, by (50). Hence the only terms of the form $l(r+1-k)$ with $1 \leqslant k<w^{-1}(i)$ that are in the Gelfand-Tsetlin pattern are exactly the numbers of the form $l\left(r+1-h_{m}\right), 1 \leqslant m \leqslant b_{i}$. Since these are visibly the b_{i} entries with largest argument, we have determined the entries $a_{i-1, i-1+k}, 0 \leqslant k \leqslant b_{i}-1$. We have

$$
l\left(r+1-h_{m}\right)-l\left(r+1-w^{-1}(i)\right)=w^{-1}(i)-h_{m}+l_{h_{m}}+\cdots+l_{w^{-1}(i)-1}
$$

As m varies from 1 to b_{i}, these quantities give exactly the set D_{i} that we obtained above from the formula for the coefficients (25).

This completes the proof of Theorem 3.

References

[1] S. Bochner. A theorem on analytic continuation of functions in several variables. Ann. of Math. (2), 39(1):14-19, 1938.
[2] B. Brubaker and D. Bump. On Kubota's Dirichlet series. J. Reine Angew. Math., to appear.
[3] B. Brubaker, D. Bump, G. Chinta, S. Friedberg, and J. Hoffstein. Weyl group multiple Dirichlet series I. In Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, Proceedings of the 2005 Bretton Woods Workshop, Proceedings of Symposia in Pure Mathematics. The American Mathematical Society, to appear.
[4] B. Brubaker, D. Bump, and S. Friedberg. Weyl group multiple Dirichlet series II. The stable case. Invent. Math., to appear.
[5] B. Brubaker, D. Bump, S. Friedberg, and J. Hoffstein. Weyl group multiple Dirichlet series III: Twisted unstable A_{r}. Annals of Math., to appear.
[6] B. Brubaker, S. Friedberg, and J. Hoffstein. Cubic twists of GL(2) automorphic L-functions. Invent. Math., 160(1):31-58, 2005.
[7] D. Bump. Lie groups, volume 225 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2004.
[8] D. Bump, S. Friedberg, and J. Hoffstein. Nonvanishing theorems for L-functions of modular forms and their derivatives. Invent. Math., 102(3):543-618, 1990.
[9] L. Hörmander. An introduction to complex analysis in several variables, volume 7 of NorthHolland Mathematical Library. North-Holland Publishing Co., Amsterdam, third edition, 1990.
[10] D. A. Kazhdan and S. J. Patterson. Metaplectic forms. Inst. Hautes Études Sci. Publ. Math., (59):35-142, 1984.
[11] T. Kubota. Topological covering of SL(2) over a local field. J. Math. Soc. Japan, 19:114-121, 1967.
[12] T. Kubota. On automorphic functions and the reciprocity law in a number field. Lectures in Mathematics, Department of Mathematics, Kyoto University, No. 2. Kinokuniya Book-Store Co. Ltd., Tokyo, 1969.
[13] H. Matsumoto. Sur les sous-groupes arithmétiques des groupes semi-simples déployés. Ann. Sci. École Norm. Sup. (4), 2:1-62, 1969.

[^0]: *AMS Subject Classification (2000): 11M41 (Primary), 11F66, 11F30, 20F55 (Secondary)
 ${ }^{\dagger}$ Brubaker, Bump: Department of Mathematics, Stanford University, Stanford, CA 94305-2125, USA; Friedberg: Department of Mathematics, Boston College, Chestnut Hill, MA 02467-3806, USA

