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Abstract

Suppose that G and H are connected reductive groups over a num-
ber field F and that an L-homomorphism ρ : LG −→ LH is given.
The Langlands functoriality conjecture predicts the existence of a map
from the automorphic representations of G(A) to those of H(A). If
the adelic points of the algebraic groups G, H are replaced by their
metaplectic covers, one may hope to specify an analogue of the L-
group (depending on the cover), and then one may hope to construct
an analogous correspondence. In this paper we construct such a corre-
spondence for the double cover of the split special orthogonal groups,
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raising the genuine automorphic representations of S̃O2k(A) to those
of S̃O2k+1(A). To do so we use as integral kernel the theta repre-
sentation on odd orthogonal groups constructed by the authors in a
previous paper [3]. In contrast to the classical theta correspondence,
this representation is not minimal in the sense of corresponding to a
minimal coadjoint orbit, but it does enjoy a smallness property in the
sense that most conjugacy classes of Fourier coefficients vanish.

This work was supported in part by NSF grants DMS-9970841 and DMS-
0354662 (Bump) and by NSA grant MDA904-03-1-0012 and NSF grant DMS-
0353964 (Friedberg).

1 Introduction

Let G and H be reductive groups and let A be the ring of adeles of a given
global field. Given an L-homomorphism ρ :L G −→L H, the Langlands
correspondence predicts the existence of a map from the automorphic rep-
resentations of G(A) to those of H(A). In the case that adelic points of the
algebraic groups G, H are replaced by their covers, the results of Savin [13]
suggest that one may specify an analogue of the L-group (depending on the
cover), and then one may still expect the existence of a correspondence of
automorphic representations. A first example is the Shimura correspondence.

It is not expected that the principle of functoriality works perfectly in
such a context. For example, we know that the metaplectic double cover
the genuine Iwahori-Hecke algebra of S̃L2 is isomorphic to the Iwahori-Hecke
algebra of PGL2. Thus if the L-group formalism is extended to this context,
their L-groups should be the same. This does not mean that the Shimura
correspondence is a perfect bijection between automorphic representations of
the two groups, since Waldspurger [15] proved that an automorphic repre-
sentation π of PGL2 is a Shimura lift if and only if L(1

2
, π) 6= 0.

Moreover, a proper generalization of the principle of functoriality to meta-
plectic groups will require at least a discussion of quasisplit forms. As far as
we know this has not been done. The results of Savin [13] are for split forms.

With these caveats, it may be useful to tentatively define an L-group
for metaplectic groups. Let G be a reductive algebraic group defined over
a ground field F containing sufficiently many roots of unity, and let G̃(n)

denote a corresponding metaplectic n-fold cover. We would like to define
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LG̃(n) to be a complex analytic group such that (if F is p-adic) the semisim-
ple conjugacy classes of LG̃(n) parametrize the irreducible representations of
G̃(n)(F ) that are spherical. (We are considering the connected L-group only
in this assertion.) One would then have, when SOm denotes a split orthogonal
group:

LS̃O
(n)

2k+1
∼=

{
Sp2k(C) if n is odd;
SO2k+1(C) if n is even,

while LS̃O
(n)

2k
∼= SO2k(C) regardless of the parity of n.

From this point on, SOk will always denote a split orthogonal group and
S̃Ok will denote its metaplectic double cover, whose definition is given in [3]
and reviewed briefly in Section 1. We note that the existence of this cover
requires that the ground field contain the fourth roots of unity. Matsumoto
proved that one could construct a metaplectic n-fold cover of split semisimple
simply-connected groups, but if the group is not simply connected – as in
the case of orthogonal groups – then more roots of unity may be required.

Savin’s results suggest that the L-group of S̃Ok is just SOk(C), and cor-
reponding to the inclusion of SOk(C) in SOk+1(C) one should be able to
construct “functorial” liftings from genuine automorphic representations of
S̃Ok to S̃Ok+1. In this paper we construct such a map by means of a theta
integral, and verify in a weak sense that it is functorial. More precisely, at
any place where the representation of S̃Ok is unramified, if the induction data
are in general position, then we show that the lifted representation agrees
with the functorial lift.

The classical theta correspondence is obtained by using as integral kernel
the theta function on the symplectic group obtained from the Weil represen-
tation. The corresponding representation is minimal in the sense of being
attached to a minimal coadjoint orbit. Though, as was shown by Vogan [14],
there is in fact no minimal representation on odd orthogonal groups beyond
SO7, the authors in [3] established the existence of a representation which,
though not minimal, was small, in the sense that most conjugacy classes of
Fourier coefficients vanished (see Proposition 2). Globally this space was
obtained as the residues of certain metaplectic Eisenstein series. In this pa-
per we use the functions of this theta representation as the kernels for a
family of theta lifts. We show that this construction enjoys many of the
same properties as the classical theta lift. In particular, in Section 3 we
show that this theta lift satisfies a tower property, so that the first nonzero
theta lift is cuspidal. In Section 4 we study the nonvanishing of the lift, and
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show that a genuine cuspidal automorphic representation on S̃O2k+1(A) must

lift nontrivially to S̃O8k(A). In Section 5 we refine these results for generic
representations, and we compute the Whittaker model of the lift.

Finally, in Section 6 we study the unramified correspondence, computing
the Langlands parameters of the lift from S̃O2k to S̃O2k+1, effectively showing
that it is functorial. We analyze quotients of the restriction of the theta
representation of S̃O4k+1 to S̃O2k × S̃O2k+1. The general flavor of this result
is similar to Kudla [11], in which the irreducible quotients of the restriction
of the usual Weil representation to a dual reductive pair are studied.

This work was supported in part by NSF grants DMS-9970841 and DMS-
0354662 (Bump) and by NSA grant MDA904-03-1-0012 and NSF grant DMS-
0353964 (Friedberg).

2 Preliminaries

We start by fixing some notations. Let SOl denote the split special orthogonal
group on an l dimensional space. All orthogonal groups in this paper will be
represented with respect to the l × l matrix

Jl =

 1
. . .

1

 .

The maximal unipotent subgroup of SOl contains n simple roots, where n =
[l/2]. Let ei,j denote the l× l matrix with one in the (i, j)-th entry and zero
elsewhere. Let αi (1 6 i 6 n) denote the simple roots in the usual order with
respect to the standard Borel subgroup of upper triangular matrices. The
corresponding one-parameter subgroups are r 7−→ xαi

(r) where

xαi
(r) = exp(r(ei,i+1 − el−i,l−i+1))

if l = 2n+ 1, and

xαi
(r) =

{
exp(r(ei,i+1 − el−i,l−i+1)) if 1 6 i < n
exp(r(en−1,n+1 − en,n+2) if i = n

if l = 2n. We shall denote by wi the simple reflection corresponding to the
simple root αi.
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We shall always assume that the ground field F (which may be local or
global) contains four distinct fourth roots of unity. If F is global, let A denote

its adele ring. Let S̃Ol(F ) (if F is local) or S̃Ol(A) (if F is global) denote the
metaplectic double cover, which is defined and studied in [3]. We recall that

although S̃Ol is actually a double cover it contains a central subgroup µ4 of
order four which we identify with the fourth roots of unity. We recall from
[3] that a representation ρ of any subgroup of S̃O2n+1(F ) which contains the

embedded group µ4 of S̃O2n+1(F ) is called genuine if ρ(εg) = ερ(g), where we
have fixed an injection µ4 −→ C×, and by abuse of notation identify ε with
its image in C×. Most representations which we will consider are genuine.

For any two natural numbers 2k + 1 and 2m we embed the orthogonal
groups SO2k+1 and SO2m in SO2k+2m+1 as follows:

(h, g) ↪→

 a 0 b
0 g 0
c 0 d

 , g ∈ SO2k+1, h =

(
a b
c d

)
∈ SO2m . (1)

Let π denote an irreducible cuspidal genuine automorphic representation
of S̃O2k+1(A). If θ2k+2m+1 is any genuine automorphic representation on

S̃O2k+2m+1 we consider the functions

f̃(h) =

∫
SO2k+1(F )\ SO2k+1(A)

ϕπ(g) θ2k+2m+1(h, g) dg . (2)

Here ϕπ(g) denotes a general vector in the space of π and θ2k+2m+1(r) de-
notes a general function in the space of θ2k+2m+1. We are writing SO2k+1(A)

instead of S̃O2k+1(A) because the product of ϕπ and θ̄2k+2m+1 is not genuine.
This integral defines a mapping from the irreducible cuspidal genuine auto-
morphic representations on the group S̃O2k+1(A) to the genuine automorphic

representations on S̃O2m(A). We shall denote the image representation by
θ2k+2m+1(π).

In a similar way one can construct a mapping from the irreducible cuspidal
genuine automorphic representations on S̃O2m(A) to the genuine automor-

phic representations on S̃O2k+1(A).
In [3] we introduced and studied the properties of what we refer to as the

theta representation on S̃O2k+2m+1. This is an automorphic representation
obtained as a residue of an Eisenstein series which is small in a certain sense.
In that paper we denoted this representation by θ. Since we will vary the
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number m we henceforth write θ2k+2m+1 for θ. Fixing the number k and
letting m vary, the integral (2) defines a “tower” of liftings. In the next
Sections we will study the properties of this tower.

We now recall two of the main results in [3] which we will need for our
computations. In Proposition 1 below, some notations are as in [3]. In partic-

ular, G̃Lr(F ) is the cover induced on GLr(F ) from the cover S̃O2k+2m+1(F ) by
its inclusion as the Levi factor of SO2r+1(F ) in the standard Siegel parabolic
subgroup. It is a metaplectic double cover in the sense of Kazhdan and
Patterson [10], and the representation Θ which appears in Proposition 1

is an exceptional representation of G̃Lr(F ) in the sense of Kazhdan and
Patterson [10]. We refer to the discussion in [3], page 1370 for the precise

descriptions of G̃Lr(F ) and its representation Θ.

