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Abstract

Suppose that G and H are connected reductive groups over a num-
ber field F and that an L-homomorphism p : “G — H is given.
The Langlands functoriality conjecture predicts the existence of a map
from the automorphic representations of G(A) to those of H(A). If
the adelic points of the algebraic groups G, H are replaced by their
metaplectic covers, one may hope to specify an analogue of the L-
group (depending on the cover), and then one may hope to construct
an analogous correspondence. In this paper we construct such a corre-
spondence for the double cover of the split special orthogonal groups,



raising the genuine automorphic representations of SOy, (A) to those
of §()2k+1(A). To do so we use as integral kernel the theta repre-
sentation on odd orthogonal groups constructed by the authors in a
previous paper [3]. In contrast to the classical theta correspondence,
this representation is not minimal in the sense of corresponding to a
minimal coadjoint orbit, but it does enjoy a smallness property in the
sense that most conjugacy classes of Fourier coefficients vanish.

This work was supported in part by NSF grants DMS-9970841 and DMS-
0354662 (Bump) and by NSA grant MDA904-03-1-0012 and NSF grant DMS-
0353964 (Friedberg).

1 Introduction

Let G and H be reductive groups and let A be the ring of adeles of a given
global field. Given an L-homomorphism p :* G —% H, the Langlands
correspondence predicts the existence of a map from the automorphic rep-
resentations of G(A) to those of H(A). In the case that adelic points of the
algebraic groups G, H are replaced by their covers, the results of Savin [13]
suggest that one may specify an analogue of the L-group (depending on the
cover), and then one may still expect the existence of a correspondence of
automorphic representations. A first example is the Shimura correspondence.

It is not expected that the principle of functoriality works perfectly in
such a context. For example, we know that the metaplectic double cover
the genuine Iwahori-Hecke algebra of SL, is isomorphic to the Iwahori-Hecke
algebra of PGLy. Thus if the L-group formalism is extended to this context,
their L-groups should be the same. This does not mean that the Shimura
correspondence is a perfect bijection between automorphic representations of
the two groups, since Waldspurger [15] proved that an automorphic repre-
sentation m of PGLs is a Shimura lift if and only if L(3,7) # 0.

Moreover, a proper generalization of the principle of functoriality to meta-
plectic groups will require at least a discussion of quasisplit forms. As far as
we know this has not been done. The results of Savin [13] are for split forms.

With these caveats, it may be useful to tentatively define an L-group
for metaplectic groups. Let G be a reductive algebraic group defined over
a ground field F' containing sufficiently many roots of unity, and let G
denote a corresponding metaplectic n-fold cover. We would like to define



LG™ to be a complex analytic group such that (if F'is p-adic) the semisim-
ple conjugacy classes of LG parametrize the irreducible representations of
G (F) that are spherical. (We are considering the connected L-group only
in this assertion.) One would then have, when SO,, denotes a split orthogonal
group:
1™ o { Spy,(C)  if n is odd;
Zk+L ™ SOgk41(C) if n is even,

while Léz);z) 2= SO9;(C) regardless of the parity of n.

__ From this point on, SO will always denote a split orthogonal group and
SOy will denote its metaplectic double cover, whose definition is given in [3]
and reviewed briefly in Section 1. We note that the existence of this cover
requires that the ground field contain the fourth roots of unity. Matsumoto
proved that one could construct a metaplectic n-fold cover of split semisimple
simply-connected groups, but if the group is not simply connected — as in
the case of orthogonal groups — then more roots of unity may be required.

Savin’s results suggest that the L-group of SOy is just SO(C), and cor-
reponding to the inclusion of SOg(C) in SO41(C) one should be able to
construct “functorial” liftings from genuine automorphic representations of
SO to SOg41. In this paper we construct such a map by means of a theta
integral, and verify in a weak sense that it is functorial. More precisely, at
any place where the representation of SOy, is unramified, if the induction data
are in general position, then we show that the lifted representation agrees
with the functorial lift.

The classical theta correspondence is obtained by using as integral kernel
the theta function on the symplectic group obtained from the Weil represen-
tation. The corresponding representation is minimal in the sense of being
attached to a minimal coadjoint orbit. Though, as was shown by Vogan [14],
there is in fact no minimal representation on odd orthogonal groups beyond
SOz, the authors in [3] established the existence of a representation which,
though not minimal, was small, in the sense that most conjugacy classes of
Fourier coefficients vanished (see Proposition 2). Globally this space was
obtained as the residues of certain metaplectic Eisenstein series. In this pa-
per we use the functions of this theta representation as the kernels for a
family of theta lifts. We show that this construction enjoys many of the
same properties as the classical theta lift. In particular, in Section 3 we
show that this theta lift satisfies a tower property, so that the first nonzero
theta lift is cuspidal. In Section 4 we study the nonvanishing of the lift, and



show that a genuine cuspidal automorphic representation on S/\éng(A) must
lift nontrivially to §(/)8k(A). In Section 5 we refine these results for generic
representations, and we compute the Whittaker model of the lift.

Finally, in Section 6 we study the unramified correspondence, computing
the Langlands parameters of the lift from SO to SOy 1, effectively showing
that it is functorial. We analyze quotients of the restriction of the theta
representation of SOyx11 to SOgr X SOgx11. The general flavor of this result
is similar to Kudla [11], in which the irreducible quotients of the restriction
of the usual Weil representation to a dual reductive pair are studied.

This work was supported in part by NSF grants DMS-9970841 and DMS-
0354662 (Bump) and by NSA grant MDA904-03-1-0012 and NSF grant DMS-
0353964 (Friedberg).

2 Preliminaries

We start by fixing some notations. Let SO; denote the split special orthogonal
group on an [ dimensional space. All orthogonal groups in this paper will be
represented with respect to the [ x [ matrix

1
J =
1

The maximal unipotent subgroup of SO; contains n simple roots, where n =
1/2]. Let e; ; denote the [ x [ matrix with one in the (7, j)-th entry and zero
elsewhere. Let ; (1 < i < n) denote the simple roots in the usual order with
respect to the standard Borel subgroup of upper triangular matrices. The
corresponding one-parameter subgroups are r — x,, () where

T, (1) = exp(r(€iit1 — €1—ij—it1))
ifl=2n+1, and

" (T’) _ exp(r(emﬂ — elfi,lfiJrl)) fl<i<n
i exp(r(en—1.n4+1 — €nnt2) ifi =n

if [ = 2n. We shall denote by w; the simple reflection corresponding to the
simple root «;.



We shall always assume that the ground field F' (which may be local or
global) contains four distinct fourth roots of unity. If F'is global, let A denote
its adele ring. Let SO,(F) (if F is local) or SO,(A) (if F is global) denote the
metaplectic double cover, which is defined and studied in [3]. We recall that
although SA(/)I is actually a double cover it contains a central subgroup g4 of
order four which we identify with the fourth roots of unity. We recall from
[3] that a representation p of any subgroup of SOg,41(F') which contains the
embedded group pu4 of §62n+1<F> is called genuine if p(eg) = ep(g), where we
have fixed an injection py, — C*, and by abuse of notation identify ¢ with
its image in C*. Most representations which we will consider are genuine.

For any two natural numbers 2k + 1 and 2m we embed the orthogonal
groups SOy 1 and SOq,, in SOgkyo0m i1 as follows:

a 0 b 0 b
(h,g) — 0 g 0], g € SOg41,h = ( ¢ d ) € S09,. (1)
c 0 d

Let m denote an irreducible cuspidal genuine automorphic representation
of SOgy1(A). If Ooprome1 is any genuine automorphic representation on
SOok10ms1 we consider the functions

f(h) = ©x(9) O2krom+1(h, g) dg . (2)

/Soszrl (F)\ So2k+1 (A)

Here ¢.(g) denotes a general vector in the space of m and Oogiom1(r) de-
notes a general function in the space of Ogy2,,1+1. We are writing SOg41(A)
instead of SA(/)%H(A) because the product of ¢, and §2k+2m+1 is not genuine.
This integral defines a mapping from the irreducible cuspidal genuine auto-
morphic representations on the group SOgx11(A) to the genuine automorphic
representations on é\(/)gm(A). We shall denote the image representation by
okt 2m41 ().

In a similar way one can construct a mapping from the irreducible cuspidal
genuine automorphic representations on SOsg,,(A) to the genuine automor-
phic representations on SA62k+1<A).

