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Abstract. We define Schubert Eisenstein series as sums like usual Eisenstein
series but with the summation restricted to elements of a particular Schubert
cell, indexed by an element of the Weyl group. They are generally not fully
automorphic. We will develop some results and methods for GL3 that may
be suggestive about the general case. The six Schubert Eisenstein series are
shown to have meromorphic continuation and some functional equations.
The Schubert Eisenstein series Es1s2

and Es2s1
corresponding to the Weyl

group elements of order three are particularly interesting: at the point where
the full Eisenstein series is maximally polar, they unexpectedly become (with
minor correction terms added) fully automorphic and related to each other.
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We define Schubert Eisenstein series as sums like usual Eisenstein series
but with the summation restricted to elements coming from a particular
Schubert cell. More precisely, let G be a split semisimple algebraic group
over a global field F , and let B be a Borel subgroup. The usual Eisenstein
series are sums over B(F )\G(F ), that is, over the integer points in the flag
variety X = B\G. Given a Weyl group element w, one may alternatively
consider the sum restricted to a single Schubert cell Xw. This is the closure
of the image in X of the double coset BwB. If w = w0, the long Weyl group
element, then Xw = X so this contains the usual Eisenstein series as a special
case. The notion of Schubert Eisenstein series seems a natural one, but little
studied. The purpose of this paper is to look closely at the special case where
G = GL(3) that suggest general lines of research for the general case.

The Schubert Eisenstein series is not automorphic, so its place in the
spectral theory is less obvious. An immediate question is whether the Schu-
bert Eisenstein series, like the classical ones have analytic continuation. We
will prove this when G = GL(3) and we hope that it is true in general. We
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will observe some other interesting phenomena on GL(3), to be described
below.

We will begin by supplying some motivation for this investigation. Re-
cently it has been observed that Fourier-Whittaker coefficients of some Eisen-
stein series, such as the Borel Eisenstein series on GLr+1, are multiple Dirich-
let series which may often be expressed as sums over Kashiwara crystals. See
the survey article Bump [5] for discussion of this this phenomenon and its
history. An analysis of the proof of one particular case, in Brubaker, Bump
and Friedberg [3] shows the mechanism behind this phenomenon makes use
of Bott-Samelson varieties. In this connection, we call attention to one par-
ticular point: that such a representation of the Whittaker coefficient of an
Eisenstein series as a sum over a crystal requires a choice of a reduced word,
by which we mean a decomposition of the long Weyl group element w0 into
a product of simple reflections of shortest possible length.

Bott-Samelson varieties have important applications to the study of Schu-
bert varieties. First, they give a desingularization. Also, they are used in
the analyzing the cohomology of the flag variety, and also the cohomology of
line bundles on Schubert varieties, that is, the Demazure character formula.
See Demazure [10] and Andersen [1].

To define the Bott-Samelson variety, one chooses reduced word w for w,
after which one may define Zw, the so-called Bott-Samelson variety, together
with a birational morphism to Xw. (The definition is given below.) The vari-
ety Zw is always nonsingular, and may be built up by successive fiberings by
P1, which corresponds to the procedure in representation theory of reducing
a computation on G to a series of SL2 computations. And this is what was
done (for the full Eisenstein series, that is, for the case where w = w0) in
Brubaker, Bump and Friedberg [3].

Once one accepts the idea of studying Eisenstein series by means of the
Bott-Samelson variety for the full flag variety, one is led to consider Schubert
Eisenstein series. Even if one only cares about the full Eisenstein series
(which is the sum over the integer points in the full flag variety Xw0) the
Bott-Samelson varieties for other Schubert cells appear naturally. This is
because Bott-Samelson varieties are built up from one another by successive
fiberings. So a calculation that involves Bott-Samelson varieties will usually
be an inductive one involving Bott-Samelson varieties for lower-dimensional
Schubert cells.

We turn now to a more detailed discussion of what is in this paper.
Let G be a split reductive algebraic group over a global field F . Let T̂

2



be the maximal torus of the group Ĝ with opposite root data, so that Ĝ(C)
is the connected Langlands L-group. Let ν ∈ T̂ (C). Then ν parametrizes a
character χν of T (A)/T (F ), where A is the adele ring of F . Extending χν to
the Borel subgroup B(A), let fν be an element of the corresponding induced
representation, so that

fν(bg) = (δ1/2χν)(b) f(g), b ∈ B(A). (1)

Here δ is the modular quasicharacter of the Borel subgroup. The usual
Eisenstein series is defined to be

E(g, ν) =
∑

γ∈B(F )\G(F )

fν(γg) =
∑

γ∈X(F )

fν(γg).

In the last expression, we are observing that the sum is actually over the
integer points of X = B\G, which is the flag variety.

The Bruhat decomposition ofG gives the decomposition of the flag variety
into Schubert cells

X =
⋃

w∈W

Yw

whereW is the Weyl group and Yw is the image of BwB in B\G. The closure
of Yw is the closed Schubert variety

Xw =
⋃

u6w

Yu

where 6 is the Bruhat order. It seems a natural question to consider the
Schubert Eisenstein series

Ew(g, ν) =
∑

γ∈Xw(F )

fν(γg). (2)

This is no longer an automorphic form, but we may ask whether it has
analytic continuation and at least some functional equations.

In order to see how this could be useful, let us recall the very useful
Bott-Samelson varieties and their relationship with Schubert varieties. (See
Bott and Samelson [2] and Demazure [10].) We will denote by αi and si
the simple roots and corresponding simple reflections. Let w ∈ W and let
w = (si1, si2 , · · · , sik) be a reduced decomposition of w into a product of
simple reflections: w = si1 · · · sik . Let Pj be the minimal parabolic subgroup,
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which is rank one parabolic subgroup, generated by B and sj . We define a
left action of Bk on Pi1 × · · ·Pik by

(b1, · · · , bk) · (pi1 , · · · , pik) = (b1pi1b
−1
2 , b2pi2b

−1
3 , · · · , bkpik). (3)

The quotient Bk\(Pi1 × · · ·×Pik) is the Bott-Samelson variety Zw. There is
a morphism BSw : Zw −→ Xw induced by the multiplication map that sends

(pi1 , · · · , pik) 7−→ pi1 · · · pik .

This map is a surjective birational morphism.
Unlike the Schubert varieties, Bott-Samelson varieties are always non-

singular, so this gives a resolution of the singularities of Xw. The map
BSw : Zw −→ Xw may not be an isomorphism. In special cases where it
is an isomorphism, every element of Xw has a unique representation as a
product iα1(γ1) · · · ιαk

(γk), where if α is a root (in this case a simple root) ια
is the Chevalley embedding of SL(2) into G corresponding to α, so the image
of ιαi

lies in the Levi subgroup of Pi. Beyond these special cases where BSw

is an isomorphism, in every case each element of Xw has such a factorization,
and if the element is in general position, it is unique, since BSw is birational.
Let us call this a Bott-Samelson factorization. (See Lemma 2 for a precise
statement.) This means that we may write

Es1···sk(g, ν) =
∑

γk∈BSL2
(F )\ SL2(F )

Es1···sk−1
(ιαk

(γk)g, ν), (4)

building up the Schubert Eisenstein series by repeated SL2 summations. If
BSw : Zw −→ Xw is not an isomorphism, a modification of this method
should be applicable. (Proposition 13.)