Proposition 1 Let F be a nonarchimedean local field, and let θ2k+2m+1 be the

local theta representation of S̃O2k+2m+1(F ). Let Pr = (GLr× SO2(k+m−r)+1)U
be a maximal parabolic subgroup of SO2k+2m+1. Then as a representation of

G̃Lr(F )× S̃O2(k+m−r)(F ), the Jacquet module with respect to U is isomomor-

phic to Θ⊗ θ2(k+m−r)+1, where Θ is a theta representation of G̃Lr(F ).

This is Theorem 2.3 of [3]. A global statement should be true: on the
adele group it should be true that as a function of (h1, h2) the integral∫

U(F )\U(A)

θ2k+2m+1(u(h1, h2)) du

is in the space of the automorphic representation Θ⊗ θ2(k+m−r)+1 where Θ is
the theta function on the double cover of GLr. This statement is Conjecture
3.3 of [3], and it is proved there if r = 1. The local statement is sufficient for
our purposes. The most important property for us of Θ is that it does not
have a Whittaker model if r > 3.

The uniportent conjugacy classes of SO2n+1 are parametrized by parti-
tions of 2n + 1 in which each even part occurs an even number of times.
By abuse of notation we will identify a unipotent class with the correspond-
ing partition. See [3], Section 4 and Collingwood and McGovern [5] for this
parametrization, and for the partial order on the classes.

In [3] Section 4, a connection between unipotent conjugacy classes and
Fourier coefficients is explained. Given a unipotent class, a set of Fourier
coefficients is defined by (4.5) of [3]. The description of V n

2 in that formula
is somewhat lengthy so we assume familiarity with [3] regarding this point.
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Let O(θ2k+2m+1) denote (22n1) if k+m = 2n and let O(θ2k+2m+1) = (22n3)
if k+m = 2n+ 1. The vanishing properties of the Fourier coefficients of the
theta representation are described as follows.

Proposition 2 ([3], Theorem 4.2 (i)) If O is any unipotent conjugacy
class which is greater than or not comparable to O(θ2k+2m+1) in the partial
order, then all Fourier coefficients of θ2k+2m+1 with respect to O are zero.

We will also need a couple of local consequences of the smallness of the θ
representations. For the remainder of the section, F will be a nonarchimedean
local field. Let U = U2k+1 denote the unipotent radical of the standard
parabolic subgroup of SO2k+1 with Levi factor GL1× SO2k−1. By abuse of
notation we will write U for U(F ) in the remainder of this section. If r ∈
F 2k−1, then writing a typical element of U2k+1 as

u2k+1 =

 1 u ∗
I2k−1 ∗

1

 , u ∈ F 2k−1,

every character of U2k+1 has the form ψr(u) = ψ(〈r, u〉) where if r ∈ F 2k−1,
〈r, u〉 denotes the inner product of r with the vector u, with respect to the

split quadratic form having the matrix

 1
. . .

1

.

Proposition 3 Let r be a vector of nonzero length in F 2k−1. Let U = U2k+1.
Then the twisted Jacquet module of θ2k+1 with respect to the character ψr of
U vanishes.

Proof This is similar to Theorem 2.6 of [3], except that if the length of r
is not a square, the stabilizer of ψ is not the split SO2k−2, but the quasisplit
one. The arguments of [3] must be repeated for this group. We omit the
details, which are long but similar to [3]. �

Proposition 4 Let θ = θ2k+1, where k > 3. Let U = U2k+1 and let ψU be
the character of U defined by ψU(u) = ψ(u12). Let V be the unipotent radical
of the parabolic subgroup with Levi factor GL(2)× SO2k−3. Then the twisted
Jacquet module θU,ψU

is a quotient of θV . In other words, the kernel of the
natural map θ −→ θU,ψU

contains the kernel of θ −→ θV .
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Proof We embed U2k−1 −→ SO2k−1 −→ SO2k+1 with GL1× SO2k−1 being
the Levi factor of the standard parabolic subgroup having U2k+1 as its unipo-
tent radical. Thus V ⊂ U2k+1U2k−1 and what we must show is that U2k−1

acts trivially on θU,ψU
. If not, then there is a nontrivial Jacquet module with

respect to some nontrivial character ψr of U2k−1, where r is a vector in F 2k−3.
So assume that r 6= 0 and the Jacquet module θU2k+1U2k−1,ψUψr 6= 0. There

are two cases. First, suppose that r has nonzero length. Then we may
conjugate U2k+1U2k−1 by the Weyl element w2 which is the simple reflection
interchanging the first two rows of U2k+1U2k−1. We disregard everything but
the first row. We see that θ has a nonzero Jacquet module with respect to
the following unipotent subgroup and character:

1 0 u ∗ ∗
1 0 0 ∗

I2k−3 0 ∗
1 0

1

 7−→ ψ(〈r, u〉).

Now for some a ∈ F there will be a nonzero Jacquet module for U2k+1 with
the character 

1 x u ∗ ∗
1 0 0 ∗

I2k−3 0 ∗
1 x

1

 7−→ ψ(ax)ψ(〈r, u〉).

This is the character parametrized by the vector (a, r, 0) ∈ F 2k+1 and since
〈r, r〉 6= 0, no matter what a is the length of this vector is nonzero, and we
now have a contradiction to Proposition 3.

Therefore we must have 〈r, r〉 = 0. Using GL1 and the middle SO2k−3,
we may move the character and assume that r = (1, 0, · · · , 0), and we now
have a zero twisted Jacquet module with respect to the character ψUψr of
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U2k+1U2k−1. This is the character

1 u12 ∗ ∗ · · · ∗ ∗
1 u23 ∗ · · · ∗ ∗

1 0 0
...

...
I2k−5 0 ∗ ∗

1 u12 ∗
1 u23

1


7−→ ψ(u12 + u23).

Now we take the Jacquet module with respect to all characters of U2k−3.
Some Jacquet module must be nontrivial. It cannot be with respect to
the trivial character, since then the character ψUψr would be trivial on
the unipotent radical of the standard parabolic subgroup with Levi factor
GL(3)× SO2k−5, which affords the theta representation of G̃L(3) by Propo-
sition 1. This ψUψr would then induce a Whittaker model on the theta
representation, but this representation has no Whittaker model. Therefore
the character of U2k−3 must be nonzero. Writing it as ψr′ where r′ ∈ F 2k−5,
if r′ has nonzero length we may argue as we did previously, using a Weyl
group element to move it to the first row. We then obtain a nonzero Jacquet
module with respect to the following unipotent subgroup and character:

1 0 u ∗ ∗
I2 0 0 ∗

I2k−5 0 ∗
I2 0

1

 7−→ ψ(〈r′, u〉).

The argument is as before; for some a, b ∈ F there will be a nonzero Jacquet
module for U2k+1 with the character

1 x u ∗ ∗
I2 0 0 ∗

I2k−5 0 ∗
I2 x

1

 7−→ ψ(ax1 + bx2)ψ(〈r′, u〉), x = (x1, x2),

but no matter what a and b are we get a contradiction to Proposition 3.
Thus r′ has length zero, and as before we may move it to the 3, 4 position.
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Proceeding in this way, we eventually obtain a nonzero Jacquet functor
for the Gelfand-Graev character of the maximal unipotent radical of θ, a
contradiction since it has no Whittaker model. �

3 The Cuspidality Tower

In this Section we will study the cuspidality property of the tower of lifting
introduced in (2). We will prove

Theorem 1 Let π be a cuspidal genuine automorphic representation of
S̃O2k+1(A). Suppose the lift θ2k+2m−1(π) is zero. Then the lift θ2k+2m+1(π) is

a cuspidal genuine automorphic representation of S̃O2m(A).

Let Ui,2k+2m+1 denote the unipotent subgroup of SO2k+2m+1 consisting of
all matrices of the form

Ui,2k+2m+1 =




Ii−1 0 0 0 0

1 u ∗ 0
I2(k+m−i)+1 ∗ 0

1 0
Ii−1


 (3)

where ∗ denotes whatever is needed to guarantee that the matrix is orthog-
onal. It is clear that Ui,2k+2m+1 is an abelian group. Given an additive
character ψ of the group F\A define a character ψ1 of U1,2k+2m+1 as follows.
If u = (ui,j) ∈ U1,2k+2m+1 then set ψ1(u) = ψ(u1,2). We start with

Lemma 1 The function

f(z) =

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

θ2k+2m+1(uz)ψ1(u) du

is left-invariant under the adelic points of U2,2k+2m+1. In other words, f(z) =
f(vz) for all v ∈ U2,2k+2m+1(A).

Proof We expand f(z) along the group U2,2k+2m+1(F )\U2,2k+2m+1(A). The
group SO2k+2m−3(F ) which is embedded in SO2k+2m+1(F ) as in (1) acts on
the characters of U2,2k+2m+1(F )\U2,2k+2m+1(A) with three types of orbits.
First we have the orbits whose stabilizers are given by a quasi-split even
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orthogonal group SO2k+2m−4. The contributions to f(z) from these orbits
are integrals of the form∫

U1,2k+2m+1(F )\U1,2k+2m+1(A)

∫
U2,2k+2m+1(F )\U2,2k+2m+1(A)

(4)

θ2k+2m+1(uvz)ψ1(u)ψ2(v) dv du.

Here ψ2(v) = ψ(v2,k+m + av2,k+m+2) where v is parametrized as in (3) and
where a ∈ F×. However this Fourier coefficient corresponds to the unipotent
class O = (512k+2m−4) and hence by Proposition 2 this integral is zero.