In [3] we introduced and studied the properties of what we refer to as the
theta representation on é(v)%”m“. This is an automorphic representation
obtained as a residue of an Eisenstein series which is small in a certain sense.
In that paper we denoted this representation by 6. Since we will vary the
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number m we henceforth write 0o;1 9,11 for 6. Fixing the number k& and
letting m vary, the integral (2) defines a “tower” of liftings. In the next
Sections we will study the properties of this tower.

We now recall two of the main results in [3] which we will need for our
computations. In Proposition 1 below, some notations are as in [3]. In partic-
ular, C/}VLT(F ) is the cover induced on GL, (F') from the cover S/62k+2m+1 (F) by
its inclusion as the Levi factor of SOg,,1(F') in the standard Siegel parabolic
subgroup. It is a metaplectic double cover in the sense of Kazhdan and
Patterson [10], and the representation © which appears in Proposition 1
is an exceptional representation of @ir(F) in the sense of Kazhdan and
Patterson [10]. We refer to the discussion in [3], page 1370 for the precise
descriptions of GEJT(F ) and its representation ©.

Proposition 1 Let F' be a nonarchimedean local field, and let 0o 1 om11 be the
local theta representation of§()2k+2m+1(F). Let P, = (GL, X SO2(kqm—r)4+1)U
be a mazimal parabolic subgroup of SOsgiom+1. Then as a representation of
(/}\I/JT(F) X S/\ég(k+m,T)(F), the Jacquet module with respect to U is isomomor-
phic to © ® Oy(iym—r)4+1, where © is a theta representation of (/}\TJ,«(F)

This is Theorem 2.3 of [3]. A global statement should be true: on the
adele group it should be true that as a function of (hq, hs) the integral

/ 92k+2m+1(u(hla hz)) du
U(FN\U(A)

is in the space of the automorphic representation © ® 0y 4m—r)+1 Where © is
the theta function on the double cover of GL,. This statement is Conjecture
3.3 of [3], and it is proved there if » = 1. The local statement is sufficient for
our purposes. The most important property for us of © is that it does not
have a Whittaker model if » > 3.

The uniportent conjugacy classes of SO,, 1 are parametrized by parti-
tions of 2n + 1 in which each even part occurs an even number of times.
By abuse of notation we will identify a unipotent class with the correspond-
ing partition. See [3], Section 4 and Collingwood and McGovern [5] for this
parametrization, and for the partial order on the classes.

In [3] Section 4, a connection between unipotent conjugacy classes and
Fourier coefficients is explained. Given a unipotent class, a set of Fourier
coefficients is defined by (4.5) of [3]. The description of V3" in that formula
is somewhat lengthy so we assume familiarity with [3] regarding this point.
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Let O(0apsom+1) denote (22"1) if k+m = 2n and let O(Oopyomy1) = (2273)
if k+m = 2n + 1. The vanishing properties of the Fourier coefficients of the
theta representation are described as follows.

Proposition 2 ([3], Theorem 4.2 (i)) If O is any unipotent conjugacy
class which is greater than or not comparable to O(Oagiom11) in the partial
order, then all Fourier coefficients of Ok yom 1 with respect to O are zero.

We will also need a couple of local consequences of the smallness of the
representations. For the remainder of the section, F' will be a nonarchimedean
local field. Let U = Usgyq denote the unipotent radical of the standard
parabolic subgroup of SOg;, ;1 with Levi factor GL; x SOg;_;. By abuse of
notation we will write U for U(F') in the remainder of this section. If r €
F?k=1 then writing a typical element of Uy, as

1 Uu *

2%—1

Ugkt1 = Ly x|, ue Fr
1

every character of Usgy1 has the form ), (u) = 1 ((r,u)) where if r € F?*=1
(r,u) denotes the inner product of r with the vector u, with respect to the
1
split quadratic form having the matrix
1

Proposition 3 Let r be a vector of nonzero length in F**~'. Let U = Usy,.
Then the twisted Jacquet module of Ooxy 1 with respect to the character 1, of
U vanishes.

Proof This is similar to Theorem 2.6 of [3], except that if the length of r
is not a square, the stabilizer of 1 is not the split SOq;_o, but the quasisplit
one. The arguments of [3] must be repeated for this group. We omit the
details, which are long but similar to [3]. O

Proposition 4 Let 0 = 091, where k > 3. Let U = Uspyq and let Yy be
the character of U defined by vy (u) = v (u12). Let V' be the unipotent radical
of the parabolic subgroup with Levi factor GL(2) x SOqx_3. Then the twisted
Jacquet module Oy, is a quotient of Oy . In other words, the kernel of the
natural map 0 — Oy, contains the kernel of 0 — 0y .
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Proof We embed Us,_1 — SOsg;_1 — SOgxy1 with GL; X SOgx_; being
the Levi factor of the standard parabolic subgroup having Us 1 as its unipo-
tent radical. Thus V' C Usr11Usr—1 and what we must show is that Us,_4
acts trivially on 0y, . If not, then there is a nontrivial Jacquet module with
respect to some nontrivial character 1, of Us;_1, where 7 is a vector in F2F=3,

So assume that r # 0 and the Jacquet module 0y,, v, , ywy¢, 7 0. There
are two cases. First, suppose that r has nonzero length. Then we may
conjugate Usgy1Usk_1 by the Weyl element wsy which is the simple reflection
interchanging the first two rows of Usyy1Usi—1. We disregard everything but
the first row. We see that 6 has a nonzero Jacquet module with respect to
the following unipotent subgroup and character:

10 wu * x

1 0 0 =
Dy—s 0 x| — ¢((r,u)).

1 0

1

Now for some a € F' there will be a nonzero Jacquet module for Uy, with
the character

1 =« U * %k

1 0 0 =*
s 0 % | — d(a)o((ru)).

1 «x

1

This is the character parametrized by the vector (a,r,0) € F?**1 and since
(r,r) # 0, no matter what a is the length of this vector is nonzero, and we
now have a contradiction to Proposition 3.

Therefore we must have (r,7) = 0. Using GL; and the middle SOq_3,
we may move the character and assume that » = (1,0,---,0), and we now
have a zero twisted Jacquet module with respect to the character ¥y, of



Usg11Usg—1. This is the character

1 we *
1 uog *
1 0 0 :
5 O * * — 1/’('“12 + u23)'
1 wupp %
1 U923
1

Now we take the Jacquet module with respect to all characters of Usg_s.
Some Jacquet module must be nontrivial. It cannot be with respect to
the trivial character, since then the character ¢y, would be trivial on
the unipotent radical of the standard parabolic subgroup with Levi factor
GL(3) x SOsy_5, which affords the theta representation of GL(3) by Propo-
sition 1. This ¥y, would then induce a Whittaker model on the theta
representation, but this representation has no Whittaker model. Therefore
the character of Usy,_3 must be nonzero. Writing it as 1, where v’ € F?=5
if ¥ has nonzero length we may argue as we did previously, using a Weyl
group element to move it to the first row. We then obtain a nonzero Jacquet
module with respect to the following unipotent subgroup and character:

1 0 U S

I, 0 0 =
IQk_5 0 = — ¢(<r’,u)).

I, 0O

1

The argument is as before; for some a,b € F there will be a nonzero Jacquet
module for Uy, with the character

1 =z U * ok

I 0 0 =
Li—s 0 x | — ¥(ax; + bxg)({r',u)), r = (11, 19),

]2 Xz

1

but no matter what a and b are we get a contradiction to Proposition 3.
Thus 7’ has length zero, and as before we may move it to the 3,4 position.
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Proceeding in this way, we eventually obtain a nonzero Jacquet functor
for the Gelfand-Graev character of the maximal unipotent radical of #, a
contradiction since it has no Whittaker model. 0

3 The Cuspidality Tower

In this Section we will study the cuspidality property of the tower of lifting
introduced in (2). We will prove

Theorem 1 Let m be a cuspidal genuine automorphic representation of
SOos11(A). Suppose the lift Oopyom—1(m) is zero. Then the lift Oop i omi1(m) is
a cuspidal genuine automorphic representation of SOqp,(A).