This method of representing the Eisenstein series E(g, ν) = Ew0(g, ν),
with w0 the long Weyl group element, is implicit in the method used by
Brubaker, Bump and Friedberg [3] in order to prove that the Whittaker
function of Eisenstein series on the metaplectic cover of GLr+1(F ) had a
representation as a sum over a crystal basis of a representation of GLr+1. The
proof depends on a parametrization, described in Section 5 of the paper, of an
element of P\G, where P is a maximal parabolic subgroup, by choosing the
representative factored over such a product of SL2. Although P is a maximal
parabolic subgroup, the process is an inductive one, and one could equally
well avoid the induction and take the summation over B\G. The mechanism
underlying this proof therefore is the Bott-Samelson factorization.
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This suggests looking more closely at the Schubert Eisenstein series Ew.
Even though Ew is not automorphic, and not accessible by the usual methods
of automorphic forms, one may hope that it has analytic continuation and
functional equations by some subgroup. If w is the long element of the
Weyl group of the Levi subgroup M of some parabolic subgroup, then this
is true. The first cases where w is not the long element of a Levi subgroup
are w = s1s2 and s2s1, in the case where G = GL3. Therefore we will look at
these Schubert Eisenstein series in detail. As it turns out, these had occurred
previously in Bump and Goldfeld [7] and in Vinogradov and Takhtajan [15],
in disguised forms.

We will take a close look at Es1s2. We have described it here by means of
the definition (2) and by the recursive formula (4), but we will also see that
it emerges naturally when one works out the Piatetski-Shapiro [14] Fourier-
Whittaker expansion of the Eisenstein series. For a cusp form φ on GLn with
Whittaker function W , this Fourier expansion appears as

φ(g) =
∑

γ∈UGLn−1
(F )\GLn−1(F )

W

((

γ
1

)

g

)

,

where UGLn−1 is the unipotent radical of the standard Borel subgroup of
GLn−1. If φ is not cuspidal, then one must include other degenerate terms,
and then the summation over γ may produce Schubert Eisenstein series. We
will see this for GL3.

An extremely interesting phenomenon occurs in this GL3 case at the point
where the Eisenstein series has its pole. We will choose coordinates ν1, ν2 for
the Langlands parameters such that the poles of the Eisenstein series are on
the six lines ν1, ν2 or 1 − ν1 − ν2 equals 0 or 2

3
, and we will look at the pole

at ν1 = ν2 = 0. In the Laurent expansion of the Eisenstein series E(g; ν1, ν2)
the coefficient of νN1

1 νN2
2 is nonzero if N1, N2 > −1. If N1 = N2 = −1, the

coefficent is constant. Following Bump and Goldfeld, the coefficient κ(g) of
ν−1
1 is then interesting.
Bump and Goldfeld [7] proved the following result. IfK/Q is a cubic field,

and a is an ideal class of K one may associate with a a compact torus of GL3,
and if La is the period of κ(g) over this torus, then the Taylor expansion of
the L-function L(s, a) has the form ρs−1 + La + · · · . Therefore if θ is a
nontrivial character of the ideal class group then L(s, θ) =

∑

θ(a)La. The
proof involves showing that the torus period of the Eisenstein series equals a
Rankin-Selberg integral of a Hilbert modular Eisenstein series.
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An analysis of this situation reveals that κ(g) may be expressed in terms
of the Schubert Eisenstein series. There are two ways to do this, giving ex-
pressions involving either Es1s2 or Es2s1 at a special value. Thus at the point
where the residue is taken, the Schubert Eisenstein series (with some correc-
tion terms) is “promoted” to full GL3 automorphicity! It is also surprising
that Es1s2 and Es2s1 , which are presumably unrelated in general, develop an
unexpected relationship at ν1 = ν2 = 0.

Now let us indicate a few questions about Schubert Eisenstein series in
general. As we will see, these questions have interesting affirmative answers
in the case of GL3.

• Does the Schubert Eisenstein series always have meromorphic contin-
uation to all values of the parameters?

• Although they will not have the full group of functional equations that
the complete Eisenstein series has, they should have some functional
equations.

• In Theorems 4 and 5 we will give examples of linear combinations of
Schubert Eisenstein series for GL3 that are entire, that is, have no poles
in the parameters. It would be desirable to have a general theory of
such linear combinations.

• In Proposition 13 we give an example of how to represent a Schubert
Eisenstein series recursively in a case where the Bott-Samelson map
BSw is not an isomorphism. It would be good to work this out for
more complicated examples.

• We find that for GL3 Schubert Eisenstein series occur naturally in the
context of the Piatetski-Shapiro Fourier-Whittaker expansion when one
takes degenerate terms into account. It would be good to see general-
izations of this phenomenon.

• We may speculate that it is possible to associate a Whittaker func-
tion with Ew. This would be an Euler product whose p-part may be
expressed in terms of Demazure characters. Such an expression fol-
lows from the Casselman-Shalika formula if w is the long element in
a parabolic subgroup of the Weyl group, so the first test case of this
hypothesis is when w = s1s2 (or s2s1) on GL(3). In this case, we have
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checked that a suitably defined Whittaker function may indeed be ex-
pressed in terms of the Demazure character corresponding to s1s2. For
reasons of space, we are not including these computations. Brubaker,
Bump and Licata [4] have local results relating Iwahori Whittaker func-
tions to Demazure characters, but we do not know how to relate those
formulas to Schubert Eisenstein series.
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0652817 and DMS-1001079 and by NRF-2012047640, NRF-2011-0008928 and
NRF-2008-0061325. We would like to thank Stanford’s MRC for support, and
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1 Review of Eisenstein series

If G is an algebraic group defined over a field contained in a commutative ring
R, we will use G(R) or GR interchangeably to denote the group of R-rational
points of G.

Let F be a global field, and A its adele ring. Let G be a split semisimple
algebraic group over F , with Borel subgroup B = TU , where T is its maximal
split torus and U the unipotent radical. LetW = N(T )/T be the Weyl group,
where N(T ) is the normalizer of T . If v is a place of F , we will denote by
Gv = G(Fv), and similarly for algebraic subgroups of G. We will denote by
Φ the root system of G, divided as usual into positive and negative roots Φ+

and Φ−. If αi is a simple root, we will denote by si the corresponding simple
reflection in W .

If v is a place of F , letKv be a maximal compact subgroup of Gv = G(Fv).
We assume that Kv = G(ov) for all nonarchimedean places v. We assume
that Gv = BvKv. Then K =

∏

vKv is a maximal compact subgroup of
G(A). If w ∈ W we will choose a representative of W that is in K; by abuse
of notation we will denote this representative by the same letter w.

We review the definition of the usual Eisenstein series. Let χ be a qua-
sicharacter of T (A)/T (F ). We may extend χv to a quasicharacter of Bv by
letting Uv be in the kernel.

Let (πv(χv), Vv(χv)) be the corresponding principal series representation.
Thus Vv(χv) is the space of functions fv : Gv −→ C that satisfy

fv(bg) = (δ1/2χv)(b) fv(g)
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for b ∈ Bv = B(Fv), and which are Kv-finite. Here δ is the modular qua-
sicharacter. If v is nonarchimedean the group Gv acts by right-translation:

πv(gv)fv(x) = fv(xgv).

If v is archimedean, this definition is wrong since πv(gv)fv may not be Kv-
finite, but the Kv-finite vectors are invariant under the corresponding repre-
sentation of the Lie algebra gv and so at an archimedean place v, Vv(χv) is a
(gv, Kv)-module.

For simplicity we assume that χ = ⊗vχv where χv is unramified at every
nonarchimedean place. This means that the space of Kv-fixed vectors is
nonzero. The vector space Vv(χv) has a Kv-fixed vector f ◦

v = f ◦
χv

that is
unique up to scalar multiple. We will normalize it so that f ◦

v (1) = 1.
Let V (χ) be the space of finite linear combinations of functions of the

form
∏

v fv(gv) where fv ∈ Vv(χv) and fv = f ◦
v for all but finitely many v.

If the function f is of this form (rather than a finite linear combination of
such functions) then we will write f = ⊗vfv. The space V (χ) is thus the
restricted tensor product of the local modules Vv(χv).