Next, in the Fourier expansion of f(z) along U2,2k+2m+1(F )\U2,2k+2m+1(A)
we consider the contribution from the nonzero isotropic vectors. In other
words we have the contribution from∫

U1,2k+2m+1(F )\U1,2k+2m+1(A)

∫
U2,2k+2m+1(F )\U2,2k+2m+1(A)

(5)

θ2k+2m+1(uvz)ψ1(u) ψ̃2(v) dvdu

where ψ̃2(v) = ψ(v2,3). Now we continue by expanding this integral along

U3,2k+2m+1(F )\U3,2k+2m+1(A).

As in (4) one sees that the contribution coming from the big orbit is zero.
We claim that the constant term in this case is also zero. In other words we
claim that ∫

θ2k+2m+1(uvrz)ψ1(u)ψ̃2(v) dv du dr = 0

for all choices of data. Here r is integrated over U3,2k+2m+1(F )\U3,2k+2m+1(A)
and u and v are integrated as before. To see that this integral is zero, notice
that

L = U1,2k+2m+1U2,2k+2m+1U3,2k+2m+1

is the unipotent radical of the parabolic subgroup of SO2k+2m+1 whose Levi
part is GL3

1× SO2k+2m−5. Hence we can write the above integral as∫
L(F )\L(A)

θ2k+2m+1(lz)ψL(l) dl

where if l = (li,j) ∈ L then ψL(l) = ψ(l1,2 + l2,3). This integral is a Whit-
taker coefficient of the constant term with respect to a maximal parabolic
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subgroup with Levi factor GL3× SO2k+2m−5. At any nonarchimedean place,
this integral factors through the corresponding Jacquet module, which has
no Whittaker model by Proposition 1, and so this integral is zero.

Thus in (5) we are left with the contribution which comes from the
nonzero isotropic vectors. In other words, (5) is a sum of integrals of the
type ∫

θ2k+2m+1(uvrz)ψ1(u) ψ̃2(v) ψ̃3(r) dv du dr

where ψ̃3(r) = ψ(r3,4). Continue by induction. We eventually obtain either
the Whittaker coefficient of the maximal unipotent radical of SO2k+2m+1,
which is zero by Proposition 2, or we get a Whittaker coefficient on the double
cover of GLk+m, and since k +m > 2 this vanishes by applying Proposition
1 at any nonarchimedean place. Hence the above integral is zero and so is
the integral (5). This shows that the contribution to Fourier expansion of
f(z) which comes from the nonzero isotropic vectors is also zero. Thus we
are left with the constant term. But this just means that f(z) = f(vz) for
all v ∈ U2,2k+2m+1(A). �

We may extend this Lemma as follows. Let R2j−1 =
∏2j−1

i=1 Ui,2k+2m+1.
Define a character ψ2j−1 of R2j−1 by ψ2j−1(r) = ψ(r1,2 + r3,4 + · · ·+ r2j−1,2j).
Then a similar argument gives

Corollary 1 The function

f(z) =

∫
R2j−1(F )\R2j−1(A)

θ2k+2m+1(rz)ψ2j−1(r) dr

is left-invariant under the adelic points of U2j,2k+2m+1(A).

Next we prove

Proposition 5 Suppose that θ2k+2m+1(π) = 0. Then θ2k+2m−1(π) = 0.

Proof By assumption, the integral (2) is zero for all choices of data. Let
V denote the unipotent radical of the maximal parabolic subgroup of SO2m

which preserves a line. Then the integral∫
SO2k+1(F )\ SO2k+1(A)

∫
V (F )\V (A)

ϕπ(g) θ2k+2m+1(v, g) dv dg (6)
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is zero for all choices of data. With the group V embedded inside SO2k+2m+1

via the embedding given in (1), we have V ⊂ U1,2k+2m+1, and the quotient V
U1,2k+2m+1 may be identified with the subgroup of orthogonal matrices of the
form 

1 tu −1
2
〈u, u〉

Im−1

I2k+1 −u
Im−1

1

 ∼= F 2k+1,

which is complementary to V in U1,2k+2m+1. Let us expand the above integral
along (V \U1,2k+2m+1)(A/F ). The group SO2k+1 acts on this quotient, and
as in the proof of Lemma 1 we have three types of orbits. First we have
the type which corresponds to vectors of nonzero length. Since these Fourier
coefficients correspond to the unipotent class (312k+2m−2), one sees using
Proposition 2 that they do not contribute to the integral. Next we consider
the contribution to (6) from the terms which correspond to nonzero isotropic
vectors. We get∫

Q0(F )\ SO2k+1(A)

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

ϕπ(g) θ2k+2m+1(u, (1, g))

×ψ1(u) du dg .

Here Q is the parabolic subgroup of SO2k+1 which preserves a line and the
upper zero indicates that we omit the GL1, and ψ1 is now the character
ψ1(u) = ψ(u1,m+1). Let w0 be the Weyl element

w0 =

 ν 0 0
0 1 0
0 0 ν∗

 , ν =

 1 0 0
0 0 1
0 Ik+m−2 0

 .

Conjugating by w0 from left to right, the above integral equals∫
Q0(F )\ SO2k+1(A)

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

ϕπ(g)×

θ2k+2m+1(uw0(1, g))ψ2(u) du dg

where ψ2(u) = ψ(u1,2). Let L denote the unipotent radical of Q0. Factoring
the integration over this group and using Lemma 1 we obtain the integral of
ϕπ along the group L(F )\L(A) as inner integration. This integral is zero by
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the cuspidality of π. From this we deduce that the vanishing of θ2k+2m+1(π)
implies the vanishing of the integral∫

SO2k+1(F )\ SO2k+1(A)

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

ϕπ(g) θ2k+2m+1(u, (1, g)) du dg.

for all choices of data. Using Proposition 1 with r = 1, this implies that
θ2k+2m−1(π) = 0. �

Proposition 6 Let F be a nonarchimedean local field, and let π be a gen-
uine irreducible admissible representation of S̃O2k+1(F ). If there exists no

S̃O2k+1(F )-invariant bilinear form on θ2k+2m+1 ⊗ π, then there exists no

S̃O2k+1(F )-invariant bilinear form on θ2k+2m−1 ⊗ π.

Proof This is a local analog of Proposition 5, and the proof is parallel.
Note that in the proof of Proposition 5 we make use of Proposition 2 which
is Theorem 4.2 (i) of [3]. This result is stated globally, and indeed (ii) of
Theorem 4.2 of [3] is essentially global. However (i) of Theorem 4.2, which
is what is needed here, can be formulated and proved locally the same way
as the global statement which is given in [3]. We omit further details. �

Proof of Theorem 1: Let Vp denote the unipotent radical of the parabolic
subgroup of SO2m whose Levi part is GLp× SO2m−2p. There are two as-
sociated parabolic subgroups of SO2m whose Levi part is GLm. With the
embedding in (1) the unipotent radicals of these parabolic subgroups are
conjugate. Hence we need only consider one of them. Let us write

Vp =


 Ip x y

I2m−2p x∗

Ip

 (7)

where x ∈ Matp×2(m−p) and y ∈ Mat0
p×p = {A ∈ Matp×p : AtJp + JpA = 0}.

We need to prove that if θ2k+2m−1(π) = 0 then the integral∫
SO2k+1(F )\ SO2k+1(A)

∫
Vp(F )\Vp(A)

ϕπ(g) θ2k+2m+1(v, g) dv dg (8)

is zero for all choices of data. We start by expanding (8) with respect to the
characters of U1,2k+2m+1(A) which are trivial on U1,2k+2m+1(F ). Once again
the group SO2k+2m−1(F ) acts on the group of characters of U1,2k+2m+1(A)
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with three types of orbits. First are the orbits which correspond to vectors
of non-zero length. The corresponding Fourier coefficients will correspond to
the unipotent class (312k+2m−2). Hence by Proposition 2 the contribution of
these orbits is zero. Next we consider the contribution of the constant term
to the above expansion. As in the proof of Proposition 5 we see that this
integral is θ2k+2m−1(π). By our assumption this is zero. Thus (8) equals∫

ϕπ(g)
∑
γ

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

θ2k+2m+1(uγ(v, g))ψ1(u) du dv dg. (9)

Here g and v are integrated as before, ψ1(u) = ψ(u1,2), and γ is summed over
Q0

2k+2m−1(F )\ SO2k+2m−1(F ), where Q2k+2m−1 is the parabolic subgroup of
SO2k+2m−1 which preserves a line and the upper zero indicates that we omit
the GL1.

To simplify notations we shall write θ for θ2k+2m+1 from now on. We shall
also denote

θU1,ψ1(z) =

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

θ(uz)ψ1(u) du.

Write ∑
Q0

2k+2m−1(F )\ SO2k+2m−1(F )

=
∑

Q2k+2m−1(F )\ SO2k+2m−1(F )

∑
ε∈F×

and denote
ϑU1,ψ1(z) =

∑
ε∈F×

θU1,ψ1(h1(ε)z) (10)

where h1(ε) = diag(1, ε, I2k+2m−3, ε
−1, 1). With these notations (9) equals∫

SO2k+1(F )\ SO2k+1(A)

∫
Vp(F )\Vp(A)

ϕπ(g)
∑
γ

ϑU1,ψ1(γ(v, g)) dv dg (11)

where now γ is summed overQ2k+2m−1(F )\ SO2k+2m−1(F ).
Consider the double cosets Q2k+2m−1\ SO2k+2m−1 /Q2k+2m−1. This space

has three representatives. They are e, w2 and w̃ where

w̃ =


1

1
I

1
1

 .
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We claim that the contributions to (11) from γ = e and γ = w̃ are zero.
Indeed, if the representative is e then we obtain∫

ϕπ(g)
∑
ε

∫
U1,2k+2m+1(F )\U1,2k+2m+1(A)

θ2k+2m+1(uh1(ε)(v, g))ψ1(u) du dv dg.

