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1 Introduction

The problems described here concern Weyl group multiple Dirichlet series (WMDs). Let F be a
totally complex algebraic number field containing the group p, of n-th roots of unity. We will
assume that —1 is an n-th power in F. Let ® C R" be a reduced root system. Then one can
attach to ® and n a family of multiple Dirichlet series whose coefficients involve products of n-th
order Gauss sums. These series are the Whittaker coefficients of the metaplectic Eisenstein series
obtained by inducing from the Borel subgroup. (See [10, 11, 13] for aspects of the metaplectic
group.) As such, they should have meromorphic continuation in all variables and satisfy a finite
group of functional equations.

It turns out to be difficult to study these Whittaker coefficients directly. However, we believe
that one can write down the correct objects and prove their functional equations by means of a
reduction to SLs, using Bochner’s theorem on continuation to a tube domain (see [2] or [12] for the
SLs theory, and [1] or [9] for Bochner’s theorem). The study of such “Weyl group multiple Dirichlet
series” using this method was initiated by Brubaker, Bump, Chinta, Friedberg and Hoffstein, and
has been described in a series of papers ([3], [4], [5], [6]). If n is sufficiently large (the ‘stable
case’) these series are completely understood, i.e. the meromorphic continuation and functional
equations are proved. However, if n is not large (the ‘non-stable case’), the situation is much more
complicated. The problem is to understand it fully.

Let us next explain what is known in the non-stable case. The multiple Dirichlet series of
concern here are of the form

Zy(s1,+,8p) = > HU(cy, - ,¢p) Ny o N2, (1)
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where the sum is over nonzero ideals ¢q,--- , ¢, of the ring og of S-integers of F, where S is a
finite set of places chosen so that og is a principal ideal domain. It is assumed that S contains all
archimedean places, and those ramified over Q.



The coefficients in Z thus have two parts, denoted H(C1,---,C,) and ¥ (Cy,--- ,C,), defined
for nonzero C; € 0g. The product HV is unchanged if C; is multiplied by a unit, and so is a
function of r-tuples of ideals in the principal ideal domain 0g. This fact is implicit in the notation
(1), where use is made of the fact that HU(Cy,--- ,C,) depends only on the ideals ¢; = C;jog. The
factor ¥ is the less important of the two, and we will not define it here; it is described in [4]. Suffice
it to say that W is chosen from a finite-dimensional vector space of functions on Fs =[], g Fy, and
that these functions are constant on cosets of an open subgroup. If one changes the setup slightly,
the function ¥ can be suppressed using congruence conditions.

The function H is more interesting and is the focus of discussion. Let us describe the function
H which should correspond to the first non-trivial Whittaker coefficient (that is, is the (1,---,1)-
coefficient, rather than the more general (my, - - , m,)-coefficient). For simplicity we assume that ®
is simply-laced (recall this means that all roots have the same length, so that the associated Dynkin
diagram has only single-line connections), and that all roots are normalized to have length 1; see [4]
for the general case. Let aj,---,a, be the simple positive roots of ® in some fixed order. The
coefficients H have the following “twisted” multiplicativity. If ged(Cy - -+ C,., C1 -+ CL) = 1, then
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The condition that «;,a; not be orthogonal means that these simple roots correspond to adjacent
nodes in the Dynkin diagram. In this formula (%) is the n-th order power-residue symbol, defined

for nonzero coprime elements of 0g. It satisfies the reciprocity law

(5)-wos(3).

where (a,b)s = [],cg(a,b), is the S-Hilbert symbol, defined for a,b € Fg. See [4] for further
information.

Knowing the twisted multiplicativity of H, we may reduce the description of H to the case
where the C; are all powers of the same prime p. The problem is to determine H when each C; is
a power of p.

In the stable case, this is done in [4], and in greater generality in [6], where the series that
correspond to general Whittaker coefficients are described. (We call the latter case the ‘twisted
case’ as it roughly corresponds to twisting the series by characters.) For each series, it is found that
there are exactly |W| values of (ki,--- ,k,) such that H(p*,--- ,p*") # 0, where W is the Weyl
group of ®, and there is a precise bijection between the Weyl group W and the set Suppy;apio(H)
of possible (ki,--- , k). See [4, 6] for details.