Then we may consider the Eisenstein series

E(g, f, χ) =
∑

γ∈BF \GF

f(γg), f ∈ V (χ).

This will be convergent for particular χ. Indeed, for every simple positive root
α there is a Chevalley embedding ια : SL2 −→ G such that ια(SL2(ov)) ⊂ Kv

for v nonarchimedean, where ov is the ring of integers of Fv. Then

∣

∣

∣

∣

χ

(

ια

(

t
t−1

))∣

∣

∣

∣

= |t|ν(α), (5)

for some ν(α) ∈ C. Indeed, since χ is trivial on T (F ), the left-hand side of
(5) is 1 when t ∈ F×; then if A×

1 is the group of ideles of norm 1, the left-
hand side of (5) defines a homomorphism of A×

1 /F
× into the multiplicative

group of positive reals. But A×
1 /F

× is compact, so the left-hand side of (5)
is trivial on A×

1 and thus must be a power of |t|. The Eisenstein series will
be absolutely convergent provided every re(ν(α)) > 1

2
. For χ not satisfying

this inequality, we may make sense of the Eisenstein series by meromorphic
continuation, with the exception of χ corresponding to poles of the Eisenstein
series.
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In order to state the functional equations of the Eisenstein series, one
considers the standard intertwining integrals. If w ∈ W , define a map

Mv(w) : Vv(χv) −→ Vv(χ
w
v ),

where W acts on the right on quasicharacters by

χw
v (t) = χv(wtw

−1).

If re(ν(α)) > 0, thenMv(w) may be defined by the integral

Mv(w)fv(g) =

∫

(Uv∩w−1Uvw)\Uv

fv(wug) du =

∫

Uv∩w−1U−

v w

fv(wug) du,

where U−
v is the unipotent radical of the opposite Borel subgroup of B. It

may be checked that Mv(w)Vv(χv) ⊆ Vv(χ
w
v ), and that Mv(w) is an inter-

twining operator. The mapMv(w) may then be extended by meromorphic
continuation to other values of χ and ν.

The formula of Gindikin and Karpelevich computesMv(w)f
◦
v . First as-

sume that v is nonarchimedean. If α is a positive root, let us denote by aα
the element

ια

(

̟v

̟−1
v

)

,

where ̟v is a generator of the maximal ideal pv of ov. Let qv = |ov/pv|. We
choose the volume element dxv on Fv so that ov has volume 1.

Proposition 1 If v is nonarchimedean then

Mv(w)f
◦
χv

=
∏

α ∈ Φ+

w−1(α) ∈ Φ−

1− q−1
v χv(aα)

1− χv(aα)
f ◦
χw
v
.

This is called the formula of Gindikin and Karpelevich, but in this nonar-
chimedean case, it is due to Langlands.

Proof See Casselman [8], Theorem 3.1. �

Next assume that v is archimedean. Let Γ be the usual gamma function
and let

Γv(s) =

{

π−s/2Γ(s/2) if v is real,
(2π)−sΓ(s) if v is complex.
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Since χv is unramified, χv is trivial on Tv ∩Kv, and it follows that

χ

(

ια

(

t
t−1

))

= |t|ν(α).

Proposition 2 If v is archimedean then

Mv(w)f
◦
χv

=
∏

α ∈ Φ+

w−1(α) ∈ Φ−

Γv (ν(α))

Γv (ν(α) + 1)
f ◦
χw
v
. (6)

Proof This is the original formula of Gindikin and Karpelevich [11]. We
are choosing the volume element on Fv to be the one that makes this formula
true. �

We have choosen dxv for every v to be the volume element that makes
the formula of Gindikin and Karpelevich true. On the adele group A there
is a natural volume element dx, which is self-dual for the Fourier transform
determined by an additive character ψ on A that is trivial on F . Equivalently,
dx is the volume element that gives A/F volume 1. The local and global
volumes are related by the formula

dx = |DF |
−1/2

∏

v

dxv, (7)

where DF is the discriminant of F .
There is also a global intertwining integral M(w) : V (χ) −→ V (χw),

defined by

M(w)f(g) =

∫

(UA∩w−1UAw)\UA

f(wug) du =

∫

UA∩w−1U−

A
w

f(wug) du

We are normalizing the Haar measure so that the volume UA/UF is 1, and
similarly for its unipotent algebraic subgroups such as UA ∩ w

−1UAw and
UA ∩ w

−1U−
A w.

If α is a positive root, let

ζv(χv, α) =

{

(1− χv(aα))
−1 if v is nonarchimedean

Γv (ν(α)) if v is archimedean.

We will also denote

ζv(| · |χv, α) =

{

(1− q−1
v χv(aα))

−1 if v is nonarchimedean,
Γv (ν(α) + 1) if v is archimedean.
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Then let

ζ(χ, α) =
∏

v

ζv(χv, α), ζ(| · |χ, α) =
∏

v

ζv(| · |χv, α).

Proposition 3 Suppose that χ is unramified at every place, and define f ◦
χ ∈

V (χ) to be
∏

v f
◦
χv
(gv). Then

M(w)f ◦
χ = |DF |

l(w)/2
∏

α ∈ Φ+

w−1(α) ∈ Φ−

ζ(χ, α)

ζ(| · |χ, α)
f ◦
χw ,

where l(w) is the length function on the Weyl group.

Proof Because the dimension of U ∩w−1Uw is l(w), (7) implies that, when
du and duv are the Haar measures on UA ∩w

−1U−
A w and Uv ∩w

−1U−
v w with

our normalizations we have

du = |DF |
l(w)/2

∏

v

duv.

The statement then follows on combining (1) and (6). �

2 Induction and restriction

Mackey’s theorem for finite groups and their representations may be formu-
lated in different ways, but one statement is as follows. Let H1 and H2 be
subgroups of G and let π1 be representations of H1 and H2. We want to
determine the restriction of IndG

H1
(π1) to H2. To answer this question we

consider the double cosets H2\G/H1. If w is a double coset representative,
let Hw = H1 ∩ w

−1H2w. Then we may restrict π1 to Hw, and conjugating
by w we obtain a representation πw

1 of wHww
−1 = wH1w

−1 ∩H2. This is a
subspace of H2, and Mackey’s theorem states that

IndG
H1
(π1)|H2 =

⊕

w∈H2\G/H1

IndH2

wHww−1(π
w
1 ).

There is an analogous property of Eisenstein series. The induction and
restriction functors between finite groups and subgroups will be replaced by
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Eisenstein series and constant term functors for Levi subgroups. Let P and Q
be parabolic subgroups of G containing B. Let P =MPUP and Q =MQUQ

be the Levi decompositions, with unipotent radicals UP and UQ contained in
U . Given an automorphic form on MQ, one may consider the corresponding
Eisenstein series on G and its constant term with respect to UP , which is an
automorphic form on MP . The problem is to describe its spectral expansion.

Using the Bruhat decomposition G =
⋃

BwB, representatives of double
cosets P\G/Q may be chosen in W , and thus P\G/Q is in bijection with
WP\W/WQ, where WP and WQ are the Weyl groups of the Levi subgroups
of P and Q. If w is such a representative, MQ ∩w

−1MPw is a Levi subgroup
of MQ, so we may take the constant term along the unipotent radical of the
corresponding parabolic subgroup Q ∩ w−1Pw and obtain an automorphic
form for MQ ∩w

−1MPw. Then conjugate this to wMQw
−1 ∩MP which is an

Eisenstein series on MP . Summing over w should give an identity with the
automorphic form obtained previously.

Let us prove this in the special case where Q = B. In this case, MB = T
is the maximal torus. We will denote M = MP , and BM = B ∩M . We will
denote by ΦM ⊂ Φ the root system of M . We will also denote by WM the
Weyl group of M , which was previously denoted WP .