Using Lemma 1 the inner integration is left-invariant under the quotient
U2,2k+2m+1(F )\U2,2k+2m+1(A). Notice that U1,2k+2m+1U2,2k+2m+1 contains the
unipotent radical of the parabolic subgroup of SO2k+2m+1 whose Levi part
is GL2× SO2k+2m−3. Denote this unipotent subgroup by L. Then ψ1(u) is
trivial on L. Also g ∈ SO2k+1 commutes with h1(ε). Thus, conjugating g
to the left, after integrating over L(F )\L(A) we obtain zero, as can be seen
by applying Proposition 1 and Proposition 6 at any nonarchimedean place.
This shows that the contribution of γ = e is zero.

Next we consider the contribution of w̃ to (11). Consider the root ζ =
β1 + β2 + · · · + βm where the βi are the simple roots of SO2m. The one
parameter subgroup xζ(r) is in Vp for all p. Using the embedding (1) we have
xζ(r) = I2k+2m+1 + r(e1,2k+2m − e2,2k+2m+1). We may write the integration∫

Vp(F )xζ(A)\Vp(A)

ϕπ(g)

[∫
A/F

ϑU1,ψ1(w̃xζ(r)(v, g)) dr

]
dv dg =

∫
Vp(F )xζ(A)\Vp(A)

ϕπ(g)

[ ∑
ε∈F×

∫
A/F

ψ(εr)dr

]
θU1,ψ1(h1(ε)w̃(v, g)) dv dg = 0

by definition of ϑU1,ψ1 , since ψ1(h1(ε)w̃xζ(r)w̃h1(ε)
−1) = ψ(εr). Thus the

contribution of w̃ is also zero.
Thus in (11) we are left with the contribution from w2. This equals∫

SO2k+1(F )\ SO2k+1(A)

∫
Vp(F )\Vp(A)

ϕπ(g)
∑
γ,δ2

ϑU1,ψ1(w2xα2(δ2)γ(v, g)) dv dg (12)

where the sum is over γ ∈ Q2k+2m−3(F )\ SO2k+2m−3(F ) and δ2 ∈ F . Now we
repeat this process. That is, we consider the space

Q2k+2m−3\ SO2k+2m−3 /Q2k+2m−3.
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As before there are three representatives. Using Proposition 5 one sees that
the identity contributes zero to (12). As for the long Weyl element rep-
resentative we use the one-parameter subgroup corresponding to the root
β1 + β2 + 2β3 + · · · + 2βm, which lies in any unipotent radical subgroup
Vp of SO2m, to show that this contributes zero. Continue inductively. At
each stage we use Proposition 5 in order to show that the identity repre-
sentative contributes zero and as for the long Weyl element, at the i-th
step we use the one parameter subgroup which corresponds to the root
β1 + · · · + βi + 2βi+1 · · · + 2βm which lies in any unipotent subgroup Vp
of SO2m. Doing so, we deduce that the integral (11) equals∫

P2k+1(F )\ SO2k+1(A)

∫
Vp(F )\Vp(A)

ϕπ(g)∑
δi

ϑU1,ψ1(w2xα2(δ2) · · ·wmxαm(δm)(v, g)) dv dg (13)

where the sum is over δi ∈ F , 2 ≤ i ≤ m, and where P2k+1 is the parabolic
subgroup of SO2k+1 which preserves a line.

Let e′i,j = ei,j − e2k+2m−j+2,2k+2m−i+2 and

z(δ2, · · · , δm) = I2k+2m+1 + δ2e
′
2,m+1 + · · ·+ δme

′
m,m+1.

Also let w̃2 = w2 · · ·wm. Then (13) equals∫
P2k+1(F )\ SO2k+1(A)

∫
Vp(F )\Vp(A)

ϕπ(g)
∑
δi

ϑU1,ψ1(w̃2z(δ2, · · · , δm)(v, g)) dv dg.

(14)
In (7), if x = (xi,j) let t be the first half of the first row of the matrix x,
i.e. t = (x1,1, · · · , x1,m−p). Embed t in Vp in the obvious way and view t as
a subgroup of SO2k+2m+1 via (1). In (14) we may now conjugate t to the
left, across z(δ2, · · · , δm). When we do so, we obtain by the commutation
relations the matrix

xα1+···+αm(x1,1δp+1 + · · ·+ x1,m−pδm).

Conjugating this matrix across w̃2 and changing variables in U1,2k+2m+1 we
obtain the integral ∫

ψ1(x1,1δp+1 + · · ·+ x1,m−pδm) dx1,j
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as inner integration. This integral is zero unless δi = 0 for p + 1 6 i 6 m.
Thus the integral (14) equals∫

P2k+1(F )\ SO2k+1(A)

∫
Vp,1(F )\Vp,1(A)

ϕπ(g) (15)∑
δi

ϑU1,ψ1(w̃2z(δ2, · · · , δp, 0, · · · , 0)(v, g)) dv dg.

Here Vp,1 is the subgroup of Vp where the first row of x and the first row of
y are zero. If p = 1, or if p > 2 and all the δi are zero, then this integral is
zero. Indeed, let L2k+1 denote the unipotent radical of P2k+1. We factor this
group and we conjugate it to the right in θ̃U1,ψ1 . Using Lemma 1 we obtain∫

L2k+1(F )\L2k+1(A)

ϕπ(lg) dl

as inner integration. By the cuspidality of π this is zero.
Henceforth we assume that p ≥ 2 and that z(δ2, · · · , δp, 0, · · · , 0) is not

zero. Embed the group GLp in SO2k+2m+1 as ζ̂ = diag(1, ζ, I2k+2m−2p−1, ζ
∗, 1).

Let z1(1) = z(1, 0, · · · , 0). The group GLp(F) acts on the nonzero elements
z(δ2, · · · , δp, 0, · · · , 0) with one orbit. We thus obtain∫

P2k+1(F )\ SO2k+1(A)

∫
Vp,1(F )\Vp,1(A)

ϕπ(g)
∑
ζ

ϑU1,ψ1(w̃2z1(1)(v, g)ζ̂) dv dg.

Here we have used the commutativity of ζ̂ with v and g, and also that if
we conjugate ζ̂−1 to the left by w̃2 then θ̃U1,ψ1 is left-invariant under the
matrix obtained after conjugation. Also ζ is summed over suitable matrices
in GLp(F). Thus to show that (16) is zero it is enough to prove that∫

P2k+1(F )\ SO2k+1(A)

∫
Vp,1(F )\Vp,1(A)

ϕπ(g)ϑU1,ψ1(w̃2z1(1)(v, g)) dv dg (16)

is zero. Recall that ϑ̃ is a sum over ε ∈ F× (cf. (10)). We can collapse the
summation over ε with the integration over the subgroup GL1 contained in
P2k+1. Then (16) equals∫

P 0
2k+1(F )\ SO2k+1(A)

∫
Vp,1(F )\Vp,1(A)

ϕπ(g) θU1,ψ1(w̃2z1(1)(v, g)) dv dg (17)
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where the superscript 0 in P 0
2k+1 indicates that we omit the GL1.

By Lemma 1 we can replace θU1,ψ1 by θU1U2,ψ1 , then repeat this process.
In other words, we expand θU1U2,ψ1 along U3,2k+2m+1(F )\U3,2k+2m+1(A). The
group SO2k+2m−5(F ) acts on the group characters of this quotient with three
type of orbits. The ones which correspond to the vectors of nonzero length
will contribute zero after applying Propositions 1 and 2. The constant term
will also contribute zero. Indeed, if we factor the group L2k+1 as above, one
can check that w̃2z1(1)L2k+1(w̃2z1(1))−1 ∈ U3,2k+2m+1. Thus we obtain zero
by the cuspidality of π.

We are left with the orbit which corresponds to the nonzero isotropic
vectors. This process is clearly inductive and depending on the relation
between the numbers 2k+1 and 2m we finally obtain the following integrals.

If 2m < 2k + 1 then the integral (17) equals∫
P 0

2k−2m+5(F )\ SO2k+1(A)

ϕπ(g) θR2l+1,ψ2l+1(w̃z0(1, g)) dg. (18)

Here w̃ = w̃2m−2 · · · w̃2 where w̃2i = w2i · · ·wm+i, and

z0 = diag(1, z̃, I2k−2m+3, z̃
∗, 1), z̃ =

(
I I

I

)
where I is the (m−1)× (m−1) identity matrix. We also have l = (m−1)/2
if m is odd and l = m/2 if m is even. The group P 0

2k−2m+5 is the sub-
group of SO2k+1 given by P 0

2k−2m+5 = SO2k−2m+5 L2k−2m+5 where L2k−2m+5

is the unipotent radical of the standard nonmaximal parabolic subgroup
whose Levi part is GLm−1

1 ×L2k−2m+5. We have the factorization L2k−2m+5 =
Nm−1L

0
2k−2m+5 where Nm−1 is the maximal unipotent subgroup of GLm−1

and L0
2k−2m+5 is the unipotent radical of the maximal parabolic subgroup of

SO2k+1 whose Levi part is GLm−1× SO2k−2m+5. To show that this integral
is zero we factor the measure and consider the inner integration over the
group L0

2k−2m+5(F )\L0
2k−2m+5(A). Conjugating this matrix to the right, we

see that the function θR2l+1,ψ2l+1 is left-invariant under this group. Thus we
obtain zero by cuspidality.