Let U, 2k42m+1 denote the unipotent subgroup of SOgj 2,41 consisting of
all matrices of the form

I,_1 O 0 0 O
1 U * 0
Usigktom+1 = Lym—iyr1 * 0 (3)
1 0
I 4

where * denotes whatever is needed to guarantee that the matrix is orthog-
onal. It is clear that U;ari2m+1 is an abelian group. Given an additive
character ¢ of the group F\A define a character ¢ of Uy o+2m11 as follows.
If = (u;;) € Uy oktom+1 then set ¢ (u) = ¢(uy2). We start with

Lemma 1 The function

f(z) =

/ Ookrom1 (UZ) ¢1(u) du
Ut 2k +2m+1(F)\U1 2k +2m+1(4)

is left-invariant under the adelic points of Usgpram+1. In other words, f(z) =
f(vz) for all v € Usapioms1(A).

Proof We expand f(z) along the group Us ogtom+1(F)\Us2k+2m+1(A). The
group SO 9m_3(F) which is embedded in SOgyi9m.1(F) as in (1) acts on
the characters of Usoptom+1(F)\Uz2k+2m+1(A) with three types of orbits.
First we have the orbits whose stabilizers are given by a quasi-split even
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orthogonal group SOggyom—4. The contributions to f(z) from these orbits
are integrals of the form

(4)
/Ul,2k+2m+l (F)O\U1,2k+2m+1(A) /U2,2k+2m+1 (F)\Uz,2k+2m+1(A)

Ok rom+1(uvz) ¥y (u) e (v) dv du.

Here ¢5(v) = ¥ (V2 kim + QU2 k+m42) Where v is parametrized as in (3) and
where a € F*. However this Fourier coefficient corresponds to the unipotent
class O = (512**2m=1) and hence by Proposition 2 this integral is zero.

Next, in the Fourier expansion of f(2) along Us a+2m+1(F)\Uz2 26+2m+1(A)
we consider the contribution from the nonzero isotropic vectors. In other
words we have the contribution from

(5)
/U1,2k+2m+1 (FON\U1 2k +2m+1(A) /Uz,zk+2m+1 (FO\U2,25+2m+1(A)
Ozky2mr1(uvz) 1 (u) Yo (v) dudu

where %(v) = 1 (ve,3). Now we continue by expanding this integral along

Us akt2m+1(F)\Us 2k +2m+1(A).

As in (4) one sees that the contribution coming from the big orbit is zero.
We claim that the constant term in this case is also zero. In other words we
claim that

/92k+2m+1(uvm)w1(u)122(v) dvdudr =0

for all choices of data. Here r is integrated over Us o iom+1(F)\Us 2k+2m+1(A)
and v and v are integrated as before. To see that this integral is zero, notice
that

L = U pptom+1U2 28+ 2m+1Us ok t2m+1

is the unipotent radical of the parabolic subgroup of SOsj 19,11 Whose Levi
part is GL? x SOgj12m—5. Hence we can write the above integral as

/ Oakrom+1(12) Yr(l) dl
L(F)\L(A)

where if [ = (I, ;) € L then () = ¥(l12 + lo3). This integral is a Whit-
taker coefficient of the constant term with respect to a maximal parabolic
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subgroup with Levi factor GL3 x SOgj19,,_5. At any nonarchimedean place,
this integral factors through the corresponding Jacquet module, which has
no Whittaker model by Proposition 1, and so this integral is zero.

Thus in (5) we are left with the contribution which comes from the
nonzero isotropic vectors. In other words, (5) is a sum of integrals of the

type
/ Ooterams1(uvrz) Yy () o (v) s (r) dv du dr

where 13(r) = 1(rs4). Continue by induction. We eventually obtain either
the Whittaker coefficient of the maximal unipotent radical of SOgxiopm1,
which is zero by Proposition 2, or we get a Whittaker coefficient on the double
cover of GLg.,,, and since k + m > 2 this vanishes by applying Proposition
1 at any nonarchimedean place. Hence the above integral is zero and so is
the integral (5). This shows that the contribution to Fourier expansion of
f(z) which comes from the nonzero isotropic vectors is also zero. Thus we
are left with the constant term. But this just means that f(z) = f(vz) for
allv € U2,2k+2m+1 (A) O

We may extend this Lemma as follows. Let Ryj_; = Hfgl Ui 2k+2m+1-
Deﬁne a Character ng_l Of R2j—1 by ¢2j_1(r) = 1/)(7’1,2 + 7’3’4 + -4 7’2]‘_1’2]').
Then a similar argument gives

Corollary 1 The function
f(Z) = / 92k+2m+1(7’2) ¢2j71(7“) dr
Roj—1(F)\R2j-1(A)

is left-invariant under the adelic points of Usjokram+1(A).

Next we prove
Proposition 5 Suppose that Osyiom1(m) = 0. Then Oy oy 1(m) = 0.
Proof By assumption, the integral (2) is zero for all choices of data. Let

V' denote the unipotent radical of the maximal parabolic subgroup of SO,
which preserves a line. Then the integral

/ / () Dorames (v,9) dv dg (6)
SO2k4+1(F)\ SOz 41(A) JV(F)\V(A)
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is zero for all choices of data. With the group V' embedded inside SOgx 911
via the embedding given in (1), we have V' C Uj og+2m+1, and the quotient V'
Ul 2k+2m+1 may be identified with the subgroup of orthogonal matrices of the
form

1 by — 3 (u, u)
[m—l
Do q —u >~ pREtL
[mfl
1

which is complementary to V' in U gpyom+1. Let us expand the above integral
along (V\U ok+2m+1)(A/F). The group SOg41 acts on this quotient, and
as in the proof of Lemma 1 we have three types of orbits. First we have
the type which corresponds to vectors of nonzero length. Since these Fourier
coefficients correspond to the unipotent class (312¥72m=2)  one sees using
Proposition 2 that they do not contribute to the integral. Next we consider
the contribution to (6) from the terms which correspond to nonzero isotropic
vectors. We get

fQO(F)\ SO2p+1(A) fU1,2k+2m+1(F)\U1,2k+2m+1(A) P (g) 02k+2m+1 (u’ (1’ g))
xth1(u) du dg

Here @) is the parabolic subgroup of SO 1 which preserves a line and the
upper zero indicates that we omit the GL;, and 1, is now the character
1 (u) = (U1 me1). Let wy be the Weyl element

v 0 0 1 0 0
w=0101], wv=[l0 0 1
00 v 0 Ipima O

Conjugating by wy from left to right, the above integral equals

/ / ex(g)x
QO(F)\ SO2x41(A) YUt 2k 42m41 (F)\U1 2k+2m+1(A)

Ootot2mi1 (uwo (1, g)) Yo (u) dudg

where 15(u) = 1¥(u12). Let L denote the unipotent radical of Q°. Factoring
the integration over this group and using Lemma 1 we obtain the integral of
¢ along the group L(F)\L(A) as inner integration. This integral is zero by
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the cuspidality of m. From this we deduce that the vanishing of g o, 11 (7)
implies the vanishing of the integral

/ / QOTF(Q) 02k+2m+1 (U’v (17 g)) du dg
SO2k+1(F)\SO2,+41(A) JU1 2k +2m+1 (F)\U1 2k+2m+1(A)
for all choices of data. Using Proposition 1 with r = 1, this implies that

02k+2m71(7r) = 0. ]

Proposition 6 Let F' be a nonarchimedean local field, and let w be a gen-
wine irreducible admissible representation of §()2k+1(F). If there exists no
%2k+1(F)-invariant bilinear form on Osxiomi1 @ w, then there exists no
é\(/)ng(F)—mvariant bilinear form on Oap om_1 Q7.