Lemma 1 Every coset inW/WM has a representative w such that if α ∈ ΦM

then α ∈ Φ+
M if and only if w(α) ∈ Φ+. For this w, we have

P ∩ w−1Bw = UwBM , Uw = UP ∩ w
−1Bw.

Proof We leave this to the reader. �

Let ΣM be the particular set of representatives for W/WM given by
Lemma 1. If g ∈M(A) we will denote

EM (g, f, χ) =
∑

BM (F )\M(F )

f(γg),

which is an Eisenstein series for the Levi subgroup M .

Theorem 1 Let g ∈M(A).

∫

UP (F )\UP (A)

E(ug, f, χ) du =
∑

w∈ΣM

EM (g,M(w)f, χw) (8)
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Proof We may enumerate coset representatives for BF\GF as follows. Let
w run through a set of coset representatives for BF\GF/PF , and for each
w let γ run through a set of coset representatives for Hw

F \PF , where H
w =

P ∩ w−1Bw. Then wγ runs through a complete set of coset representatives
for BF\GF .

Using the Bruhat decomposition, we know that we may choose the repre-
sentatives for w from a set of coset representatives of W/WM , and we choose
these as in Lemma 1. Therefore Hw = UwBM where Uw = UP ∩ w

−1Bw.
Then we may further analyze γ ∈ Hw

F \PF as γUγ1 where γ1 ∈ BM(F )\MF

and γU ∈ U
w
F \UF .

We may write the left-hand side in (8) as

∑

w∈ΣM

∫

UP (F )\UP (A)

∑

γ1∈BM (F )\M(F )

∑

γU∈Uw

F
\UF

f(wγUγ1ug) du.

Since M normalizes UP , we may interchange u and γ1 in this expression,
then telescope the integration with the summation over γU . After this we
will write γ instead of γ1, and obtain

∑

w∈ΣM

∫

Uw(F )\UP (A)

∑

γ∈BM (F )\M(F )

f(wuγg) du.

We may write the integral as

∑

w∈ΣM

∫

Uw(F )\Uw(A)

∫

Uw(A)\UP (A)

∑

γ∈BM (F )\M(F )

f(wu1uγg) du du1,

but the integration over the compact quotient
∫

Uw(F )\Uw(A)
may be discarded

since f(wu1g) = f(wg) independent of u1 ∈ U
w(A). Hence we obtain

∑

w∈ΣM

∑

γ∈BM (F )\M(F )

(M(w)f)(γg) du ,

and (8) is proved. �

3 Schubert Eisenstein series

The flag variety X = B\G is a projective variety. We recall its decomposition
into Schubert cells. We have the Bruhat decomposition G =

⋃

BwB, a

13



disjoint union over w ∈ W , and let Yw be the image of BwB in X . The
Schubert cell Xw is the Zariski closure of Yw. It equals

⋃

u ∈ W
u 6 w

Yu,

where u 6 w is the Bruhat order. Let Gw be the subset of G that is the
union of BuB for u 6 w. It is not a subgroup in general. Let Xw(F ) be the
set of γ ∈ BF\GF belonging to Xw. Thus Xw(F ) = BF\Gw(F ). We may
now define the Schubert Eisenstein series

Ew(g, f, χ) =
∑

γ∈Xw(F )

f(γg).

As we explained in the introduction, the Bott-Samelson map is a useful tool
for studying Schubert Eisenstein series. We recall that we defined a smooth
variety Zw for every reduced word w = (si1 , · · · , sik) representing the Weyl
group element w, with a birational morphism BSw : Zw −→ Xw.

Lemma 2 If BSw is an isomorphism then we may enumerate Xw(F ) as
follows. Let γi run through BSL2

(F )\ SL2(F ) for i = 1, · · · , k. Then

ιαi1
(γ1) · · · ιαi

k
(γk) (9)

runs through Xw(F ) (without repetition).

If BSw is not an isomorphism, then every element of Xw(F ) can still be
written as in (9), but the representation will not necessarily be unique. (It
will be unique if the element is in general position.) See Proposition 13.

Proof If BSw is an isomorphism, then we may choose the representatives
for Zw as follows. First choose pik ∈ B\Pik . We are allowed to choose this in
the Levi subgroup Mik

∼= SL2, and so we may choose this representative to
be ιαik

(γk) with γk chosen from BSL2\ SL2, where BSL2 is the Borel subgroup
of upper triangular matrices in SL2. Then we may choose pik−1

from B\Pik−1
,

and again we may choose it from the Levi subgroup of Pik−1
. Continuing this

way, the statement is clear. �

14



4 GL3 Schubert Eisenstein series

Let

ζ∗(s) = |DF |
s

2

∏

v

ζv(s), ζv(s) =

{

(1− q−s
v )−1 if v is nonarchimedean,

Γv(s) if v is archimedean

where we recall that DF is the discriminant of F . With this normalization
of the Dedekind zeta function the functional equation is

ζ∗(s) = ζ∗(1− s).

For simplicity we will assume that the character χ is unramified at every
place. Find ν1, ν2 ∈ C such that

(δ1/2χ)





y1
y2

y3



 = |y1|
2ν1+ν2|y2|

ν2−ν1 |y3|
−ν1−2ν2 .

We will denote this character χν1,ν2. Also, take f = f ◦ where

f ◦(g) = f ◦
ν1,ν2(g) =

∏

v

f ◦
v (gv).

Thus if k ∈ K

f ◦
ν1,ν2









y1 ∗ ∗
y2 ∗

y3



 k



 = |y1|
2ν1+ν2 |y2|

ν2−ν1 |y3|
−ν1−2ν2 .

Then we will denote

E(g; ν1, ν2) = E(g, f ◦;χν1,ν2).

Due to the fact that the K-finite vectors are not invariant under right trans-
lation, we will sometimes restrict ourselves to g in the GL3 of the finite
adeles.

Denoting by α1 and α2 the simple positive roots we have

ζv(|·|χ, α1) = ζv(3ν1), ζv(|·|χ, α2) = ζv(3ν2), ζv(|·|χ, α1+α2) = ζv(3ν1+3ν2−1).

The product of these three factors is the local normalizing factor for the
Eisenstein series at the place v. However we wish to include a power of the
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discriminant in the global normalizing factor, so we use ζ∗(s) which includes
gamma factors and a power of the discriminant, and define

E∗(g; ν1, ν2) = ζ∗(3ν1)ζ
∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1)E(g; ν1, ν2).

The normalized Eisenstein series E∗ is analytic except at poles where ν1, ν2
or 1− ν1 − ν2 equals 0 or 2

3
. It satisfies the functional equations

E∗(g; ν1, ν2) = E∗(g;w(ν1, ν2))

Here the action of w ∈ W on the parameters ν1, ν2 is as follows. The simple
reflections s1 and s2 send (ν1, ν2) to

(

2
3
− ν1, ν1 + ν2 −

1
3

)

and
(

ν1 + ν2 −
1
3
, 2
3
− ν2

)

respectively. We will similarly normalize the Schubert Eisenstein series and
denote

E∗
w(g; ν1, ν2) = ζ∗(3ν1)ζ

∗(3ν2)ζ
∗(3ν1 + 3ν2 − 1)Ew(g; ν1, ν2).

If w = 1, then

E∗
1(g; ν1, ν2) = ζ∗(3ν1)ζ

∗(3ν2)ζ
∗(3ν1 + 3ν2 − 1)f ◦

ν1,ν2
(g). (10)

For particular w, we will also define E∗∗
w with only some of the normalizing

zeta functions. We will omit g from the notation.

E∗∗
s1 (ν1, ν2) = ζ∗(3ν1)Es1(ν1, ν2), E∗∗

s2 (ν1, ν2) = ζ∗(3ν2)Es2(ν1, ν2),

E∗∗
s1s2(ν1, ν2) = ζ∗(3ν1)Es1s2(ν1, ν2), E∗∗

s2s1(ν1, ν2) = ζ∗(3ν2)Es2s1(ν1, ν2).

