Paul Garrett, 7/15

Overview of
e Integral resp of sums/integrals of moments
e Spectral analysis of kernel (Poincaré)

for GL,, x GL, 1 and more. We will omit (see Adrian’s talks) the application to con-
vexity breaking.
What we get: (expanded form of) fZ/AGL (\GL.(A) Pé(g)| f(g)|’dg where Pé is a

Poincaré series. We may replace | f(g)|?> by a pair of cusp forms. This is to be expressed

> |

cuspidal Fon GL,._; ¥ —°

2
“t~"” dt 4+ more degenerate ...

Lﬁn(%ﬂt,f@F)

Here the part written ¢~* depends on the archimedean components fo, and F and is
hence in quotation marks. It is really a function derived from the kernel and is only
asymptotically t~%. Following Good, Diaconu and Goldfeld we can obtain actual
moments from this expression using a Tauberian argument.

For ease of exposition, assume that f has trivial central character.

1. Orthonormal basis for L2,(ZaGL,_1(k)\GL,_1(A)) — without loss of generality
(spherical case for simplicity), rep'n generated by F', pp is irreducible (unitary)
and (therefore! Type I-ness!) 7p = Q4 7F 0.

Meaning of Li%(s, f ® F) — this is not Li(s, 7y x 7r). Jacquet-Piatetski-Shapiro-Sha-
lika Lf"(s, 7 x 7p) is Li(s, f ® F) times a polynomial in ¢"* where v runs through a
finite set of bad places.

How do we get L(s, f ® F')? Assume f is spherical at vy but F' is not spherical at vg.
Fail: if you take the spherical vector in mf ,, then you cannot get # 0. Succeed:
(Jacquet-PS-S — 3 good choices) take vector in 7 ,, non-spherical at vy. Watch out:
there is a global normalization issue ( ~ Hoffstein-Lockhart, Bernstein-Reznikov,
Sarnak). We cannot make both |f|2 =1 and af(1) = 1, and you want to choose one of
these. It is better to take af(1)=1, so |f|2 will appear somewhere in the formula.

(Discussion. Hoffstein-Lockhart is proved on GLy. Higher symmetric power informa-
tion, functoriality, ineffective constant ...)c

Go back: with “live” auxiliary s’, which is the equivalent of the parameter v in Dia-
conu’s lecture, what do you really get?

Really have (re(s’) >0 — must meromorphically continue to s’=0)

L(s’+%+it, f®F>L(%+it,f®F>“t_“’”dt+...
cuspidal F on GL,_

=spectral side. Part of the spectral decomposition of Pé is on the other side, and this
has not been discussed.
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We now define Pé. It is

Pé(g)= Y.  ¢(vg), M= Ghra 0

ZpMGL (k)

0 *

Spherical everywhere locally for |f|?, ¢ = ® ¢,. At nonarchimedean places

SI

det(A)
dr—1

g:m'kam:< 64 g )akeKv,max

st(gv) -

b

0 not of this form

At v|oo ( ~ Good, DG - type choice — two? ...) But we can set up things without com-
matting

det(A)
drfl

¢U(ng): ) ¢v(g)-

Have NOT committed

b, a 1, _1|*| «—R"1 C" !-if spherical have O(r — 1) or U(r — 1) invariance.
’ 1

Discussion. In complex cae try

1 z 1 s'/2 11"71 z G
¢v( 1 >:(W> =(!) ¢...(wo( 1 )) —Ipr—11.

Spectral decomposition of Pé (considerable good:tractable surprise)
re(s’) > try: first pole if any at 1.
Pé =
( % )OOET_1’1(8/+ 1)
1 ’ ro22 8
+ > (arch)L(§+s,F)-E (5+1®F

cuspidal F' on GLg, spherical
%—i—ioo
+/ Er—z,l,l( s/ )

!l oo
2

+ (!) no further terms.

where the Eisenstein series is induced from E. See note on “half-degenerate” Eisenstein
series from Paul Garrett’s web page.

! Wiith pretty good choice of archimedean data as s’ —0 ...

Why does Pé terminate so early? Poisson summation

Pé(g)= Z d(vg)= Z Z #(Bv9),

ZiMi\Gx yePr~bI\G, BEUR

,BGUk:( Ir i )

where
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We do Poisson summation on the # smmation.
Z ( Z évg(gb) ) Pg(u) = ¢(ug)
yepPr~bI\Gy \ YE€Ua/Ur)*
(deceptively, might think E"—%1 ... ?! 1)
e ¢ =1 term really is an E” ! (unsurprisingly —)

e ¢ #1 terms: My, transitive on ¢ # 1: fix ¥ (u) = ¢o(ur—1) (ur—1 =bottom).

* * «— trivial char
isotropy subgroup in M =
1|le|— 1
1
R * * | ¥ | «— 4+ invt under A — points

Z ¢,(4*) has isotropy subgroup of r —2 x part of 2 x 2
g€k™ * «— get

1
Seen to be

ET=22(det on r — 2 ® GLy-automorphised subsum on lower right GLs>).

Goldfeld asks why the Poincaré series is orthogonal to the GL2 cusp forms — now we can

sort of see it.
S % (z@mﬂ.

P#£1 Eek>

k * E3
Gk

X |k

1

It is illuminating to use the GL3 business. Use sphericalness:

(A %
9= D ) «—2x%x2

_ ¥ 3 (z@ww)

’yEPT_Q’Q\Gk aEPl’l\GLQ Eck*

At g = (A ; ) the inner sum is Pé on GL; — has reasonable spherical decomposition

from E” %2 from each fragment.
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(Break)
(Before proof of LHS ...)