The paragraph above describes the stable coefficients H. We turn now to the more difficult case
where n is not assumed to be large, and discuss what modifications we expect. The set

Supp(H) = {(k1, -~ ko) |[HP™, -~ ,p*r) # 0}

will still be finite, and will contain Suppg,p,1.(H). Moreover, the values of H(p*!,---  p*") when
(k1,--+ ,ky) € Suppgapie(H) will still be given as in [4, 6]. However, there will be other values of
(k1,--- ,ky) in Supp(H). These will lie in the convex hull of Suppgapie(H)-

If we specialize to the case ® = A,, then Brubaker, Bump, Friedberg and Hoffstein [5] have
found a conjectural description of the coefficients valid for all n. In fact, the description gives the
(p't,--- ,p') Whittaker coefficient for any I; > 0. We describe this next.



2 The Gelfand-Tsetlin pattern conjecture

A Gelfand-Tsetlin pattern is a triangular array of integers

T = N - (3)
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where the rows interleave; that is, a;—1 j—1 > a;,; = a;—1,;. The pattern is strict if each row is strictly
decreasing. The strict Gelfand-Tsetlin pattern ¥ in (3) is left-leaning at (4,7) if a;; = a;—1 -1,
right-leaning at (i, ) if a; ; = a;—1 j, and spectal at (4,7) if a;—1,;-1 > a;j > a;—1,j.
Given a strict Gelfand-Tsetlin pattern, for j > i let
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Np#ii if T is right-leaning at (4, j),
(i,7) = g(p*i=1 psii) if T is left-leaning at (4, j),
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is an n-th order Gauss sum.
Also, define

a® = [ i) (6)
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Given non-negative integers k;, [;, 1 < ¢ < r, and a prime p, we define the p-th contribution to the
coefficient of a multiple Dirichlet series by

HGT(pkl,"' aka;plla”' 7pl1):ZG(T) (7)
T

where the sum is over all strict Gelfand-Tsetlin patterns ¥ with top row
L+...4L+rl+...+L+r—1,---,1,+1,0
such that for each 7, 1 <14 <r,

r
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Note that (k1,- -, k) = k(%) in the notation of [5]. The general coefficient of the multiple Dirichlet
series Hgp(Cq, -+ ,Cr;my, -+ ,m,) — which conjecturally corresponds to the (mq,- - ,m,) Whit-

taker coefficient of the metaplectic Eisenstein series on the n-fold cover of GL,;1 induced from the
Borel — is then defined by means of a suitable twisted multiplicativity. In [5] we conjecture that
these multiple Dirichlet series have meromorphic continuation and satisfy functional equations, and
prove this for n = 1 or r = 2; we also prove it for n = 2 and r < 5 by establishing compatibility
with Chinta’s description [7]. We prove this in general in [6] for n sufficiently large.



3 The Chinta-Gunnells Approach

Gautam Chinta and Paul Gunnells have a recent preprint [8] in which they find a WMDs valid for
all ® when n = 2. I will not type the description of this, but rather refer you to their elegant paper
and to Gautam’s write-up of open problems. Though they prove the continuation and functional
equation of their series, they do not give an explicit formula for each coefficieint. I should point
out that they also offer a characterization of the coefficients but do not prove that there is a unique
function that satisfies their characterization. I believe that their series corresponds to the first (i.e.
(1,---,1)) Whittaker coefficient.

4 Open Problems

Here are some open problems, in roughly increasing order of expected difficulty.

1. Reconcile the Chinta-Gunnells and Brubaker-Bump-Friedberg-Hoffstein descriptions when
® = A, and n = 2. For example, one could find an explicit formula for the Chinta-Gunnells
coefficients, and show that it is the same as the BBFH one. Or one could establish the uniqueness
mentioned above and then check that the series formed from the BBFH coefficients for fixed prime
p satisfies the desired properties.

2. Extend the Chinta-Gunnells description to n > 2. And extend their work to the case of the
WDMDs corresponding to general Whittaker coefficients, the so-called twisted case.

3. Extend the BBFH description to root systems other than ® = A,.. See Ben’s write-up for a
discussion of possible strategies related to this problem.

4. Use the BBFH description to prove the meromorphic continuation and functional equations
in general.

5. Extend the group-theoretic description of the coefficients given for the stable case in [4, 6]
to the non-stable case. Use this to prove the continuation and f.e.s. Then link this new, not-yet-
existent, description, to the BBFH one and to the Chinta-Gunnells one.

6. Prove the conjectured link between WMDs and the Whittaker coefficients of metaplectic
Eisenstein series in general. One strategy for doing this would be to analyze the geometry of the
associated flag variety in an effort to determine how geometric components of the flag contributed
individually to the resulting exponential sums written using Pliicker coordinates. The hope is that
one would see a natural way in which to parametrize these contributions using GT patterns.
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