We will also consider some linear combinations denoted Ê∗
w or Ê∗∗

w that have
better decay properties. These are

Ê∗
s1
(ν1, ν2) = E∗

s1
(ν1, ν2)− E

∗
1(ν1, ν2)− E

∗
1

(

2

3
− ν1, ν1 + ν2 −

1

3

)

,

Ê∗∗
s1
(ν1, ν2) = E∗∗

s1
(ν1, ν2)− ζ

∗(3ν1)f
◦
ν1,ν2

(g)− ζ∗(3ν1 − 1)f ◦
2
3
−ν1,ν1+ν2−

1
3
(g),

Ê∗
s2
(ν1, ν2) = E∗

s2
(ν1, ν2)− E

∗
2(ν1, ν2)− E

∗
2

(

ν1 + ν2 −
1

3
,
2

3
− ν2

)

,

Ê∗∗
s2
(ν1, ν2) = E∗∗

s2
(ν1, ν2)− ζ

∗(3ν2)f
◦
ν1,ν2

(g)− ζ∗(3ν2 − 1)f ◦
ν1+ν2−

1
3
, 2
3
−ν2

(g),

Ê∗
s1s2

(ν1, ν2) = E∗
s1s2

(ν1, ν2)− E
∗
s2
(ν1, ν2)− E

∗
s2

(

2

3
− ν1, ν1 + ν2 −

1

3

)

,
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Ê∗
s2s1(ν1, ν2) = E∗

s2s1(ν1, ν2)− E
∗
s1(ν1, ν2)− E

∗
s1

(

ν1 + ν2 −
1

3
,
2

3
− ν2

)

,

Ê∗∗
s1s2(ν1, ν2) =

E∗∗
s1s2

(ν1, ν2)− ζ
∗(3ν1)Es2(ν1, ν2)− ζ

∗(3ν1 − 1)Es2

(

2

3
− ν1, ν1 + ν2 −

1

3

)

,

Ê∗∗
s2s1(ν1, ν2) =

E∗∗
s2s1

(ν1, ν2)− ζ
∗(3ν2)Es1(ν1, ν2)− ζ

∗(3ν2 − 1)Es1

(

ν1 + ν2 −
1

3
,
2

3
− ν2

)

.

Proposition 4 We have

∫

UF \UA

E(ug; ν1, ν2) du =
∑

w∈W

M(w)f ◦
ν1,ν2(g).

Moreover
∫

UF \UA

E∗(ug; ν1, ν2) du =
∑

w∈W

E∗
1(g;w(ν1, ν2)). (11)

Here E1 is the Schubert Eisenstein series corresponding to the identity
1 ∈ W . Thus E1 = f ◦ and E∗

1 = ζ∗(3ν1)ζ
∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1)f ◦.

Proof The first formula the special case of Theorem 1 where P = B. For
the second we need to know that

ζ∗(3ν1)ζ
∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1)M(w)f ◦
ν1,ν2(g) = E∗

1(g;w(ν1, ν2)). (12)

Using the fact that M(ww′) = M(w) ◦ M(w′) when the length l(ww′) =
l(w) + l(w′), we are reduced to the case where w is a simple reflection. For
example, if w = s1, Proposition 3 implies that

M(w)f ◦
ν1,ν2(g) =

ζ∗(3ν1 − 1)

ζ∗(3ν1)
f ◦

2
3
−ν1,ν1+ν2−

1
3
(g).

Now using the functional equation ζ∗(3ν1 − 1) = ζ∗(2 − 3ν1), the left-hand
side of (12) equals

ζ∗(2− 3ν1)ζ
∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1)f ◦
2
3
−ν1,ν1+ν2−

1
3
(g),
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as required. �

First we study Es1 . This is essentially a GL2 Eisenstein series. To see
this, let P = P1 be the parabolic with Levi factor M1 = ια1(SL2)T . Then
provided g ∈M1(A) we have

Es1(g; ν1, ν2) =
∑

γ∈BSL2
(F )\SL2(F )

f ◦
ν1,ν2

(ια1(γ)g) = EM1(g; ν1, ν2). (13)

Proposition 5 The normalized Schubert Eisenstein series E∗
s1

has mero-
morphic continuation to all ν1, ν2, and satisfies

E∗
s1(g; ν1, ν2) = E∗

s1

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

. (14)

Furthermore

E∗∗
s1 (g; ν1, ν2) = E∗∗

s1

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

. (15)

We have

∫

A/F

E∗
s1









1 x
1

1



 g; ν1, ν2



 dx =

E∗
1(g; ν1, ν2) + E∗

1

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

. (16)

Proof For h ∈ GL2(A),

h 7→ EM1

((

h
1

)

g; ν1, ν2

)

is a GL2 Eisenstein series, and ζ∗(3ν1) is its normalizing factor. The analytic
continuation and functional equation (15) follows from the well-known GL2

theory. The two factors ζ∗(3ν2) and ζ
∗(3ν1+3ν2−1) are interchanged by the

transformation (ν1, ν2) 7−→
(

2
3
− ν1, ν1 + ν2 −

1
3

)

. Therefore the functional
equation (14) follows. The GL2 constant term is

∫

A/F

E∗∗
s1









1 x
1

1



 g; ν1, ν2



 dx =

ζ∗(3ν1)E1(g; ν1, ν2) + ζ∗(3ν1 − 1)E1

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

,
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which is equivalent to (16). �

Proposition 6 The truncated Eisenstein series Ê∗∗
s1
(g; ν1, ν2) is entire and

of rapid decay in the the α1 direction.

By this we mean that

Ê∗∗
s1









y1 ∗ ∗
y2 ∗

y3



 g; ν1, ν2





is analytic for all ν1 and ν2, and is of faster than polynomial decay as
|y1/y2| −→ ∞, uniformly if g is in a compact set.

Proof This again follows from the theory of GL2 Eisenstein series. We have
the Fourier expansion

E∗∗
s1 (g) =

∑

α∈F

∫

A/F

E∗∗
s1









1 x
1

1



 g



ψ(αx) dx,

where ψ is an additive character of A/F . Using (16) the pieces that are
subtracted to give Ê∗∗

s1 are the contribution of α = 0. On the other hand if
α 6= 0

∫

A/F

E∗∗
s1









1 x
1

1



 g



ψ(αx) dx =W









α
1

1



 g





where

W (g) =

∫

A/F

E∗∗
s1









1 x
1

1



 g



ψ(x) dx

is essentially a GL2 Whittaker function. The analytic continuation of W to
all ν1, ν2 is Théorème 1.9 of Jacquet [12], and its decay properties guarantee
that

Ê∗∗
s1 (g) =

∑

α∈F×

W









α
1

1



 g





is entire and of rapid decay in the α1 direction. �

Similarly
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Proposition 7 The normalized Schubert Eisenstein series E∗
s2

has mero-
morphic continuation to all ν1, ν2, and satisfies

E∗
s2
(g; ν1, ν2) = E∗

s2

(

g; ν1 + ν2 −
1

3
,
2

3
− ν2

)

. (17)

Moreover Ê∗∗
s2
(g; ν1, ν2) is entire and is of rapid decay in the α2 direction.

We turn now to the Schubert Eisenstein series Es1s2 and Es2s1. These
are important examples since s1s2 and s2s1 are not long elements in Levi
subgroups of the Weyl group, so their analytic properties do not follow from
the usual theory of Eisenstein series.