Proof This is a local analog of Proposition 5, and the proof is parallel.
Note that in the proof of Proposition 5 we make use of Proposition 2 which
is Theorem 4.2 (i) of [3]. This result is stated globally, and indeed (ii) of
Theorem 4.2 of [3] is essentially global. However (i) of Theorem 4.2, which
is what is needed here, can be formulated and proved locally the same way
as the global statement which is given in [3]. We omit further details. O

Proof of Theorem 1: Let V), denote the unipotent radical of the parabolic

subgroup of SO,,, whose Levi part is GL, X SOgy,—2,. There are two as-
sociated parabolic subgroups of SO,,, whose Levi part is GL,,. With the
embedding in (1) the unipotent radicals of these parabolic subgroups are
conjugate. Hence we need only consider one of them. Let us write

I, x Y
V;) - -[2m—2p x* (7)
]p

where 7 € Mat,xa(m_p) and y € Mat), = {A € Mat,y, : A'J, + J,A = 0}.

pPXp
We need to prove that if a9, 1(m) = 0 then the integral

/ / on(9) om0 dvdg — (8)
SO2%+1(F)\ SO2k41(A) JVp(F)\Vp(A)

is zero for all choices of data. We start by expanding (8) with respect to the
characters of Uj ogtom+1(A) which are trivial on Uy oxom+1(F). Once again
the group SOgtam—1(F) acts on the group of characters of Uj ggtom+1(A)
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with three types of orbits. First are the orbits which correspond to vectors
of non-zero length. The corresponding Fourier coefficients will correspond to
the unipotent class (312**2m=2). Hence by Proposition 2 the contribution of
these orbits is zero. Next we consider the contribution of the constant term
to the above expansion. As in the proof of Proposition 5 we see that this
integral is €ag19m—1(7). By our assumption this is zero. Thus (8) equals

[0 [ Tor a1 (410, 9)) 1 () du dv dg. (9)
y Ui 2k+2m+1(F)\U1,2k+2m+1(A)

Here g and v are integrated as before, 11 (u) = 1(u;2), and y is summed over
Q%rom—1(F)\ SOsst2m—1(F), where Qopiom—1 is the parabolic subgroup of
SOgk12m—1 Which preserves a line and the upper zero indicates that we omit
the GLl

To simplify notations we shall write 6 for Oox 2,11 from now on. We shall
also denote

oUr1(2) = / O(uz) 1 (u) du.
Ui 2k+2m+1(F)\U1,2k+2m+1(A)

2. - 2. 2

Qe som—1(FN\SO2k2m—1(F)  Qakt2m—1(F)\SO2kq2m—1(F) eEFX

Write

and denote

lgUl,wl(z) — Z HUl’wl(hl(e)z) (10)

ecF'x

where hy(e) = diag(1, €, Iojiom—3,€ *,1). With these notations (9) equals

ox(9) D> 0T (4(v, 9)) dvdg  (11)

\/SO2I€+1(F)\SO2I€+1(A) /V,,(F)\V,,(A) y

where now -y is summed over Qog2m—1(F)\ SOsx12m—1(F).
Consider the double cosets Qaoxi2m—1\SO2%+om—1 /Q2k+2m—1. This space
has three representatives. They are e, ws and w where
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We claim that the contributions to (11) from 7 = e and 7 = @ are zero.
Indeed, if the representative is e then we obtain

[0 / O ames (uhs ({0, )1 (w) du du dy.

Ui 2k+2m+1(F)\U1 2k 42m+1(A)

Using Lemma 1 the inner integration is left-invariant under the quotient
U2,2k+2m+1 (F)\U272k+2m+1 (A) Notice that U1,2k+2m+1U2,2k:+2m+1 contains the
unipotent radical of the parabolic subgroup of SO 9,11 Whose Levi part
is GLg X SOsgx12m—3. Denote this unipotent subgroup by L. Then 94 (u) is
trivial on L. Also g € SOsgxy1 commutes with hq(€). Thus, conjugating g
to the left, after integrating over L(F)\L(A) we obtain zero, as can be seen
by applying Proposition 1 and Proposition 6 at any nonarchimedean place.
This shows that the contribution of v = e is zero.

Next we consider the contribution of w to (11). Consider the root ¢ =
By + B2 + + -+ + B where the 3; are the simple roots of SO,,,. The one
parameter subgroup z¢(r) is in V,, for all p. Using the embedding (1) we have
xe(r) = Lokroms1 + 7(€126+2m — €2.2k+2m+1). We may write the integration

ex(9) [ /A WU (e (1) (v, g)) dr | dv dg
F
Vp(F)ivc (A)\VP(A) /

/ ¢x(9) [Z 1/1(67’)6"] 0Uv1(hi(e)w(v, g)) dvdg = 0

Vo (F)ac (A)\Vp(A) cerx TAE

by definition of ¥V1¥1| since ¢y (hi(€)wze(r)whi(e)™) = t(er). Thus the
contribution of w is also zero.
Thus in (11) we are left with the contribution from ws. This equals

[ o0 ST i Gane g dodg - (12

SOupes1(F)\ SO 1 (A) Vo (F)\V (A) 7,02

where thesumisovery € Qokiom—3(F)\ SOokrom_3(F) and dy € F. Now we
repeat this process. That is, we consider the space

Q2k+2m73\ SOZk+2mf3 /Q2k+2m73-
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As before there are three representatives. Using Proposition 5 one sees that
the identity contributes zero to (12). As for the long Weyl element rep-
resentative we use the one-parameter subgroup corresponding to the root
Bi + B2 + 203 + -+ + 26,,, which lies in any unipotent radical subgroup
V, of SOg,,, to show that this contributes zero. Continue inductively. At
each stage we use Proposition 5 in order to show that the identity repre-
sentative contributes zero and as for the long Weyl element, at the i-th
step we use the one parameter subgroup which corresponds to the root
Br+ -+ Bi + 2Biy1- -+ + 20, which lies in any unipotent subgroup V,
of SOy,,. Doing so, we deduce that the integral (11) equals

/ / er(9)
Pop11(F)\SO2p11(A) JVp(F)\Vp(A)

> 0T (wa0, (82 wina, (0) (v, 9)) dv dg (13)
0;

where the sum is over 9; € F', 2 < i < m, and where Py, is the parabolic
subgroup of SOs1 which preserves a line.

/
Let €;; = €ij — €akyom—j+2,2k+2m—i+2 and
!/ /
2(62, -+, 0m) = logroms1 + 5262,m+1 +oot 5mem,m+1'

Also let wy = wy - - - wy,. Then (13) equals

o(9) Y DT (22(0a, -, 0m) (v, 9)) dv dyg.
05

(14)
In (7), if x = (x;;) let t be the first half of the first row of the matrix z,
ie. t= (211, ,T1m—p). Embed t in V, in the obvious way and view ¢ as
a subgroup of SOgyyomy1 via (1). In (14) we may now conjugate t to the
left, across z(dg,--- ,0,,). When we do so, we obtain by the commutation
relations the matrix

/P2k+1(F)\ SO2p41(4) /Vp(F)\Vp(A)

Lo+ tam (T1,10p11 + ++* + T1m—pOm).-

Conjugating this matrix across we and changing variables in Ui opyom+1 We
obtain the integral

\/d}l (xl,ldp—‘rl + -+ zl,m—pém) dxl,j
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as inner integration. This integral is zero unless §; = Oforp +1 < i < m.
Thus the integral (14) equals

/ / ox(9) (15)
Pop+1(F)\SO2x41(A) J Vp 1 (F)\Vp,1(A)

Z 19U1’w1 (UNJQZ((S% T 5}77 07 e 70)(U7 g)) dv dg

0;

Here V) ; is the subgroup of V), where the first row of 2 and the first row of
y are zero. If p =1, or if p > 2 and all the ¢; are zero, then this integral is
zero. Indeed, let Log,q denote the unipotent radical of P, 1. We factor this
group and we conjugate it to the right in §7*%1. Using Lemma 1 we obtain

/ oa(lg) dl
Log41(F)\Lag4+1(A)

as inner integration. By the cuspidality of 7 this is zero.

Henceforth we assume that p > 2 and that z(ds,---,9,,0,---,0) is not
zero. Embed the group GL, in SOgj42m+1 as QA" = diag(1, ¢, lokt2m—2p—1,C*, 1).
Let z1(1) = 2(1,0,---,0). The group GL,(F) acts on the nonzero elements
2(d2, -+ ,0p,0,---,0) with one orbit. We thus obtain

/ oe(9) S 00 (321 (1)1, 9)C) v dg.

/PQk+1(F)\SOQk+1(A) 1 (F)\Vp,1(A) ¢

Here we have used the commutativity of Qi with v and ¢, and also that if
we conjugate (! to the left by w, then #UV+¥t is left-invariant under the
matrix obtained after conjugation. Also ( is summed over suitable matrices
in GL,(F). Thus to show that (16) is zero it is enough to prove that

/V o(9) 0P (@ (D) (0, g)) dvdg  (16)

/sz+1(F)\Sozk+1(A) 1 (F)\Vp,1(A)

is zero. Recall that 9 is a sum over ¢ € F* (cf. (10)). We can collapse the
summation over € with the integration over the subgroup GL; contained in
Pyiy1. Then (16) equals

J,

2k+1

/ on(9) 0T (Goma ()0, 9)) dvdg  (17)
(F)\SO2x41(A) JVp 1 (F)\Vp,1(A)
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where the superscript 0 in Pj,_, indicates that we omit the GLj.