The other terms of [ Pé|f |2=

> / |L(%+it,f®F)|2“t_w” dt

cuspidal F on GL,_1 -
l

+ 2. 11

ri+.+rp=r—1 j=1
cusp forms F; on GL”.

2

L<%+itj:it1:t---:titl,f®Fj)

The most degenerate continuous part is

//H ‘L(%—l—it:}:z’tl:}:---:}:itr_z,f)

For example, if F=F,=---= F],

2
T dtdty-dt, 1.

size

‘L(%n%t,f@F)

One can try to take a truncated Eisenstein series ATE ...

How to compute LHS

Proof: obvious unwinding + spectral decomposition/expansion (less obviously) on
GL,_1 to get [ verticay Of Euler products. f — its Whittaker function, which is a pro-
duct of local data. Now in the old days (20-th century), we would expect purely a pro-
duct of local data. But now (21-st century) we look harder and sometimes get an inte-
gral or sum of Euler products. If something is an Euler product, it is interesting. One of
the technical advantages of working on the adele group is that you can see in advance
that the decomposition is coming.
So, what happens?

/ Pé(g)|f(g)|2 = (usual unwinding) =
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Now we use a truly great trick. We get

/Z oo, AW () F9)dg

This depends on the left My-invariance of ¢. The domain of integration does not decom-
pose locally, nor does f. But you make a Fourier expansion

Lk@k\GA ¢(g)W(g) ve@Xk%Mk W(’yg)dg.

(This will be recanted below. It’s right but there is another way to proceed.) For sim-
plicity, consider the spherical case (Iwasawa).

GLy: A% /k>*= A7 /k* (compact) x (0, 00) «— gives vertical integral.
GL,(k)\GL.(A) = GL,.(k)"\GL.(A)* x (0,00)

Naming

I, 2| *
N = 1] H=| |1 |
1 1

I'r'—l * *r—1

M=

U=

Unfortunate notational change: H «— M. Apart from the last column in U ... and
moreover the definition of N is corrected below.

Recant the second Fourier-Whittaker expansion — it’s better to produce another
way.

:[V\M . d(mu)W (mu) f(mu)dmdu. (1)

The last column is not yet resolved. How to proceed? There are three possibilities

Oth. f= its own spherical expansion on GL,

1st. (wrong) f = Fourier-Whittaker

2nd (right) Restrict f to GL,._; (a multiplicity one subgroup) and do a spectral
expansion.

Spectral expansion on GL,_1, in somewhat symbolic notation.

r={ [ X b nan. Fo={ [ oS Emna)an

Expand f(mu) in m.

Flmu) = /(n) n(1) /M oy ) )

So (1) equals

/(77) n(l)/Nk\MA xUp ('b(mu)W(m“)/ n(m’) f(m'mu)dm’dn.

M\ Mp
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Lied before: Ny is really the unipotent radical of GL,_; embedded in GL,:

1 % - % 0
1 .
x 0

1

Use Whittaker expansion

flo)= >, W)

N\ My
= / 17(1)/ ¢(mu)W(mu)/ n(m" YW (m'mu)dm'dm dudn.
(m) Ni\Ma xUn Mi\Mna

More [ () inside, replace m’ by m/m ! (right translate n by m).

B /(n) n(l)[Vk\M,AxU,A (mu)n(m)W (mu) [Vk\MA n(m")W(m' u)dmdm dudn.

Everything is fine but pesky Upa. Not n but all other stuff =®, and pesky Up is not
inside n’s.
This is where the archimedean stuff is a complication.

Lemma 1. For v <oo. For m,m’ such that W,(m), W,(m’)

[ outmptmum =it um i [

U,NK,
which is (boring/good) independent of m,m’.
Proof. ¢(u)=0=—=ucU,NK, (or close)

Y(mum ™ HW(m) =W (mum™!-m)
= W(mu)=W(m)l

Do same for m’. O

Ach! radically different at 00. Koo(Moo, Mbo, #oo) = [ at infinity., what is left of the
pesky unipotent integration at the archimedean places.

Jrerr=[ [ Kt m) )W )Wyl Y din
(n) JNxMp JNpMp
Then Fourier-Whittaker expansion of 7 (twice)

n(m) =" Wy(ym)
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We may as well include extra stuff that doesn’t do anything in the summation (choice of
coset representatives). The whole action is in the upper left block.

* * \ S
1
1
1 1
1
this coset decomposition can be identified with
* | * \ r—1 *
1]|x* 1
L 1
1

We can then unwind ...

/ F(m)dm:/ / F(nm)dndm.
Nk\MA NA\MA Nk\NA

(Wy left Np, v equivariant, left Ny C Mpj-invariant dendependent of ¢) (Ko only
depends on last column!)

ka\M,A ¢5(m)77(77”L)Wf(m)alm:[\UA\M/A [Vk\NA ¢(nm)n(nm)We(nm)dn dm

where ¢(m) is basically |det(M)|*" if

A

1

/ ¢(m)Wf(m)</ ¢(n)n(nm)dn>dm _
NA\MA Nk\NA

/ S(m)W §(m)W, (m)dm — (arch?)Lﬁn<s'+s+1, f®F>.
Na\Ma 2

We are writing 7= |det|*® F.
Question: why does the residual spectrum not contribute? Answer: no Whittaker
models.
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Whole
=Z/ _ (arch) x (s’ + s, f @ F)L™ (s, f @ F) ds.
F re(s):E