Using (17) we have

Ê∗
s1s2

(ν1, ν2) = E∗
s1s2

(ν1, ν2)− E
∗
s2
(ν1, ν2)− E

∗
s2
(ν2, 1− ν1 + ν2) . (18)

Similarly

Ê∗
s2s1

(ν1, ν2) = E∗
s2s1

(ν1, ν2)− E
∗
s1
(ν1, ν2)− E

∗
s1
(1− ν1 + ν2, ν1) . (19)

Lemma 3 Let g ∈ G. Let f = f ◦
ν1,ν2

. Then there exists a constant C
depending only on g such that

|f(hg)| < C|f(h)|.

Proof We write h = bk where b ∈ B(F ) and k ∈ K. Then since f = f ◦

|f(hg)| = |(δ1/2χ)(b)||f(kg)| = |f(h)| |f(kg)|.

Since K is compact, C = maxK |f(kg)| <∞. �

Proposition 8 The function

∑

γ∈BSL2
(F )\SL2(F )

Ê∗∗
s1
(ια2(γ)g; ν1, ν2) (20)

is entire in ν1 and ν2.
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Proof We know that Ê∗∗
s1

is entire but we need to show that the sum over
γ is convergent for all ν1 and ν2. If γ ∈ BSL2(F )\ SL2(F ) consider

(

1
γ

)

g =





y1(γ) ∗ ∗
y2(γ) ∗

y3(γ)



 k, k ∈ K.

We will show that if σ > 1 then

∑

γ

∣

∣

∣

∣

y1(γ)

y2(γ)

∣

∣

∣

∣

−2σ

<∞. (21)

Applying the Lemma to the function

f









y1 ∗ ∗
y2 ∗

y3



 k



 =

∣

∣

∣

∣

y1
y2

∣

∣

∣

∣

−2σ

,

we may assume g = 1 in order to prove (21). Then we note that since γ ∈ SL2,
we have y1(γ) = 1 and y2(γ)y3(γ) = 1. Thus y1(γ)/y2(γ) =

√

y3(γ)/y2(γ),
and so we must show

∑

γ

∣

∣

∣

∣

y2(γ)

y3(γ)

∣

∣

∣

∣

σ

<∞.

This however is a GL2 Eisenstein series and converges if σ > 1. Now due to
the rapid decay of Ê∗∗

s1
in the α1 direction, we have

Ê∗∗
s1





y1 ∗ ∗
y2 ∗

y3



≪

∣

∣

∣

∣

y1
y2

∣

∣

∣

∣

−2σ

as |y1/y2| −→ ∞ for any σ. Thus the estimate (21) implies the convergence
of (20). �

For w = s1s2, the Schubert varietyXs1s2 coincides with the Bott-Samelson
variety Z(s1,s2), since the rational map Z(s1,s2) −→ Xs1s2 is an isomorphism.

Theorem 2 E∗
s1s2

(g; ν1, ν2) has meromorphic continuation to all ν1, ν2. It
has a functional equation

E∗
s1s2

(g; ν1, ν2) = E∗
s1s2

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

.

Moreover Ê∗∗
s1s2

(g; ν1, ν2) is an entire function.

21



Proof When w = s1s2 and w = (s1, s2) the Bott-Samelson homomorphism
BSw : Zw −→ Xw is an isomorphism and so by Lemma 2 we may write

E∗
s1s2

(g; ν1, ν2) =
∑

γ∈BSL2
(F )\ SL2(F )

E∗
s1
(ια2(γ)g; ν1, ν2). (22)

Write this

ζ∗(3ν2)ζ
∗(3ν1 + 3ν2 − 1)

∑

γ∈BSL2
(F )\SL2(F )

Ê∗∗
s1
(ια2(γ)g; ν1, ν2)

+
∑

γ∈BSL2
(F )\SL2(F )

E∗
1(ια2(γ)g; ν1, ν2)

+
∑

γ∈BSL2
(F )\SL2(F )

E∗
1

(

ια2(γ)g;
2

3
− ν1, ν1 + ν2 −

1

3

)

.

The meromorphic continuation of each term is known; for the first term this
is by Proposition 8. Moreover, dividing by ζ∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1) and
rearranging gives

Ê∗∗
s1s2(g; ν1, ν2) =

∑

γ∈BSL2
(F )\SL2(F )

Ê∗∗
s1 (ια2(γ)g; ν1, ν2),

so it follows from Proposition 8 that Ê∗∗
s1s2

(g; ν1, ν2) is entire. �

5 Fourier-Whittaker expansion

The Fourier-Whittaker expansion of a GLn cusp form was described by
Piatetski-Shapiro [14] and is standard. For forms which are not cuspidal,
the Fourier expansion is slightly more complicated, and we recall it here.
Before specializing to the Eisenstein series, let E(g) denote an arbitrary au-
tomorphic form on GL3. If c, d ∈ F , let

Ec
d(g) =

∫

(A/F )2
E









1 x3
1 x2

1



 g



ψ(cx3 + dx2) dx2 dx3

and

Ec,d(g) =

∫

(A/F )3
E









1 x1 x3
1 x2

1



 g



ψ(cx1 + dx2) dx1 dx2 dx3.
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We recall that ψ is a nontrivial additive character on A/F .

Theorem 3 We have

E(g) = E0
0(g) +

∑

γ∈USL2
(F )\ SL2(F )

E0,1(ια1(γ)g)

+
∑

γ∈UGL2
(F )\GL2(F )

W

((

γ
1

)

g

)

(23)

Here UGL2 = USL2 is the one parameter subgroup ια1

(

1 x
1

)

.

Proof The proof is in Chapter IV of Bump [6]. We leave it to the reader
to translate it to the adelic setting. �

Now let us consider the case where E(g) = E∗(g; ν1, ν2).

Proposition 9 We have

∫

(A/F )2
E∗









1 x3
1 x2

1



 g; ν1, ν2



 dx2 dx3 =

E∗
s1
(g; ν1, ν2) + E∗

s1
(g; 1− ν1 − ν2, ν1) + E∗

s1
(g; ν2, 1− ν1 − ν2).

This is E0
0(g) when E(g) = E∗(g; ν1, ν2).

Proof This is a special case of Theorem 1. The three double coset repre-
sentatives in ΣM are





1
1

1



 ,





1
1

1



 ,





1
1

1



 .

Using (13) the corresponding GL2 Eisenstein series may be written as

E∗
s1
(g; ν1, ν2), E∗

s1

(

g; ν1 + ν2 −
1

3
,
2

3
− ν2

)

, E∗
s1

(

g;
2

3
− ν1, ν1 + ν2 −

1

3

)

,

and using the functional equations these are the three terms in the statement.
�
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Proposition 10 We have

∫

(A/F )3
E∗









1 x1 x3
1

1



 g; ν1, ν2



 dx1 dx3 =

E∗
s2(g; ν1, ν2) + E∗

s2(g; 1− ν1 − ν2, ν1) + E∗
s2(g; ν2, 1− ν1 − ν2).

Proof This is similar to Proposition 9 except that we use the other maximal
parabolic subgroup. �

Proposition 11 If E(g) = E∗(g; ν1, ν2) then

∑

γ∈USL2
(F )\ SL2(F )

E0,1(ια1(γ)g) =

E∗
s2s1

(g; ν1, ν2) + E∗
s2s1

(g; 1− ν1 − ν2, ν1) + E∗
s2s1

(g; ν2, 1− ν1 − ν2)

−2(E∗
s1
(g; ν1, ν2) + E∗

s1
(g; 1− ν1 − ν2, ν1) + E∗

s1
(g; ν2, 1− ν1 − ν2))

Proof We may write the left-hand side as

∑

γ∈BSL2(F )\SL2(F )

∑

n∈F ∗

E0,1









n−1

n
1



 ια1(γ)g



 .

A simple change of variables shows that

E0,1









n−1

n
1



 g



 = E0,n(g)

so the left-hand side equals

∑

γ∈BSL2
(F )\SL2(F )

∑

n∈F×

E0,n(ια1(γ)g).