By Lemma 1 we can replace 8Y%1 by 9U1V2%1  then repeat this process.
In other words, we expand 6V1V2%1 along Us o1 9m11(F)\Us 2k +2m+1(A). The
group SOsgx12m—5(F') acts on the group characters of this quotient with three
type of orbits. The ones which correspond to the vectors of nonzero length
will contribute zero after applying Propositions 1 and 2. The constant term
will also contribute zero. Indeed, if we factor the group Lox.; as above, one
can check that Wz (1) Logi1(wez1(1))™" € Usariomi1. Thus we obtain zero
by the cuspidality of 7.

We are left with the orbit which corresponds to the nonzero isotropic
vectors. This process is clearly inductive and depending on the relation
between the numbers 2k + 1 and 2m we finally obtain the following integrals.

If 2m < 2k + 1 then the integral (17) equals

/ or(g) OF2+1v201 (2o (1, g)) dg. (18)
ng—2m+5(F)\ SO2k+1(A)

Here w = Wy, o - - - Wo Where wy; = woy; - - - W44, and

Z0 = diag(l,é,lgk_2m+3,2*, 1), z= ( 4 § )

where [ is the (m — 1) x (m — 1) identity matrix. We also have | = (m —1)/2
if m is odd and I = m/2 if m is even. The group Py, _,,. .5 is the sub-
group of SOgyi1 given by P55 s = SOot_9m+5 Lok—om+5 where Log_omys
is the unipotent radical of the standard nonmaximal parabolic subgroup
whose Levi part is GL;’”"1 X Lok _om+5. We have the factorization Lok 9,15 =
Ni—1Lyy 9,15 where N,,_; is the maximal unipotent subgroup of GL,,_4
and LY, ... is the unipotent radical of the maximal parabolic subgroup of
SOgr11 whose Levi part is GL,,_1 X SO, _om15. To show that this integral
is zero we factor the measure and consider the inner integration over the
group LY, o s(F)\L3;_s,.5(A). Conjugating this matrix to the right, we
see that the function §f2i+1:¥2141 ig left-invariant under this group. Thus we
obtain zero by cuspidality.
A similar situation occurs if 2m > 2k 4 1. In this case we obtain

[ / o (q) Ot (L)) g, (19)
L(F)\ SO2k41(A) SV, i (F)\Vp,;(A)
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Here @ = gy - - - Wy where wWy; = we; - - - wyy;. Also zy = diag(1, 2,1, 2%, 1)
where now
I I
]m—k+1
I

e
I

The group L is the maximal unipotent subgroup of SO.1 and Vpjis a
certain subgroup of V. The number [ equals k/2 if k is even and equals
(k—1)/2if k is odd.

To show that (19) is zero we factor the integration to obtain the integral
over L(F)\L(A) as inner integration. As in the previous case observe that
after conjugating this to the right, the function @f2+1:¥21+1 is left-invariant
by the matrix resulting from the conjugation. Thus we get zero by the
cuspidality of 7.

This completes the proof of Theorem 1.

4 The Nonvanishing of the Lift
We prove

Theorem 2 Let m be a genuine cuspidal automorphic representation of
SOo41(A). Then O1px11(m) is nonzero. In other words, every m lifts non-

trivially to an automorphic representation on SAégk;(A).

Remark. In fact we expect that the first occurrence will be before this. In
the next section we will analyze the nonvanishing of the lift in the case when
7 is a generic automorphic cuspidal representation. We will find conditions
for it to lift to SOq42. We believe that every such 7 should lift nontrivially
to %2k+4. At the end of Section 5 we give some computations which support
this conjecture.

Proof Suppose that

f(h) = ©r(9) Orors1(h, g) dg (20)

/SO%H (F)\SO2p11(A)

is zero for all choices of data. We will derive a contradiction. Let Vj; denote
the unipotent subgroup of SOg; as defined in (7) with p = 4k. From the
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assumption that the above integral vanishes for all choice of data, it follows
that the integral

/ / %r(g) Ql(]k—i-l(Ua q) ?/JV(U) dv dg (21>
SO2;4+1(F)\SO2k41(A) JVir (F)\Var(A)

is zero for all choices of data. Here ¢y is defined as follows. From (7) it
follows that we can identify Vj;, with all matrices

Matdy, ar = {y € Matypwar | yJax + Jar 'y = 0}.

For y = (y;;) € Mat{, ;. define ¥y (v) = ¥y (y) = Y(y11+. . . +yor2r). Notice
that this character is uniquely defined in the following sense. Recall that Vj
is the unipotent radical of the maximal parabolic subgroup of SOg; whose
Levi part is GLyg. The action of GLy, on Mat, ., ,, is via the exterior square
representation. This action has an open orbit, hence, up to conjugation by
GLyk(F), ¥y is uniquely defined.

Before proceeding, let us explain the motivation for considering the in-
tegral (21). To derive a contradiction we need to show that as we vary the
data in the space of the representation 619x11 we have enough information
to deduce that (20) is nonzero. We will approach this in a way similar to
[8] Section 4 using the structure of Fourier-Jacobi coefficients as described
in [9].

More precisely, let Ry, denote the unipotent radical of the maximal
parabolic subgroup of SOjgs1 whose Levi group is GLyx X SOg;11. Thus
R4 has the structure of a generalized Heisenberg group whose center is Vy.
Let [ denote the homomorphism from the group Ry, onto the Heisenberg
group with 4k(2k 4+ 1) + 1 variables.

Let éi denote the theta function on the double cover of Spyyo11). Here
¢ is a Schwartz function. It follows from [9] that the space of functions

0, ((1.9)) /R AL Oron1(r(L, 9))85, (L(r) (L, 9)) dr, (22)

where ¢; and ¢, are Schwartz functions, is a dense subspace in the space of
functions

/ Orort1(v, g) Yy (v) dv. (23)
Vi (F)\Var (A)
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From this we conclude that the vanishing of (21) for all choices of data is
equivalent to the vanishing of

/ ox(9) 0% ((1.9)) (24)
SOk 41 (F)\SO2p+1(A)

x/ brok-1(r(1, 9)) 6, (L(r)(1, 9)) dr dg
Ry (F)\Ryr(4)

for all choices of data. Define

L) = e:lo) [ Oroksa (r(1,9)) 0% (1()(1, 9)) dr.

Ry (F)\Rar (A)
Then it follows from (24) that

/ L(9) 8, ((1,)) dg

SO2k41(F)\SO2k11(A)

is zero for all choices of data. Arguing as in [12] Theorem 1.2.1 we deduce
that the vanishing of the above integral for all choices of data implies that
the function L(g) is zero for all choices of data. (We chose to consider the
lift from 562“1 to S/—\égk so that we would be able to use the result in [12].
Taking the lift to a smaller rank even orthogonal group would not guarantee
the nonvanishing of the last integral.) However, if L(g) is zero for all choices
of data, this just means that (22) and hence (23) are zero for all choices of
data.

In a way similar to that described in [3] formula (4.24), one can check
that the Fourier coefficient written in (23) corresponds to the unipotent orbit
(24%126+1) " We know from [3] Theorem 4.2 part 2, that 610541 has a nonzero
Fourier coefficient corresponding to the unipotent orbit (25%*1). From the
description of these two Fourier coefficients, it follows that integral (23) is an
inner integration to integral (4.24) in [3], which we know to be nonzero for
some choice of data. Hence (23) is nonzero for some choice of data and we
derived a contradiction. This completes the proof of Theorem 2. 0J

5 The Whittaker Model of the Lift and the Nonvan-

ishing of the Lift for Generic Representations

In this section we examine more carefully the question of the nonvanishing.
We start by computing the Whittaker model of the lift and expressing it in

22



terms of certain models of w. We first study the lift to S/BQ(kH). In this case
we show that the Whittaker model of the lift is nonzero if and only if 7 has
a Bessel model. Then we consider the lift to SOg(;19). In this case we show
that if the Whittaker model of the lift is nonzero then m has a Whittaker
model. -

We start with the lift to SOg(;11). Let U denote the maximal unipotent
subgroup of %Q(HI). We define the character ¢y, of U(F)\U(A) as follows.
If u= (w;) € U define Yy,(u) = P(u12 + us3 + ... + Uk g1 + AU k12)
where a € F*. It is easy to check that a may be multiplied by any square
by conjugation. Via the embedding in (1) we consider the integral

/ [ o)) alu) dudg. (29
SO2k+1(F)\ SO2k+1(A) JU(F)\U(A)

We shall now compute this integral and determine when it is nonzero.