A similar situation occurs if 2m > 2k + 1. In this case we obtain∫
L̃(F )\ SO2k+1(A)

∫
Vp,j(F )\Vp,j(A)

ϕπ(g) θR2l+1,ψ2l+1(w̃z0(1, g)) dg. (19)
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Here w̃ = w̃2k · · · w̃2 where w̃2i = w2i · · ·wk+i. Also z0 = diag(1, z̃, 1, z̃∗, 1)
where now

z̃ =

 Ik Ik
Im−k+1

Ik

 .

The group L̃ is the maximal unipotent subgroup of SO2k+1 and Vp,j is a
certain subgroup of Vp. The number l equals k/2 if k is even and equals
(k − 1)/2 if k is odd.

To show that (19) is zero we factor the integration to obtain the integral
over L̃(F )\L̃(A) as inner integration. As in the previous case observe that
after conjugating this to the right, the function θR2l+1,ψ2l+1 is left-invariant
by the matrix resulting from the conjugation. Thus we get zero by the
cuspidality of π.

This completes the proof of Theorem 1.

4 The Nonvanishing of the Lift

We prove

Theorem 2 Let π be a genuine cuspidal automorphic representation of
S̃O2k+1(A). Then θ10k+1(π) is nonzero. In other words, every π lifts non-

trivially to an automorphic representation on S̃O8k(A).

Remark. In fact we expect that the first occurrence will be before this. In
the next section we will analyze the nonvanishing of the lift in the case when
π is a generic automorphic cuspidal representation. We will find conditions
for it to lift to S̃O2k+2. We believe that every such π should lift nontrivially

to S̃O2k+4. At the end of Section 5 we give some computations which support
this conjecture.
Proof Suppose that

f̃(h) =

∫
SO2k+1(F )\SO2k+1(A)

ϕπ(g) θ10k+1(h, g) dg (20)

is zero for all choices of data. We will derive a contradiction. Let V4k denote
the unipotent subgroup of S̃O8k as defined in (7) with p = 4k. From the
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assumption that the above integral vanishes for all choice of data, it follows
that the integral∫

SO2k+1(F )\SO2k+1(A)

∫
V4k(F )\V4k(A)

ϕπ(g) θ10k+1(v, g)ψV (v) dv dg (21)

is zero for all choices of data. Here ψV is defined as follows. From (7) it
follows that we can identify V4k with all matrices

Mat0
4k×4k = {y ∈ Mat4k×4k | yJ4k + J4k

ty = 0}.

For y = (yij) ∈ Mat0
4k×4k define ψV (v) = ψV (y) = ψ(y1,1+. . .+y2k,2k). Notice

that this character is uniquely defined in the following sense. Recall that V4k

is the unipotent radical of the maximal parabolic subgroup of SO8k whose
Levi part is GL4k. The action of GL4k on Mat0

4k×4k is via the exterior square
representation. This action has an open orbit, hence, up to conjugation by
GL4k(F ), ψV is uniquely defined.

Before proceeding, let us explain the motivation for considering the in-
tegral (21). To derive a contradiction we need to show that as we vary the
data in the space of the representation θ10k+1 we have enough information
to deduce that (20) is nonzero. We will approach this in a way similar to
[8] Section 4 using the structure of Fourier-Jacobi coefficients as described
in [9].

More precisely, let R4k denote the unipotent radical of the maximal
parabolic subgroup of SO10k+1 whose Levi group is GL4k× SO2k+1. Thus
R4k has the structure of a generalized Heisenberg group whose center is V4k.
Let l denote the homomorphism from the group R4k onto the Heisenberg
group with 4k(2k + 1) + 1 variables.

Let θ̃ψφ denote the theta function on the double cover of Sp4k(2k+1). Here
φ is a Schwartz function. It follows from [9] that the space of functions

θ̃ψφ1
((1, g))

∫
R4k(F )\R4k(A)

θ10k+1(r(1, g))θ̃
ψ
φ2

(l(r)(1, g)) dr, (22)

where φ1 and φ2 are Schwartz functions, is a dense subspace in the space of
functions ∫

V4k(F )\V4k(A)

θ10k+1(v, g)ψV (v) dv. (23)
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From this we conclude that the vanishing of (21) for all choices of data is
equivalent to the vanishing of∫

SO2k+1(F )\SO2k+1(A)

ϕπ(g) θ̃
ψ
φ1

((1, g)) (24)

×
∫
R4k(F )\R4k(A)

θ10k+1(r(1, g)) θ̃
ψ
φ2

(l(r)(1, g)) dr dg

for all choices of data. Define

L(g) = ϕπ(g)

∫
R4k(F )\R4k(A)

θ10k+1(r(1, g)) θ̃
ψ
φ2

(l(r)(1, g)) dr.

Then it follows from (24) that∫
SO2k+1(F )\SO2k+1(A)

L(g) θ̃ψφ1
((1, g)) dg

is zero for all choices of data. Arguing as in [12] Theorem I.2.1 we deduce
that the vanishing of the above integral for all choices of data implies that
the function L(g) is zero for all choices of data. (We chose to consider the

lift from S̃O2k+1 to S̃O8k so that we would be able to use the result in [12].
Taking the lift to a smaller rank even orthogonal group would not guarantee
the nonvanishing of the last integral.) However, if L(g) is zero for all choices
of data, this just means that (22) and hence (23) are zero for all choices of
data.

In a way similar to that described in [3] formula (4.24), one can check
that the Fourier coefficient written in (23) corresponds to the unipotent orbit
(24k12k+1). We know from [3] Theorem 4.2 part 2, that θ10k+1 has a nonzero
Fourier coefficient corresponding to the unipotent orbit (25k1). From the
description of these two Fourier coefficients, it follows that integral (23) is an
inner integration to integral (4.24) in [3], which we know to be nonzero for
some choice of data. Hence (23) is nonzero for some choice of data and we
derived a contradiction. This completes the proof of Theorem 2. �

5 The Whittaker Model of the Lift and the Nonvan-

ishing of the Lift for Generic Representations

In this section we examine more carefully the question of the nonvanishing.
We start by computing the Whittaker model of the lift and expressing it in
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terms of certain models of π. We first study the lift to S̃O2(k+1). In this case
we show that the Whittaker model of the lift is nonzero if and only if π has
a Bessel model. Then we consider the lift to S̃O2(k+2). In this case we show
that if the Whittaker model of the lift is nonzero then π has a Whittaker
model.

We start with the lift to S̃O2(k+1). Let U denote the maximal unipotent

subgroup of S̃O2(k+1). We define the character ψU,a of U(F )\U(A) as follows.
If u = (ui,j) ∈ U define ψU,a(u) = ψ(u1,2 + u2,3 + . . . + uk,k+1 + auk,k+2)
where a ∈ F×. It is easy to check that a may be multiplied by any square
by conjugation. Via the embedding in (1) we consider the integral∫

SO2k+1(F )\ SO2k+1(A)

∫
U(F )\U(A)

ϕπ(g) θ4k+3((u, g))ψU,a(u) du dg. (25)

We shall now compute this integral and determine when it is nonzero.
The first part of the computation is similar to the computation done in

the proof of Theorem 1, where we replace Vp by U . Indeed, following the
same steps which led to the integral (14) we deduce that (25) equals∫

P2k+1(F )\ SO2k+1(A)

∫
U(F )\U(A)

ϕπ(g) (26)

∑
δi

ϑU1,ψ1(w̃2z(δ2, · · · , δk+1)(v, g))ψU,a(u)dv dg,

where w̃2 = w2 · · ·wm. Notice that V1 (introduced in the proof of Theorem 1)
is a subgroup of U , hence if we carry out the same process which led from
(14) to (16) we find that (26) equals∫

P2k+1(F )\ SO2k+1(A)

∫
U1(F )\U1(A)

ϕπ(g) (27)

∑
ε θ

U1,ψ1(h1(ε)w̃2z(ε
−1, 0, · · · , 0)(u1, g))ψU,a(u

1)du1dg.

Here U1 = U
⋂

SO2k where SO2k is embedded in SO2k+2 in the middle block.
The appearance of ε is due to (10) and to the fact that the character ψU,a
is not trivial on restriction to V1 (whereas in the proof of Theorem 1 it was
trivial). Collapsing summation with integration as in the proof of Theorem
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1, we obtain that (27) equals∫
P 0

2k+1(F )\ SO2k+1(A)

∫
U1(F )\U1(A)

ϕπ(g) θ
U1,ψ1(w̃2z1(1)(u1, g))ψU,a(u

1) du1 dg.

(28)
Continuing in this way, as in the proof of Theorem 1 we deduce that (28)
equals ∫

P 0
3 (F )\ SO2k+1(A)

∫
Uk(F )\Uk(A)

∑
γ

ϕπ(g)× (29)

θR2k−1,ψ2k−1(γw̃z0(u
k, g))ψU,a(u

k) duk dg

where we now explain the notations. Let P3 denote the parabolic subgroup of
SO2k+1 whose Levi part is GLk−1

1 × SO3. The group P 0
3 is the subgroup of P3

where we omit the GLk−1
1 factor. Next, we define Uk = U

⋂
SO4 where SO4

is embedded in SO2k+2 in the middle block. The group R2k−1, which was also
defined before Corollary 1, is the unipotent radical of the parabolic subgroup
of SO4k+3 whose Levi part is GL2k−1

1 × SO5. The character ψ2k−1 was defined
before Corollary 1. The function θR2k−1,ψ2k−1 is the Fourier coefficient along
this unipotent subgroup with this character. The sum in (29) is over all γ
in Q0

3(F )\ SO5(F ) where Q0
3 is the subgroup of the maximal parabolic which

preserves a line, and the upper zero indicates that we omit the GL1 factor. We
also define w̃ = w̃2k · · · w̃2 where for all 1 6 i 6 k we have w̃2i = w2i · · ·wk+i.
Finally, we denote z0 = diag(1, z̃, 1, z̃∗, 1) where

z̃ =

 Ik−1 Ik−1

1
Ik−1

 .