We will show that
∑

γ∈BSL2
(F )\SL2(F )

∑

n∈F

E0,n(ια1(γ)g) =

E∗
s2s1

(g; ν1, ν2) + E∗
s2s1

(g; 1− ν1 − ν2, ν1) + E∗
s2s1

(g; ν2, 1− ν1 − ν2) (24)
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and that
∑

γ∈BSL2
(F )\SL2(F )

E0,0(ια1(γ)g) =
∑

w∈W

E∗
s1
(g;w(ν1, ν2)). (25)

Combining these two identities gives the statement. Observe that

∑

n∈F

E0,n(g) =
∑

n∈F

∫

(A/F )3
E









1 x1 x3
1 x2

1



 g



ψ(nx2) dx1 dx2 dx3 =

∫

(A/F )3
E









1 x1 x3
1

1



 g



 dx1 dx3,

which is evaluated in Proposition 10. Thus (24) is the sum of three terms, a
typical one being

∑

γ∈BSL2
(F )\SL2(F )

E∗
s2(ια1(γ)g; ν1, ν2).

This is E∗
s2s1(g; ν1, ν2), similarly to (22), whence (24). Also note that E0,0(g)

is evaluated above in (11), and summing over ια1(γ) gives

∑

w∈W

E∗
s1(g;w(ν1, ν2)).

We note that this may be written as

2(E∗
s1
(g; ν1, ν2) + E∗

s1
(g; 1− ν1 − ν2, ν1) + E∗

s1
(g; ν2, 1− ν1 − ν2))

because of the functional equation (14). �

Let

H(g; ν1, ν2) =
∑

γ∈UGL2
(F )\GL2(F )

W

((

γ
1

)

g

)

, (26)

where

W (g) =

∫

(A/F )3
E∗









1 x1 x3
1 x2

1



 g; ν1, ν2



ψ(x1 + x2) dx1 dx2 dx3.
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Theorem 4 The function H(g; ν1, ν2) is entire as a function of ν1 and ν2.
We have

E∗(g; ν1, ν2) =

H(g; ν1ν2)+

E∗
s2s1

(g; ν1, ν2) + E∗
s2s1

(g; 1− ν1 − ν2, ν1) + E∗
s2s1

(g; ν2, 1− ν1 − ν2)

−E∗
s1
(g; ν1, ν2)− E

∗
s1
(g; 1− ν1 − ν2, ν1)− E

∗
s1
(g; ν2, 1− ν1 − ν2) =

Ê∗
s2s1

(g; ν1, ν2) + Ê∗
s2s1

(g; 1− ν1 − ν2, ν1) + Ê∗
s2s1

(g; ν2, 1− ν1 − ν2)

+E∗
s1
(g; ν1, ν2) + E∗

s1
(g; 1− ν1 − ν2, ν1) + E∗

s1
(g; ν2, 1− ν1 − ν2)

Proof We have
W (g) =

∏

v

Wv(gv)

where the Jacquet-Whittaker functionWv has analytic continuation for every
place v by Jacquet [12], Corollaire 3.5, and the convergence of the sum in (26)
follows from the decay properties of the Whittaker function (Proposition 2.2
in Jacquet, Piatetski-Shapiro and Shalika [13]. Therefore H is entire.

We note that H(g; ν1, ν2) is one of the three terms in (23). The remaining
terms are evaluated in Proposition 9 and Proposition 11. Combining these
gives first expression. The second expression follows by using the definition
of Ê∗

s2s1 . �

Similarly, one may prove that if

H ′(g; ν1, ν2) =
∑

γ∈UGL2
(F )\GL2(F )

W

((

1
γ

)

g

)

then the following is true.

Theorem 5 The function H ′(g; ν1, ν2) is entire as a function of ν1 and ν2.
We have

E∗(g; ν1, ν2) =

H ′(g; ν1ν2)+

E∗
s1s2

(g; ν1, ν2) + E∗
s1s2

(g; 1− ν1 − ν2, ν1) + E∗
s1s2

(g; ν2, 1− ν1 − ν2)

−E∗
s2(g; ν1, ν2)− E

∗
s2(g; 1− ν1 − ν2, ν1)− E

∗
s2(g; ν2, 1− ν1 − ν2) =

Ê∗
s1s2

(g; ν1, ν2) + Ê∗
s1s2

(g; 1− ν1 − ν2, ν1) + Ê∗
s1s2

(g; ν2, 1− ν1 − ν2)

+E∗
s2
(g; ν1, ν2) + E∗

s2
(g; 1− ν1 − ν2, ν1) + E∗

s2
(g; ν2, 1− ν1 − ν2)
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6 Kronecker Limit Formula

The poles of the Eisenstein series are on the six lines where ν1, ν2 or 1−ν1−ν2
equals 0 or 2

3
. We will consider the Taylor expansions of Ew for various w

at ν1 = ν2 = 0. In particular, the coefficient of ν−1
1 is interesting. If φ

is a function of g and ν1, ν2, let Rφ be the coefficient of ν−1
1 in the Taylor

expansion of φ at ν1 = ν2 = 0. Let

κ(g) = RE(g; ν1, ν2).

Bump and Goldfeld [7] proved the following result. If K/Q is a cubic field,
and a is an ideal class of K one may associate with a a compact torus of GL3,
and if La is the period of κ(g) over this torus, then the Taylor expansion of the
L-function L(s, a) has the form ρs−1 +La + · · · . Therefore if θ is a character
of the ideal class group then L(s, θ) =

∑

θ(a)La. The proof involves showing
that the torus period of the Eisenstein series equals a Rankin-Selberg integral
of a Hilbert modular Eisenstein series.

An analysis of this situation reveals that κ(g) may be expressed in terms
of the Schubert Eisenstein series. There are two ways to do this, giving
expressions involving either Es1s2 or Es2s1 at a special value. Thus at the
point where the residue is taken, the Schubert Eisenstein series (with some
correction terms) is “promoted” to full GL3 automorphicity!

Let us write
ζ∗(s) =

ρ

s
+ δ +O(s).

Then
E∗∗

s1 (g; ν1, ν2) =
ρ

3ν1
+ φs1(g; ν2) +O(ν1)

where φs1 satisfies
φs1 (iα1(γ)g; ν2) = φs1(g; ν2),

since Es1 has the same automorphicity. Similarly

E∗∗
s2 (g; ν1, ν2) =

ρ

3ν2
+ φs2(g; ν1) +O(ν2).

We will write

φs1(g) = φs1(g; 0), φs2(g) = φs2(g; 0).
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The automorphic forms φs1 and φs2 are essentially GL2 automorphic forms,
similar to the function log |η(z)| that appears in the classical Kronecker Limit
Formula.

Let

c0 =
ρ

3
[δζ∗(−1) + ρ(ζ∗)′(−1)] , c′0 =

ρ

3

[

ζ∗(3)ζ∗(−1) + ρ
d

ds
(ζ∗)′(−1)

]

.

These are absolute constants depending only on the field.

Theorem 6 We have

κ(g) =
ρ

3
ζ∗(2)

[

Ê∗∗
s2s1(g; 0, 0) + E∗∗

s1 (g; 1, 0)
]

+ c0.

Furthermore

κ(g) =
ρ

3
ζ∗(2)

[

Ê∗∗
s1s2(g; 1, 0) + φs2(g)

]

+ c′0.

Proof The points (ν1, ν2) = (0, 0) and (1, 0) are related by a functional
equation of the total Eisenstein series E(g; ν1, ν2), but not of the Schubert
Eisenstein series. We could alternatively take the Taylor coefficient of ν−1

2

and obtain a similar pair of identities.
By Theorem 4 we have

κ(g) =

6
∑

i=1

RXi

where Xi runs through the following six terms.