The first part of the computation is similar to the computation done in
the proof of Theorem 1, where we replace V,, by U. Indeed, following the
same steps which led to the integral (14) we deduce that (25) equals

| el (26)
Popy1(F)\SO2r41(A) U(F)\U(A)

Z DY (W2 (82, - -+, Oy1) (v, 9) Wua(u)do dg,
05

where Wy = ws - - - w,,. Notice that V; (introduced in the proof of Theorem 1)
is a subgroup of U, hence if we carry out the same process which led from
(14) to (16) we find that (26) equals

/ | el (27)

Por41(F)\ SOz 11 (A) UL (F)\UL(A)
> 09 (hy(e)waz(e7h,0,- -+, 0)(ul, 9))Yua(u')du'dg.

Here U' = U () SO, where SOy is embedded in SOy, in the middle block.
The appearance of € is due to (10) and to the fact that the character ¢y,
is not trivial on restriction to Vj (whereas in the proof of Theorem 1 it was
trivial). Collapsing summation with integration as in the proof of Theorem
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1, we obtain that (27) equals

©0r(9) 0V (a2, (1) (1, g)) wUﬂ(ul) dut dg.

(28)
Continuing in this way, as in the proof of Theorem 1 we deduce that (28)
equals

/P2Ok+1(F)\ SOopi1(A) /Ul(F)\Ul(Ax)

/ / S nlg) ¥ (29)
PY(F)\ SOgp41(A) JUR(F)\U*(A) v

gR2k—1:¥2k—1 (sz() (uk7 g)) ¢U’a(uk) duF dg

where we now explain the notations. Let P53 denote the parabolic subgroup of
SOq11 whose Levi part is GLY™ x SO3. The group P is the subgroup of Py
where we omit the G:L]f_1 factor. Next, we define U* = U (1 SO4 where SO,
is embedded in SOy 5 in the middle block. The group R, which was also
defined before Corollary 1, is the unipotent radical of the parabolic subgroup
of SO4x+3 whose Levi part is G:L%k’1 x SOj5. The character 19,1 was defined
before Corollary 1. The function #%2x-1¥2k-1 is the Fourier coefficient along
this unipotent subgroup with this character. The sum in (29) is over all ~y
in QY(F)\ SO5(F) where Q9 is the subgroup of the maximal parabolic which
preserves a line, and the upper zero indicates that we omit the GL; factor. We
also define w = wyy, - - - wo where for all 1 < 7 < k we have wy; = wo; - - - Wiy
Finally, we denote zy = diag(1, z, 1, 2*, 1) where

I Ty

Ty

The difference between this case and the cuspidality computation is that here
we integrate also along the character 1y, which by definition is nontrivial on
the entries uy g1and uy 42 of u*. Hence at this point when we consider the
space 3\ SO5 /@3, we get a contribution of zero from the two small sets (in
contrast to what happened in the cuspidality computation) and so we will
only need to consider the contribution from the big cell. From this cell we
obtain

Y ealg)0 i (h(uoyvzo(u®, 9))ua(uh)dutdg  (30)
v,€
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where the sum is over € € F* and v € Uy 4x13(F') where this last group was
defined in (3). Also

Loy
€ Loy
h(e) = I3 ) Wo = v )
€ oyt
Pyt

where v is a Weyl element in SO5 which is a representative of the big cell
as obtained from the above double coset factorization. All variables are
integrated as in (29).

At this point we conjugate the matrix u* to the left. Recall that the
dimension of the group U* is two. Via the embedding (1) this group con-
sists of products of the matrices Ly 3+ upp11€), 41 A0 Ligys + Up ki26€) 3003
where the indices indicate the relation of these matrices to their embeddings
in U*. On this product we have 9y, (u*) = ¥ (ug 11 + augpi2). The above
two matrices commute with zy and after conjugating them by w we obtain
the matrix @ (up ki1, Urkr2) = lapts + Uk k1€, 1 o5 + Uk kr2€hy 1 op4q- CON-
jugating (0, uy x+2) to the left and changing variables we obtain

/¢((€_1 — @)U pr2) AU t2

as inner integration. Thus we obtain a nonzero contribution only if € = a1

Conjugating x(ug k+1,0) to the left and changing variables we obtain

/%U((l - a_1(777))uk,k+1)duk,k+1

as inner integration. Here (v, ) is the square of the length of the vector ~.
Thus we get a nonzero contribution only if (v,7) = a.

The group SO3(F) as embedded in PJ(F) acts on the set of all y € F?
which have fixed length, with one orbit. The stabilizer is a copy of SOs(F)
which is determined by the length of v. Let 7, be an element such that
(Vas Va) = @. Then (30) equals

/ on(g) 071 (woyaibzo(L,g)) dg.  (31)
Ly, (F)SO5(F)\ SO2x41(A)
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Here Ly, is the unipotent radical of Py and SOJ is the stabilizer of v, inside
SO3. We choose v, = (1/2,0,a) and if a is a square we may choose 7, =
(0,1,0) (recall that a can be changed by any square by conjugation). Notice
that in this last case SO5 = GL;.

Conjugating this element to the right, (31) equals

/ or(9) 67515 (wyis(1 ) g (32)
Ly (F)SO5(F)\ SO241(A)
where
Iy « * 0 0O 00O
z = [2k+1 o s o = Ik,1 0 0 0O
Iy 0 1/2 0 a O

Here o* and * indicate entries chosen so that the matrix is orthogonal. If a
is a square then we can replace the last row of o by (0,0,1,0,0).
We define the a-th Bessel model of 7 by

B.(m)(g) = / / or(lhg) ¥ (1) dl dh
505 (F)\ 05 (4) J Ly, (F)\ Ly (4)

where the definition of ¢, is as follows. For | = (I;;) € Ly define ¢1(1) =
Y(lho+ - 4 l—2 k-1 + (Ya, ")) where (v,,1") is the product of 7, with I’ =
(L1 ks le—1 k415 li—1 k+2). This integral converges absolutely for all a. In the
split case this is shown in [7].

Remark 1 In the case when 7 is a cuspidal automorphic representation of
SOgk+1(A)and not the covering group, this Bessel model is related to the
value of the standard L-Function at the center of symmetry. There is no
reason to believe that a similar relation holds on the covering group.

With these notations (32) equals

/ Bulm) () 0 (wao(1, ) do.(33)
L (A) SO3(A)\SOzk+1(A)

We record this as
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Lemma 2 Let m be a cuspidal automorphic representation of é(v)zkH(A).
Then the a-th Whittaker coefficient of 04, 3(m) can be expressed in terms of
the Bessel model of the representation w. With the notations of (2), we have

/ F(u) v (u) du (34)
U(F)\U(A)

/ Bu(m)(9) 0725 (woiv=(1, ) dg

L (A) SOZ(A)\SO241(A)

Remark 2 It is interesting to note the similarity of (34) to the identity
(9) in [6]. In that case the relation is between the ¢* Whittaker coefficient
of a representation on §]/92n and a cuspidal representation on SOs,,;. The
comparison in [6] uses the theta representation on the double cover of the
symplectic group.

Next we prove the following

Theorem 3 The representation 04, 3(m) has a nonzero Whittaker model
with respect to the character vy, if and only if the representation m has a
nonzero Bessel model B, (7).

Proof It follows from (34) that if 6,;,5(7m) has a nonzero vy, Whittaker
coefficient then B, () is nonzero.

Conversely, assume that B,(7) is nonzero and assume that the ¢y, Whit-
taker coefficient of @4, 3(m) is zero for all choices of data. We will derive a
contradiction. Indeed from (34) it follows that

/ Bu(m)(g) 0% (wiz(1,g)) dg (35)
L (A) SO5(A)\ SO2441(A)
is zero for all choices of data.

Let ¢ denote an arbitrary Schwartz function on Y = A%**! In the nota-
tion of Section 2 we identify Y with U; 4543/Vi. In terms of coordinates we
have the following embedding. If y = (y1, -+ ,y2k+1) € Y then the embed-
ding is given by y — I3 + 3/16,1,k+2 et y2k+1€/173k+2-

From the vanishing of (35) we deduce that the integral

/ / Ba(m) (9)0724 105 (woiv=(L, g)y) 6(y) dy dy
Y (A) JLi(A)SO3(A)\ SO2x41(A)
(36)
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is zero for all choices of data. Conjugate the matrix y to the left and change
variables in Ry,_1. Factoring the measure in the g variable we obtain that

/. 7(0) b(&oh) dn (37)

2k+1 (A)\ SOQkJrl (A)

is zero for all choices of data. Here & = (0,---,0,1) and gﬁ denotes the
Fourier transform of ¢, and

J(h) = Ba(m)(g) 07221 (wowz(1, gh)) dy.