The difference between this case and the cuspidality computation is that here
we integrate also along the character ψU,a which by definition is nontrivial on
the entries uk,k+1and uk,k+2 of uk. Hence at this point when we consider the
space Q3\ SO5 /Q3, we get a contribution of zero from the two small sets (in
contrast to what happened in the cuspidality computation) and so we will
only need to consider the contribution from the big cell. From this cell we
obtain ∫ ∑

γ,ε

ϕπ(g)θ
R2k−1,ψ2k−1(h(ε)w0γw̃z0(u

k, g))ψU,a(u
k)dukdg (30)
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where the sum is over ε ∈ F× and γ ∈ U2k,4k+3(F ) where this last group was
defined in (3). Also

h(ε) =


I2k−1

ε
I3

ε−1

I2k−1

 , w0 =

 I2k−1

ν
I2k−1

 ,

where ν is a Weyl element in SO5 which is a representative of the big cell
as obtained from the above double coset factorization. All variables are
integrated as in (29).

At this point we conjugate the matrix uk to the left. Recall that the
dimension of the group Uk is two. Via the embedding (1) this group con-
sists of products of the matrices I4k+3 +uk,k+1e

′
k,k+1 and I4k+3 +uk,k+2e

′
k,3k+3

where the indices indicate the relation of these matrices to their embeddings
in Uk. On this product we have ψU,a(u

k) = ψ(uk,k+1 + auk,k+2). The above
two matrices commute with z0 and after conjugating them by w̃ we obtain
the matrix x(uk,k+1, uk,k+2) = I4k+3 + uk,k+1e

′
2k−1,2k + uk,k+2e

′
2k−1,2k+4. Con-

jugating x(0, uk,k+2) to the left and changing variables we obtain∫
ψ((ε−1 − a)uk,k+2) duk,k+2

as inner integration. Thus we obtain a nonzero contribution only if ε = a−1.
Conjugating x(uk,k+1, 0) to the left and changing variables we obtain∫

ψ((1− a−1(γ, γ))uk,k+1)duk,k+1

as inner integration. Here (γ, γ) is the square of the length of the vector γ.
Thus we get a nonzero contribution only if (γ, γ) = a.

The group SO3(F ) as embedded in P 0
3 (F ) acts on the set of all γ ∈ F 3

which have fixed length, with one orbit. The stabilizer is a copy of SO2(F )
which is determined by the length of γ. Let γa be an element such that
(γa, γa) = a. Then (30) equals∫

Lk(F ) SOa
2(F )\ SO2k+1(A)

ϕπ(g) θ
R2k−1,ψ2k−1(w0γaw̃z0(1, g)) dg. (31)

25



Here Lk is the unipotent radical of P 0
3 and SOa

2 is the stabilizer of γa inside
SO3. We choose γa = (1/2, 0, a) and if a is a square we may choose γa =
(0, 1, 0) (recall that a can be changed by any square by conjugation). Notice
that in this last case SOa

2
∼= GL1.

Conjugating this element to the right, (31) equals∫
Lk(F ) SOa

2(F )\ SO2k+1(A)

ϕπ(g) θ
R2k−1,ψ2k−1(w0w̃z(1, g)) dg (32)

where

z =

 Ik+1 α ∗
I2k+1 α∗

Ik+1

 , α =

 0 0 0 0 0
Ik−1 0 0 0 0
0 1/2 0 a 0

 .

Here α∗ and ∗ indicate entries chosen so that the matrix is orthogonal. If a
is a square then we can replace the last row of α by (0, 0, 1, 0, 0).

We define the a-th Bessel model of π by

Ba(π)(g) =

∫
SOa

2(F )\ SOa
2(A)

∫
Lk(F )\Lk(A)

ϕπ(lhg)ψL(l) dl dh

where the definition of ψL is as follows. For l = (li,j) ∈ Lk define ψL(l) =
ψ(l1,2 + · · · + lk−2,k−1 + (γa, l

′)) where (γa, l
′) is the product of γa with l′ =

(lk−1,k, lk−1,k+1, lk−1,k+2). This integral converges absolutely for all a. In the
split case this is shown in [7].

Remark 1 In the case when π is a cuspidal automorphic representation of
SO2k+1(A)and not the covering group, this Bessel model is related to the
value of the standard L-Function at the center of symmetry. There is no
reason to believe that a similar relation holds on the covering group.

With these notations (32) equals∫
Lk(A) SOa

2(A)\ SO2k+1(A)

Ba(π)(g) θR2k−1,ψ2k−1(w0w̃z(1, g)) dg. (33)

We record this as
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Lemma 2 Let π be a cuspidal automorphic representation of S̃O2k+1(A).
Then the a-th Whittaker coefficient of θ4k+3(π) can be expressed in terms of
the Bessel model of the representation π. With the notations of (2), we have∫

U(F )\U(A)

f̃(u)ψU,a(u) du (34)

=

∫
Lk(A) SOa

2(A)\ SO2k+1(A)

Ba(π)(g) θR2k−1,ψ2k−1(w0w̃z(1, g)) dg.

Remark 2 It is interesting to note the similarity of (34) to the identity
(9) in [6]. In that case the relation is between the ψa Whittaker coefficient

of a representation on S̃p2n and a cuspidal representation on SO2n+1. The
comparison in [6] uses the theta representation on the double cover of the
symplectic group.

Next we prove the following

Theorem 3 The representation θ4k+3(π) has a nonzero Whittaker model
with respect to the character ψU,a if and only if the representation π has a
nonzero Bessel model Ba(π).

Proof It follows from (34) that if θ4k+3(π) has a nonzero ψU,a Whittaker
coefficient then Ba(π) is nonzero.

Conversely, assume that Ba(π) is nonzero and assume that the ψU,a Whit-
taker coefficient of θ4k+3(π) is zero for all choices of data. We will derive a
contradiction. Indeed from (34) it follows that∫

Lk(A) SOa
2(A)\ SO2k+1(A)

Ba(π)(g) θR2k−1,ψ2k−1(w0w̃z(1, g)) dg (35)

is zero for all choices of data.
Let φ denote an arbitrary Schwartz function on Y = A2k+1. In the nota-

tion of Section 2 we identify Y withU1,4k+3/V1. In terms of coordinates we
have the following embedding. If y = (y1, · · · , y2k+1) ∈ Y then the embed-
ding is given by y ↪→ I4k+3 + y1e

′
1,k+2 + · · ·+ y2k+1e

′
1,3k+2.

From the vanishing of (35) we deduce that the integral∫
Y (A)

∫
Lk(A) SOa

2(A)\ SO2k+1(A)

Ba(π)(g)θR2k−1,ψ2k−1(w0w̃z(1, g)y)φ(y) dg dy

(36)
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is zero for all choices of data. Conjugate the matrix y to the left and change
variables in R2k−1. Factoring the measure in the g variable we obtain that∫

P 0
2k+1(A)\ SO2k+1(A)

J(h) φ̂(ξ0h) dh (37)

is zero for all choices of data. Here ξ0 = (0, · · · , 0, 1) and φ̂ denotes the
Fourier transform of φ, and

J(h) =

∫
Lk(A) SOa

2(A)\P 0
2k+1(A)

Ba(π)(g) θR2k−1,ψ2k−1(w0w̃z(1, gh)) dg.

Since φ is arbitrary we deduce from the vanishing of (37) that J(h) is zero
for all choices of data. Substituting h = 1 and factoring the measure over g
we deduce that∫

Lk−1(A) SOa
2(A)\ SO2k−1(A)

Ba(π)(g) θR2k−1,ψ2k−1(w0w̃z(1, g)) dg (38)

is zero for all choices of data. Here Lk−1 = Lk
⋂

SO2k−1.
Continue in this way, this time with Ba(π)(g). Let Y now denote the

unipotent radical of the parabolic subgroup of SO2k+1 which preserves a line.
Thus Y ' U1,2k+1. Let φ be an arbitrary Schwartz function on Y (A). From
the vanishing of (38) we deduce that∫

Y (A)

∫
Lk−1(A) SOa

2(A)\ SO2k−1(A)

Ba(π)(gy)φ(y) θR2k−1,ψ2k−1(w0w̃z(1, g)) dg dy

(39)
is zero for all choices of data. Repeating the same argument as in (37) we can
replace the domain of integration in (38) with Lk−1(A) SOa

2(A)\ SO2k−1(A).
Repeating this process we finally obtain that Ba(π)(e)θR2k−1,ψ2k−1(w0w̃z)

is zero for all choices of data. This is clearly a contradiction to our assump-
tion. �

When a = 1 we write ψU for ψU,1. From Theorem 3 we easily deduce

Corollary 2 Suppose that the representation θ4k+3(π) has a nonzero Whit-
taker model with respect to the character ψU . Then the representation π has
a nonzero Whittaker model.
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Proof Let Wϕπ(g) denote the Whittaker coefficient of the function ϕπ(g). It
is easy to show that if B(π)(g) (the Bessel functional with a = 1) is nonzero
then Wϕπ(g) is nonzero (note that the converse need not be true). In fact
this follows from [7]. �

The Theorem is proved, but it is still of interest to express the Whittaker
model of the lift in terms of the Whittaker model of π. To do so we go back
to (32) with a = 1, and obtain that the ψU Whittaker coefficient of the lift
equals ∫

Lk(F )GL1(F )\ SO2k+1(A)

ϕπ(g) θ
R2k−1,ψ2k−1(w0w̃z(1, g)) dg.

Factor the Lk integration to obtain∫
Lk(A)GL1(F )\ SO2k+1(A)

∫
Lk(F )\Lk(A)

ϕπ(lg)ψL(l)θR2k−1,ψ2k−1(w0w̃z(1, g))dl dg.