Xi long form RXi

Ê∗
s2s1

(g; ν1, ν2)
ζ∗(3ν1)ζ

∗(3ν1 + 3ν2 − 1)

Ê∗∗
s2s1(g; ν1, ν2)

ρ
3
ζ∗(−1)Ê∗∗

s2s1
(g; 0, 0)

Ê∗
s2s1(g; 1− ν1 − ν2, ν1)

ζ∗(3− 3ν1 − 3ν2)ζ
∗(2− 3ν2)

Ê∗∗
s2s1

(g; 1− ν1 − ν2, ν1)
0

Ê∗
s2s1(g; ν2, 1− ν1 − ν2)

ζ∗(3ν2)ζ
∗(2− 3ν1)

Ê∗∗
s2s1

(g; ν2, 1− ν1 − ν2)
0

E∗
s1
(g; ν1, ν2)

ζ∗(3ν2)ζ
∗(3ν1 + 3ν2 − 1)

E∗∗
s1
(g; ν1, ν2)

c0

E∗
s1
(g; 1− ν1 − ν2, ν1)

ζ∗(3ν1)ζ
∗(2− 3ν2)

E∗∗
s1
(g; 1− ν1 − ν2, ν1)

ρ
3
ζ∗(−1)E∗∗

s1
(g; 1, 0).

E∗
s1
(g; ν2, 1− ν1 − ν2)

ζ∗(3− 3ν1 − 3ν2)ζ
∗(2− 3ν1)

E∗∗
s1
(g; ν2, 1− ν1 − ν2)

0
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Alternatively, by Theorem 5 we may use the following six terms:
Xi long form RXi

Ê∗
s1s2

(ν1, ν2)
ζ∗(3ν2)ζ

∗(3ν1 + 3ν2 − 1)

Ê∗∗
s1s2

(g; ν1, ν2)
0

Ê∗
s1s2

(1− ν1 − ν2, ν1)
ζ∗(3ν1)ζ

∗(2− 3ν2)

Ê∗∗
s1s2(g; 1− ν1 − ν2, ν1)

ρ
3
ζ∗(−1)Ê∗∗

s1s2
(1, 0)

Ê∗
s1s2

(g; ν2, 1− ν1 − ν2)
ζ∗(3− 3ν1 − 3ν2)ζ

∗(2− 3ν1)

Ê∗∗
s1s2(g; ν2, 1− ν1 − ν2)

0

E∗
s2
(g; ν1, ν2)

ζ∗(3ν1)ζ
∗(3ν1 + 3ν2 − 1)

E∗∗
s2
(g; ν1, ν2)

ρ
3
ζ∗(−1)φs2(g)

+ρ2

3
(ζ∗)′(−1)

E∗
s2(g; 1− ν1 − ν2, ν1)

ζ∗(3− 3ν1 − 3ν2)ζ
∗(2− 3ν2)

E∗∗
s2
(g; 1− ν1 − ν2, ν1)

ζ∗(3)ζ∗(−1)ρ
3
.

E∗
s2(g; ν2, 1− ν1 − ν2)

ζ(3ν2)ζ
∗(2− 3ν1)

E∗∗
s2
(g; ν2, 1− ν1 − ν2)

0

�

7 When BSw is not an isomorphism

Let w0 be the long Weyl group element. The Schubert Eisenstein series Ew0

is then just the full Eisenstein series, which is well understood. Nevertheless,
we may try to understand it as a Schubert Eisenstein series.

For GL3, there are two reduced words w = (s1, s2, s1) or (s2, s1, s2) rep-
resenting w0. If w is either of these, the Bott-Samelson homomorphism
BSw : Zw −→ Xw0 = X is not an isomorphism. However, since it is
birational, it is a local isomorphism on the complement of a closed sub-
variety, which may be described as follows. The space X may be identi-
fied with the space of full flags in a 3-dimensional vector subspace V . Let
V0 ⊂ V1 ⊂ V2 ⊂ V3 be the standard flag, where Vi is the span of e1, · · · , ei,
in terms of the standard basis vectors ei of V .

Proposition 12 With w = (s1, s2, s1), Zw may be identified with the space
of flags V0 ⊂ U1 ⊂ U2 ⊂ V3 with an auxiliary piece of data, namely a one-
dimensional vector space W1 such that W1 ⊂ V2 ∩ U2.
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Proof To see this, consider the sequence of flags:

V3 V3 V3 V3
| | | |
V2 V2 U2 U2

|
θ1←− |

θ2←− |
θ3←− |

V1 W1 W1 U1

| | | |
V0 V0 V0 V0

(27)

We select elements θ1, θ2 and θ3 of GL3 such that θ1 takes the second flag to
the first, θ2 takes the third to the second, and θ3 takes the last to the third.
Then θ1 is in the parabolic subgroup P1 that fixes the partial flag V0 ⊂ V2 ⊂
V3, θ2 stabilizes the partial flag V0 ⊂ W1 ⊂ V3 and θ3 fixes the partial flag
V0 ⊂ U2 ⊂ V3. This means that θ1θ

−1
2 θ−1

1 is in the parabolic subgroup P2 that
fixes the partial flag V0 ⊂ V1 ⊂ V3 and similarly θ1θ2θ

−1
3 θ−1

2 θ−1
1 is in P1. Let

us consider (p1, p2, p3) = (θ−1
1 , θ1θ

−1
2 θ−1

1 , θ1θ2θ
−1
3 θ−1

2 θ−1
1 ) ∈ P1 × P2 × P1. It is

easy to see that (p1, p2, p3) is determined modulo the left action of B×B×B
on (p1, p2, p3) defined in (3). The the coset of (p1, p2, p3) is determined by
the data in (27). In addition to the standard flag V0 ⊂ V1 ⊂ V2 ⊂ V3 (which
is fixed throughout the discussion) this data consists of the flag V0 ⊂ U1 ⊂
U2 ⊂ V3 together with W1, which can be any one-dimensional vector space
contained in V2 ∩ U2. �

RegardingXw0 as the parameter space for the flag V0 ⊂ U1 ⊂ U2 ⊂ V2, the
Bott-Samelson map BSw : Zw −→ Xw0 consists of discarding the auxiliary
piece of data W1. We may now compute the exceptional subvariety of Xw0

where BSw has a fiber that consists of more than one point. Clearly given
the flag V0 ⊂ U1 ⊂ U2 ⊂ V2, the vector space W1 satisfying W1 ⊂ V2 ∩ U2

will be determined except for the case where U2 = V2.
Because BSw : Zw −→ Xw0 is not an isomorphism, Lemma 2 fails, but

since we understand the exceptional set, we may understand how to remedy
it and to express Ew0 in terms of Es1s2.

Proposition 13 We have

Ew0(g; ν1, ν2) = Es1(g; ν1, ν2) +
∑

γ3∈BSL2
(F )\ SL2(F )

(Es1s2 −Es1)(ια1(γ3)g; ν1, ν2).
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Proof The element γ = θ1θ2θ3 has a unique factorization

ια1(γ1)ια2(γ2)ια1(γ3)

as in Lemma 2 with γi ∈ BSL2(F )\ SL2(F ) except when γ lies in the excep-
tional subvariety. This means that γ(U2) = V2, that is, when γ ∈ Gs1 =
B ∪ Bs1B. These correspond to the terms where γ2 ∈ BSL2 .

These exceptional terms contribute exactly Es1 . For the remaining terms,
we note that

∑

γ1 ∈ BSL2
(F )\SL2(F )

γ2 ∈ BSL2
(F )\SL2(F )

γ2 /∈ BSL2

f(ια1(γ1)ια2(γ2)g) = Es1s2 − Es1,

and these terms therefore contribute the second term. �

This type of analysis would in principle allow one to represent more com-
plicated Schubert Eisenstein series by an analog of the procedure we used for
Es1s2 .
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