/Lk(A) SO (A)\Pgy 1 (A)

Since ¢ is arbitrary we deduce from the vanishing of (37) that J(h) is zero
for all choices of data. Substituting h = 1 and factoring the measure over g
we deduce that

/ Bu(m)(9) 0" (s (L g)) dg (39
Ly, —1(A)SOg(A)\ SO2p_1(A)

is zero for all choices of data. Here Ly_1 = Lg () SOgs_1.

Continue in this way, this time with B,(7)(g). Let Y now denote the
unipotent radical of the parabolic subgroup of SO 1 which preserves a line.
Thus Y ~ Uy ox41. Let ¢ be an arbitrary Schwartz function on Y (A). From
the vanishing of (38) we deduce that

/ / Ba(m) (g)6 () 0711 (wyi (1, g)) dg dy
Y(A) J Ly_1(A)SOZ(A)\ SO2x—1(4A)

(39)
is zero for all choices of data. Repeating the same argument as in (37) we can
replace the domain of integration in (38) with Lj_1(A) SO5(A)\ SOg,_1(A).

Repeating this process we finally obtain that B, (m)(e)@R2k—1¥2k-1 (w1 z)
is zero for all choices of data. This is clearly a contradiction to our assump-
tion. U

When a = 1 we write ¢y for ¢y ;. From Theorem 3 we easily deduce
Corollary 2 Suppose that the representation 0y, 3(7) has a nonzero Whit-

taker model with respect to the character 1. Then the representation w has
a nonzero Whittaker model.
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Proof Let W, _(g) denote the Whittaker coefficient of the function ¢, (g). It
is easy to show that if B(7)(g) (the Bessel functional with a = 1) is nonzero
then W, (g) is nonzero (note that the converse need not be true). In fact
this follows from [7]. O

The Theorem is proved, but it is still of interest to express the Whittaker
model of the lift in terms of the Whittaker model of 7. To do so we go back
to (32) with a = 1, and obtain that the ¢y Whittaker coefficient of the lift
equals

/ o (g) 07251951 (widz(L, g)) dg.
L (F)GL1(F)\ SO%_H(A)

Factor the Lj integration to obtain

/ / o (1g) (D" (wyir2(1, )l dg.
Ly (A) GL1(F)\ SO2p41(A) L (F)\ Lk (A)

(40)
Now we argue as in [7]. After conjugating by a suitable Weyl element v of
SOgy41, and after suitable Fourier expansions, (40) equals

/ / W, (yg) 07F-1P2=1 (woz(1, g)) dy dg
Ly (A)\SO2k41(A)

where Y is a certain umpotent subgroup of SOgp11.

Next we consider the lift from SO%H to the group SOg(k+2 As in the
previous case we shall compute the Whittaker coefficient of the lift and ex-
press it in terms of the representation 7. To do this let U denote the maximal
unipotent subgroup of SOy(49). For u = (u;;) € U(A) and a € F'*define the
character ¢y, of U(F)\U(A) by

Yua(u) = Y(ure +ugs + -+ -+ Up gt1 + U1 k42/2 + QUL f+3)-

Via the embedding (1) we consider the integral

/ [ elg)usallu.9) alw) dudg. (1)
SO2k+1(F)\ SO2x41(A) JU(F)\U(A)

As before let us omit the subscript and write 6 for 64;,5. The first steps of
the computation are as in the case of the lifting to SOg;42(A). Up to (29)
there are no changes and then we continue to obtain

/ Z @r(g) 0"F Y20 (h(€)Wak 42Ty, ., (0)Wz0 (U, g))
d,€
Xty o (uF ) dub T dg. (42)
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Here g is integrated over Ly i(F)\ SOgki1(A), where Ly, is the maximal
unipotent of SOgy1, and u**! is integrated over UM (F)\U*™(A), where
this group is defined similarly to the definition of the group U* imme-
diately after (29). The sum is over § € F and ¢ € F*, and h(e) =
diag(lon, €, I3, €71, Ing,). Also W = gy, - - -we where for 1 < 7 < k we set
UNJQZ‘ = Wy; * * " Wi4i+1- Finally,

Ik+2 aq * 0 00
20 = Ly o ; ap= | Iy 00
Tiyo 0 0 0

Here o and * indicate entries that are chosen so that the matrix is in SOy 5.

At this point let us conjugate the matrix «**! from right to left. After a
change of variables we obtain as inner integrations the integrals [ (1/2r(1—
€6?))dr and [9(r(1 — ea))dr with r integrated over F\A. From this we
obtain that a must be a square, and since it was initially chosen modulo
squares we may assume that a = 1. Hence e = 1 and § € {£1}. Thus (42)
equals

/ prlg) O (w2(5)(L,g)) dg  (43)
L1 (F)\SO2i41(A) 5
with w = wyg 0w, and
I o « * 0 00
2(5): [2k+1 o s o = [k 00
I o 0 6 0

Here a* and * again indicate entries chosen so that the matrix is orthogonal.

To continue the computation, pull out the adelic points of L. Doing
that we obtain the Whittaker model of the representation 7. If we assume
that the lift is generic then it follows that 7 must also be generic.

6 The lift é\égn — §(/)2n+1

If G is a group and 7 is a representation of a subgroup P, we will denote
by Ind% () the unnormalizedly induced representation of G. If we intend
normalized induction, we will explicitly write Indg(551/ 25113/ > @), of course

omitting 510/ ? if @ is unimodular. We denote compact induction by ind.
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Take the embedding of SOs,1 X SOs, in SOy,41 which puts the SOg,, 14
in the odd numbered rows and columns, and the SO,,, in the even numbered
rows and columns. For example, if n = 2, then SO5 x SO, is embedded in
SOy as follows.

* * * * *

* * * * * x = SO;5,0 = SOy

* * * *x *x

We consider the lifting §()2n — é()gn+1. Let F' be a nonarchimedean lo-
cal field. Let v = (1,19, -+ ,v,) and p = (u1, p2, -+ , itn) be n-tuples of
unramified characters of F'*. These are to parametrize principal series rep-
resentations of SOg, 41 (F') and SOq,(F') to be denoted ma,41(v) and o, (1).

We next describe the parametrization of 7o, 1 (v) and m, (). For any k,
let T}, denote the diagonal torus of SOy, and let T 1 (F) denote the preimage in
SOk (F) of T,(F). It is a 2-step nilpotent group, and its irreducible genuine
representations are finite-dimensional. The first step is to parametrize an
irreducible representation of T,(F) (where k = 2n 4 1 or 2n) by the data v

or u. We will denote elements of SO(F) by pairs (g,e) with g € SO(F)
and € € p4, with the multiplication (g,¢) (¢',¢') = (g9¢9',e€'0(g,¢')) and the

cocycle o described in [3] Section 2. The center Z (7}, (F')) consists of elements
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of the form

n

Yn
< 1 ,5> yi € (F*)* if k=2n+1,

n

< Yo ,<€> y; € (F*)*  if k= 2n.

yr '

(In [3], page 1366 it is incorrectly stated that the y; must be fourth powers
to be in the center.) As in [3] Section 2 the quasicharacter

n

yn n
< 1 ,6> — e[ Iwlwe), (o€ (F*))

of Z(Tyni1(F)) can be extended arbitrarily to a genuine character of an
arbitrarily chosen maximal abelian subgroup of Ty, 41 (F), then normalizedly-
induced to Thy,.1(F) to obtain an irreducible representation of Th,41(F). The
resulting representation does not depend on the choice of maximal abelian
subgroup, nor the extension to it. See Bump and Ginzburg [4] Proposition 1.1
and Kazhdan and Patterson [10] Section 0.3 for further discussion of the
point (essentially Clifford’s Theorem) that the parametrized representation
is independent of the choice of maximal abelian subgroup or extension to it.