(40)
Now we argue as in [7]. After conjugating by a suitable Weyl element ν of
SO2k+1, and after suitable Fourier expansions, (40) equals∫

Lk(A)\ SO2k+1(A)

∫
Y (A)

Wϕπ(yg) θR2k−1,ψ2k−1(w0w̃z(1, g)) dy dg

where Y is a certain unipotent subgroup of SO2k+1.

Next we consider the lift from S̃O2k+1 to the group S̃O2(k+2). As in the
previous case we shall compute the Whittaker coefficient of the lift and ex-
press it in terms of the representation π. To do this let U denote the maximal
unipotent subgroup of S̃O2(k+2). For u = (ui,j) ∈ U(A) and a ∈ F×define the
character ψU,a of U(F )\U(A) by

ψU,a(u) = ψ(u1,2 + u2,3 + · · ·+ uk,k+1 + uk+1,k+2/2 + auk+1,k+3).

Via the embedding (1) we consider the integral∫
SO2k+1(F )\ SO2k+1(A)

∫
U(F )\U(A)

ϕπ(g)θ4k+5((u, g))ψU,a(u) du dg. (41)

As before let us omit the subscript and write θ for θ4k+5. The first steps of

the computation are as in the case of the lifting to S̃O2k+2(A). Up to (29)
there are no changes and then we continue to obtain∫ ∑

δ,ε

ϕπ(g) θ
R2k+1,ψ2k+1(h(ε)w2k+2xα2k+2

(δ)w̃z0(u
k+1, g))

×ψU,a(uk+1) duk+1 dg. (42)
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Here g is integrated over Lk+1(F )\ SO2k+1(A), where Lk+1 is the maximal
unipotent of SO2k+1, and uk+1 is integrated over Uk+1(F )\Uk+1(A), where
this group is defined similarly to the definition of the group Uk imme-
diately after (29). The sum is over δ ∈ F and ε ∈ F×, and h(ε) =
diag(I2k, ε, I3, ε

−1, I2k). Also w̃ = w̃2k · · · w̃2 where for 1 6 i 6 k we set
w̃2i = w2i · · ·wk+i+1. Finally,

z0 =

 Ik+2 α1 ∗
I2k+1 α∗1

Ik+2

 , α1 =

 0 0 0
Ik 0 0
0 0 0

 .

Here α∗1 and ∗ indicate entries that are chosen so that the matrix is in SO4k+5.
At this point let us conjugate the matrix uk+1 from right to left. After a

change of variables we obtain as inner integrations the integrals
∫
ψ(1/2r(1−

εδ2)) dr and
∫
ψ(r(1 − εa)) dr with r integrated over F\A. From this we

obtain that a must be a square, and since it was initially chosen modulo
squares we may assume that a = 1. Hence ε = 1 and δ ∈ {±1}. Thus (42)
equals ∫

Lk+1(F )\ SO2k+1(A)

∑
δ

ϕπ(g) θ
R2k+1,ψ2k+1(wz(δ)(1, g)) dg (43)

with w = w2k+2w̃, and

z(δ) =

 Ik+2 α ∗
I2k+1 α∗

Ik+2

 , α =

 0 0 0
Ik 0 0
0 δ 0

 .

Here α∗ and ∗ again indicate entries chosen so that the matrix is orthogonal.
To continue the computation, pull out the adelic points of Lk+1. Doing

that we obtain the Whittaker model of the representation π. If we assume
that the lift is generic then it follows that π must also be generic.

6 The lift S̃O2n −→ S̃O2n+1

If G is a group and π is a representation of a subgroup P , we will denote
by IndGP (π) the unnormalizedly induced representation of G. If we intend

normalized induction, we will explicitly write IndGP (δ
−1/2
G δ

1/2
P ⊗ π), of course

omitting δ
1/2
G if G is unimodular. We denote compact induction by ind.
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Take the embedding of SO2n+1× SO2n in SO4n+1 which puts the SO2n+1

in the odd numbered rows and columns, and the SO2n in the even numbered
rows and columns. For example, if n = 2, then SO5× SO4 is embedded in
SO9 as follows.

∗ ∗ ∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗ ∗
• • • •

∗ ∗ ∗ ∗ ∗


∗ = SO5, • = SO4 .

We consider the lifting S̃O2n −→ S̃O2n+1. Let F be a nonarchimedean lo-
cal field. Let ν = (ν1, ν2, · · · , νn) and µ = (µ1, µ2, · · · , µn) be n-tuples of
unramified characters of F×. These are to parametrize principal series rep-
resentations of S̃O2n+1(F ) and S̃O2n(F ) to be denoted π2n+1(ν) and π2n(µ).

We next describe the parametrization of π2n+1(ν) and π2n(µ). For any k,
let Tk denote the diagonal torus of SOk, and let T̃k(F ) denote the preimage in

S̃Ok(F ) of Tk(F ). It is a 2-step nilpotent group, and its irreducible genuine
representations are finite-dimensional. The first step is to parametrize an
irreducible representation of T̃k(F ) (where k = 2n + 1 or 2n) by the data ν

or µ. We will denote elements of S̃Ok(F ) by pairs 〈g, ε〉 with g ∈ SOk(F )
and ε ∈ µ4, with the multiplication 〈g, ε〉 〈g′, ε′〉 = 〈gg′, εε′σ(g, g′)〉 and the
cocycle σ described in [3] Section 2. The center Z(T̃k(F )) consists of elements

31



of the form

〈


y1

. . .

yn
1

y−1
n

. . .

y−1
1


, ε

〉
yi ∈ (F×)2 if k = 2n+ 1,

〈


y1

. . .

yn
y−1
n

. . .

y−1
1


, ε

〉
yi ∈ (F×)2 if k = 2n.

(In [3], page 1366 it is incorrectly stated that the yi must be fourth powers
to be in the center.) As in [3] Section 2 the quasicharacter

〈


y1

. . .

yn
1

y−1
n

. . .

y−1
1


, ε

〉
7−→ ε

n∏
k=1

νk(yk), (yk ∈ (F×)2)

of Z(T̃2n+1(F )) can be extended arbitrarily to a genuine character of an
arbitrarily chosen maximal abelian subgroup of T̃2n+1(F ), then normalizedly-
induced to T̃2n+1(F ) to obtain an irreducible representation of T̃2n+1(F ). The
resulting representation does not depend on the choice of maximal abelian
subgroup, nor the extension to it. See Bump and Ginzburg [4] Proposition 1.1
and Kazhdan and Patterson [10] Section 0.3 for further discussion of the
point (essentially Clifford’s Theorem) that the parametrized representation
is independent of the choice of maximal abelian subgroup or extension to it.

Having parametrized a genuine irreducible representation of T̃2n+1(F ), it
may be extended to the inverse image B̃SO2n+1(F ) of the standard Borel sub-
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group, so that the unipotent elements act trivially, then induced normalizedly
to S̃O2n+1(F ). This representation is π2n+1(ν).

Similarly π2k(µ) is induced from the character

y1

. . .

yn
y−1
n

. . .

y−1
1


7−→

n∏
k=1

µk(yk). (44)

We will say that µ and ν are in general position if they are in the com-
plement of an effectively computable subset of measure zero in the unitary
dual of (F×)n. We will not describe this subset explicitly since conditions
on µ and ν can appear in different places of the argument. If µ and ν are in
general position, then π2n(µ) and π2n+1(ν) are irreducible.

Let W be the SO2n+1 Weyl group, a group of order 2n · n! generated by
permutations of the νi and 2n transformations which map each νk −→ ν±1

k .
Applying an element of W does not affect the isomorphism class of π2n+1(ν)
if π2n+1(ν) is irreducible, which is true when ν is in general position.

Theorem 4 Assume that µ and ν are in general position and that there
exists a nonzero S̃O2n(F ) × S̃O2n+1(F )-equivariant map θ4n+1 ⊗ π2n(µ) −→
π2n+1(ν). Then after applying an element of W to ν, we may arrange that
each νk = µk.

This means that if we associate to ν and µ the conjugacy classes Aν and
Aµ in the “L-groups” SO2n+1(C) and SO2n(C) of S̃O2n+1 and S̃O2n having
eigenvalues ν±1

k , 1 and µ±1
k , then Aν is the image of Aµ under the obvious

inclusion. As we have explained in the introduction, this means that the
formalism of Langlands functoriality applies in this metaplectic setting, and
the lift is functorial.

The proof will occupy the rest of the section. We claim that it is sufficient
to show that

ν1 ∈ {µ1, · · · , µn, µ−1
1 , · · · , µ−1

n }. (45)

Indeed, we are assuming that µ and ν are in general position, so we may as-
sume µ1, · · · , µn, µ−1

1 , · · · , µ−1
n are distinct, as are ν1, · · · , νn, ν−1

1 , · · · , ν−1
n .

If we prove (45), then without loss of generality we may assume ν1 =
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µ1. Since π2n+1(ν) = π2n+1(ν
′) where ν ′ is the image of ν under any el-

ement of the Weyl group, the same argument then shows that ν2 is one
of µ1, · · · , µn, µ−1

1 , · · · , µ−1
n but it cannot equal µ1 or µ−1

1 , since the char-
acters µ1, · · · , µn, µ−1

1 , · · · , µ−1
n are distinct, as are ν1, · · · , νn, ν−1

1 , · · · , ν−1
n .

Applying another Weyl group element, we may thus assume that ν2 = µ2.
Continuing in this fashion, the theorem is proved.