Having parametrized a genuine irreducible representation of T2n+1(F ), it
may be extended to the inverse image Bso,, . (F) of the standard Borel sub-
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group, so that the unipotent elements act trivially, then induced normalizedly
to SOsgp41(F'). This representation is mo, 41 (V).
Similarly 7o () is induced from the character

W

n

- — [ ). (44)

k=1

yr'

We will say that p and v are in general position if they are in the com-
plement of an effectively computable subset of measure zero in the unitary
dual of (F*)". We will not describe this subset explicitly since conditions
on u and v can appear in different places of the argument. If ;4 and v are in
general position, then 7o, (1) and 7o, 1 () are irreducible.

Let W be the SOg, 1 Weyl group, a group of order 2" - n! generated by
permutations of the v; and 2" transformations which map each v, — y,fl.
Applying an element of W does not affect the isomorphism class of 7o, 41 (V)

if m9,41(v) is irreducible, which is true when v is in general position.

Theorem 4 Assume that p_and v are in general position and that there
exists a nonzero SOq, (F) X SOg,11(F)-equivariant map 04,11 @ mop (1) —
Tont1(V). Then after applying an element of W to v, we may arrange that
each v = .

This means that if we associate to v and u the conjugacy classes A, and
A, in the “L-groups” SO2,41(C) and SOs,(C) of SO,11 and SOy, having
eigenvalues v, 1 and i7", then A, is the image of A, under the obvious
inclusion. As we have explained in the introduction, this means that the
formalism of Langlands functoriality applies in this metaplectic setting, and
the lift is functorial.

The proof will occupy the rest of the section. We claim that it is sufficient
to show that

~1 ~1

Vle{,ulf"vﬂna,ul PRy 0 7% } (45>
Indeed, we are assuming that p and v are in general position, so we may as-
sume fiq, - - ,un,,ul_l, - ,,u;l are distinct, as are vy,--- , Uy, 1/1_1, e ,Vgl.

If we prove (45), then without loss of generality we may assume v; =
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f1. Since Touy1(v) = mope1 (V') where v/ is the image of v under any el-
ement of the Weyl group, the same argument then shows that 1, is one
of pi1,-++ , fm, iyt -, pt but it cannot equal uy or up', since the char-
acters fiy, -, fn, ] -+ , b are distinet, as are vy, .-+ vy, vy e, vk
Applying another Weyl group element, we may thus assume that vy = ps.
Continuing in this fashion, the theorem is proved.

Let V' (previously denoted Uy, 1) be the unipotent radical of the parabolic
subgroup Py 2,1 of SOsg,+1 with Levi GL(1) x SO(2n — 1). Then ma,41(v)
is parabolically induced from the representation vy ® ma,—1(v') of évL(l) X
§6(2n — 1), where now v/ = (vo,---,v,). Let R and @ be the groups of

matrices of the form

a % * ok
a * X * a % *
TR B T O §
a ! o« at
-

respectively. In particular @ = (GL; X SOy4,—1)U, where U is the unipotent
radical consisting of upper triangular unipotent elements of SOy, with
nonzero off-diagonal entries in the first row and last columns only. Let 8y
denote the Jacquet module of 6§ = 64,1 with respect to U. Also let ¢y :
U — C be ¢y (u) = ¥(ui2), so that R is the stabilizer of ¢y in Q. Let 0y 4,
denote the twisted Jacquet functor with respect to this character.

We note that any character of U is of the form ¢ ((r, u)) where r € F4"~1.
By Proposition 3 the Jacquet module of # with respect to such a character
vanishes if r» has nonzero length. The kernel of the natural map 6 —
Oy is glued from the Jacquet modules of nonzero characters of U, and by
Proposition 3, only those corresponding to r of length zero are nonvanishing.
The group @ acts transitively on these, and a typical one of these is ¥y,
with stabilizer R in Q). It follows as in Proposition 5.12 (d) of Bernstein and
Zelevinsky [1] that there is an exact sequence

0 — ind%(6y4,) — 0 — 0y — 0.

Note that ind%(fy., ) is compactly induced. Regarding these as modules for

]5172,1_1 x SO,, we may then apply the ordinary Jacquet functor with respect
to V and obtain an exact sequence

0— indg(e(]’w[])v — 0\/ — HU — 0. (46)
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By Frobenius reciprocity, there exists a nonzero éil X é\(—/)gn_l X S/\égn—
equivariant bilinear map

1/2
Prop_1°

Oy ® Tan(pt) — 11 @ Ton_1 (V') ®

We note that

Homar, x $05, 1 x $00, (00 ® oy (1), 11 & Top_1 (V') ® 5113/1,2%,1) =0. (47)
Indeed the @il acts by a (computable) fixed character on 6y, and by v; on the
right; since we are assuming v is in general position, we obtain the vanishing
statement (47). Hence by (46) there is a nonzero GL; x SOg,_1 X SOg,-
equivariant map
1/2
Pyon_1°

Let H = Py g1 X SOg, = (GL; X SOg,_1 X SO4,)V. By Mackey theory
in the form of Bernstein and Zelevinsky [2] Theorem 5.2, if 7 and o are rep-
resentations of R and H respectively, the space Homp (ind%(7), o) is glued
from the spaces Homg (77, 51_{15& ® o) where v runs through a set of repre-
sentatives of the double cosets R\Q/H, and S, = H N~y 'Ry. In the case at
hand, it may be checked that there is only one double coset RyH such that

Homs, (" (0up) ® Tan(1), 057 b5, © 1 © mon (V) @ 67, ) # 0. (48)

Pron—1

ind(0u,py )v ® Ton(pt) — 11 @ o1 (V) ® 6

We may take v = 1 as a representative of this double coset. Then S, = HNR,
when v = 1, and we denote this group by S. It is the image of P; 2,1 X Py 2,—2
in SOg, 1 X SOg,. For example if n = 2, S consists of matrices of the form

a * * * ®
a * * &
* * ® *
b *
* ® * *
b1 *
® * * *
a1
a1

(The locations marked ® are zero in the Lie algebra of SOg.) Thus we have
a nonzero element of

HOHIS(QU7¢U X 7T2n(,u), 51_{1(55 (2 141 X 7T2n_1(l/,) X 51/2 )

Py on_1
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Now the Proposition 4 means that 0y, factors factors through the Jacquet
module with respect to the parabolic subgroup P, 4,,—3 of SOy, 41 whose Levi
factor is GLg x SOy, _3, because the unipotent radical of this parabolic is
generated by its first row, which is contained in the kernel of vy, and the
second row, which is dealt with by the Lemma. If ©y ® 04, 3 is this theta
representation of GL2 X SO4n 3 then we can identify 0, With w ® 04,3
where w is the twisted Jacquet module with respect to the standard maximal
unipotent of GLy of ©,. All we care about is the value of w on the center
of GL,, which is a subgroup we will denote by GL2. It corresponds to the
locations marked a in the definition of R. This can be read off from (2.21)
of [BFG] by taking m = 2 and n replaced by our 2n. We have

w ( a ) _ |a‘2n—3/2‘
a

Thus we have a nonzero element in
1 1/2
H0m802n71 ><(GLlA X SOQn,Q)NLQn,Q (CL) ® WZ”(M)’ 5H 55 ® 41 ® ﬂ-Qn_l(V/) ® 5P{72n,1)7
where Nj 2, is the unipotent radical of the parabolic subgroup P, 2,2 of
SOa,. Since Nj 9,2 acts nontrivially only on ma, (1), we may replace may, (1)
by its ordinary Jacquet module with respect to this parabolic, which, since
i is in general position, is a direct sum of irreducible representations of

GL; x SOs,_2, or which a typical one is p; ® w9, o(i') ® 5]13422 _,» Where
o= (2, -, p,). At least one of these has a nonzero contribution To
prove (45), because we are only asserting that vy is one of the pi', we may

assume that this nonzero contribution is p; ® mo, o(') ® 5113{ 22n_2. In this

case, we will prove v; = py; if the nonzero contribution is one of the other
constituents of this Jacquet module, we would obtain some other u,fl.
We obtain a nonzero SOs,,_; ><(GLlA X SOg,,_2) equivariant map

W R py @ Ton o) @ 5113{’22%2 — 05 05 @V @ Top_1 (V) ® 5113{!2%71.

We note that 6y = dp,,, , and ds = dp,, ,0p,, ,, SO this gives us an
equivariant map

1/2 1/2
Pron—1" Pron—2

W ® 11 ® Top_o(l) — 11 @ o1 (V) ® 6
On a € GL{, we have

— 2 _ 2 _
w=la"?2 s =la"t Sy = |a"Y2
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These precisely cancel, so p1(a) = v4(a). This completes the proof of the
Theorem.
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