Let V (previously denoted U2n+1) be the unipotent radical of the parabolic
subgroup P1,2n−1 of SO2n+1 with Levi GL(1) × SO(2n − 1). Then π2n+1(ν)

is parabolically induced from the representation ν1 ⊗ π2n−1(ν
′) of G̃L(1) ×

S̃O(2n − 1), where now ν ′ = (ν2, · · · , νn). Let R and Q be the groups of
matrices of the form

R =


a ∗ ∗ ∗ ∗

a ∗ ∗ ∗
SO4n−3 ∗ ∗

a−1 ∗
a−1

 , Q =

 a ∗ ∗
SO4n−1 ∗

a−1

 ,

respectively. In particular Q = (GL1× SO4n−1)U , where U is the unipotent
radical consisting of upper triangular unipotent elements of SO4n+1 with
nonzero off-diagonal entries in the first row and last columns only. Let θU
denote the Jacquet module of θ = θ4n+1 with respect to U . Also let ψU :
U −→ C be ψU(u) = ψ(u12), so that R is the stabilizer of ψU in Q. Let θU,ψU

denote the twisted Jacquet functor with respect to this character.
We note that any character of U is of the form ψ(〈r, u〉) where r ∈ F 4n−1.

By Proposition 3 the Jacquet module of θ with respect to such a character
vanishes if r has nonzero length. The kernel of the natural map θ −→
θU is glued from the Jacquet modules of nonzero characters of U , and by
Proposition 3, only those corresponding to r of length zero are nonvanishing.
The group Q acts transitively on these, and a typical one of these is ψU ,
with stabilizer R in Q. It follows as in Proposition 5.12 (d) of Bernstein and
Zelevinsky [1] that there is an exact sequence

0 −→ indQR(θU,ψU
) −→ θ −→ θU −→ 0.

Note that indQR(θU,ψU
) is compactly induced. Regarding these as modules for

P̃1,2n−1× S̃O2n we may then apply the ordinary Jacquet functor with respect
to V and obtain an exact sequence

0 −→ indQR(θU,ψU
)V −→ θV −→ θU −→ 0. (46)
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By Frobenius reciprocity, there exists a nonzero G̃L1 × S̃O2n−1 × S̃O2n-
equivariant bilinear map

θV ⊗ π2n(µ) −→ ν1 ⊗ π2n−1(ν
′)⊗ δ

1/2
P1,2n−1

.

We note that

HomGL1 × SO2n−1 × SO2n(θU ⊗ π2n(µ), ν1 ⊗ π2n−1(ν
′)⊗ δ

1/2
P1,2n−1

) = 0. (47)

Indeed the G̃L1 acts by a (computable) fixed character on θU , and by ν1 on the
right; since we are assuming ν is in general position, we obtain the vanishing
statement (47). Hence by (46) there is a nonzero G̃L1 × S̃O2n−1 × S̃O2n-
equivariant map

indQR(θU,ψU
)V ⊗ π2n(µ) −→ ν1 ⊗ π2n−1(ν

′)⊗ δ
1/2
P1,2n−1

.

Let H = P1,2n−1 × SO2n = (GL1× SO2n−1× SO2n)V . By Mackey theory
in the form of Bernstein and Zelevinsky [2] Theorem 5.2, if τ and σ are rep-
resentations of R and H respectively, the space HomH(indQR(τ), σ) is glued
from the spaces HomSγ (

γτ, δ−1
H δSγ ⊗ σ) where γ runs through a set of repre-

sentatives of the double cosets R\Q/H, and Sγ = H ∩ γ−1Rγ. In the case at
hand, it may be checked that there is only one double coset RγH such that

HomSγ (
γ(θU,ψU

)⊗ π2n(µ), δ−1
H δSγ ⊗ ν1 ⊗ π2n−1(ν

′)⊗ δ
1/2
P1,2n−1

) 6= 0. (48)

We may take γ = 1 as a representative of this double coset. Then Sγ = H∩R,
when γ = 1, and we denote this group by S. It is the image of P1,2n−1×P1,2n−2

in SO2n+1× SO2n. For example if n = 2, S consists of matrices of the form

a ∗ ∗ ∗ ~
a ∗ ∗ ~

∗ ∗ ~ ∗
b ∗

∗ ~ ∗ ∗
b−1 ∗

~ ∗ ∗ ∗
a−1

a−1


.

(The locations marked ~ are zero in the Lie algebra of SO9.) Thus we have
a nonzero element of

HomS(θU,ψU
⊗ π2n(µ), δ−1

H δS ⊗ ν1 ⊗ π2n−1(ν
′)⊗ δ

1/2
P1,2n−1

).

35



Now the Proposition 4 means that θU,ψU
factors factors through the Jacquet

module with respect to the parabolic subgroup P2,4n−3 of SO4n+1 whose Levi
factor is GL2× SO4n−3, because the unipotent radical of this parabolic is
generated by its first row, which is contained in the kernel of ψU , and the
second row, which is dealt with by the Lemma. If Θ2 ⊗ θ4n−3 is this theta

representation of G̃L2 × S̃O4n−3 then we can identify θU,ψU
with ω ⊗ θ4n−3

where ω is the twisted Jacquet module with respect to the standard maximal
unipotent of GL2 of Θ2. All we care about is the value of ω on the center
of GL2, which is a subgroup we will denote by GL∆

1 . It corresponds to the
locations marked a in the definition of R. This can be read off from (2.21)
of [BFG] by taking m = 2 and n replaced by our 2n. We have

ω

(
a

a

)
= |a|2n−3/2.

Thus we have a nonzero element in

HomSO2n−1 ×(GL∆
1 × SO2n−2)N1,2n−2

(ω⊗ π2n(µ), δ−1
H δS ⊗ ν1⊗ π2n−1(ν

′)⊗ δ1/2
P1,2n−1

),

where N1,2n−2 is the unipotent radical of the parabolic subgroup P1,2n−2 of
SO2n. Since N1,2n−2 acts nontrivially only on π2n(µ), we may replace π2n(µ)
by its ordinary Jacquet module with respect to this parabolic, which, since
µ is in general position, is a direct sum of irreducible representations of
G̃L1 × S̃O2n−2, or which a typical one is µ1 ⊗ π2n−2(µ

′) ⊗ δ
1/2
P1,2n−2

, where

µ′ = (µ2, · · · , µn). At least one of these has a nonzero contribution. To
prove (45), because we are only asserting that ν1 is one of the µ±1

k , we may

assume that this nonzero contribution is µ1 ⊗ π2n−2(µ
′) ⊗ δ

1/2
P1,2n−2

. In this
case, we will prove ν1 = µ1; if the nonzero contribution is one of the other
constituents of this Jacquet module, we would obtain some other µ±1

k .
We obtain a nonzero SO2n−1×(GL∆

1 × SO2n−2) equivariant map

ω ⊗ µ1 ⊗ π2n−2(µ
′)⊗ δ

1/2
P1,2n−2

−→ δ−1
H δS ⊗ ν1 ⊗ π2n−1(ν

′)⊗ δ
1/2
P1,2n−1

.

We note that δH = δP1,2n−1 and δS = δP1,2n−1δP1,2n−2 , so this gives us an
equivariant map

ω ⊗ µ1 ⊗ π2n−2(µ
′) −→ ν1 ⊗ π2n−1(ν

′)⊗ δ
1/2
P1,2n−1

δ
1/2
P1,2n−2

On a ∈ GL∆
1 , we have

ω = |a|2n−3/2, δ
1/2
1,2n−2 = |a|n−1, δ

1/2
1,2n−1 = |a|n−1/2.
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These precisely cancel, so µ1(a) = ν1(a). This completes the proof of the
Theorem.

References

[1] J. Bernstein and A. Zelevinsky. Representations of the group GL(n, F )
where F is a local nonarchimedean field. Russian Math. Surveys,
31(3):1–68, 1976.

[2] J. Bernstein and A. Zelevinsky. Induced representations of reductive
p-adic groups. I. Ann. Sci. cole Norm. Sup. (4), 10(4):441–472, 1977.

[3] D. Bump, S. Friedberg, and D. Ginzburg. Small representations for odd
orthogonal groups. Internat. Math. Res. Notices, 25:1363–1393, 2003.

[4] Daniel Bump and David Ginzburg. Symmetric square L-functions on
GL(r). Ann. of Math. (2), 136(1):137–205, 1992.

[5] D. Collingwood and W. McGovern. Nilpotent orbits in semisimple Lie
algebras. Van Nostrand Reinhold Mathematics Series. Van Nostrand
Reinhold Co., New York, 1993.

[6] M. Furusawa. On the Theta Lift from SO2n+1 to S̃pn. J. Reine angew.
Math., 466:87–110, 1995.

[7] D. Ginzburg. L-Functions for SOn × GLk. J. Reine angew. Math.,
405:156–180, 1990.

[8] D. Ginzburg, S. Rallis, and D. Soudry. A tower of theta correspondences
for G2. Duke Math. J., 88(3):537–624, 1997.

[9] T. Ikeda. On the theory of Jacobi forms and Fourier-Jacobi coefficients
of Eisenstein series. J. Math. Kyoto Univ., 34:615–636, 1994.

[10] D. Kazhdan and S. J. Patterson. Metaplectic forms. Inst. Hautes tudes
Sci. Publ. Math., (59):35–142, 1984.

[11] S. Kudla. On the local theta-correspondence. Invent. Math., 83(2):229–
255, 1986.

37



[12] S. Rallis. On the Howe duality conjecture. Compositio Math., 51(3):333–
399, 1984.

[13] G. Savin. Local Shimura correspondence. Math. Ann., 280(2):185–190,
1988.

[14] D. Vogan. Singular unitary representations. In Noncommutative har-
monic analysis and Lie groups (Marseille, 1980), volume 880 of Lecture
Notes in Math., pages 506–535. Springer, Berlin, 1981.

[15] J.-L. Waldspurger. Correspondance de Shimura. J. Math. Pures Appl.
(9), 59(1):1–132, 1980.

38


