Adrian Diaconu, 7/14

This is a continuation from yesterday’s talk.

We will specialize the section in the Poincare series. Let v, w € C,
" 1z _ (22 + 1)*“’/2 v real
g 1 (|z|?+1)™* v complex.

Here in the complex case | | is the “usual” absolute value so | |, =| |2
Let

xoulm)=lylt,  m=( ¥ 7).
Let ( 01 >
=Pe(v,w)=Pe(9)= Y ¢(9)

’YEMk\Gk

Theorem. The Poincare series Pe has meromorphic continuation to C?. For v = 0,
Pe(0, w) has its first pole at w=1, of order 11+ ra+ 1 (r1, 72 = number of real and com-
plex places, respectively).

Spectral decomposition

LY ZAGK\Ga,w) = Ly5p(Z4G1\G 4, w) @ Liysp(ZaGr\G a,w) ™

The Poincare series is not L?, but after subtracting an Eisenstein series E(g), Pe — E
square integrable. We define Pe* = Pe — E. The residual spectrum does not contribute
anything to the Poincare series. Now if f is a cusp form,

/Z o, Pel0) 7o)

is an Euler product. (The integral is convergent even though Pe is not L2.) At finite
primes v the corresponding local factor L, (xo,, | [*/2 f) = L, (v + %, f). If v|oco the local
factor is a ratio of Gamma functions, which has exponential decay in the local parame-
ters of f, so when we sum over cusp forms we have absolute convergence. This give ana-
lytic continuation when we do the spectral expansion of the Eisenstein series. (This is
Good’s argument.)

Good’s method
At v=0, let
10,0) =10x) = [ Pe(a)lf(a)Pd.



2 SECTION

We have

-t 52 L[ i)

xEC

2 1

For a modular form K is a product of Gammas, but for Maass forms, K is a compli-
cated integral. We have an assymptotic formula. The Hecke character x involves some
parameters t, that satisfy

1 v real
z|: avty =0, “n = { 2 v complex. (1)

If v|oco is complex

K,,<%+ it,w, x> ~AO, pp ) (LH+ B+ 4(t+1,)%) v

If v|oo is real

1
Ku(§+lt,wa X> ~ B0,y )1+ [t +1, )7

These formulas can be found in a paper of Q. Zhang.

Now we want to simplify the kernel and obtain an asymptotic formula for the
moment. For y € Cy let

K (t,w)= [ Q+p+t)™ J[ Q+E+4¢+t)?)™

v|oo v|oo
v real v complex

In other words, we replace the kernel by its main term in the asymptotic formula. (We
cannot produce this kernel by choosing ¢.) We define

2

Z(w) = Z 27r/ ‘ ( +it, f®x> K, (t,w)dt.
xEC
Theorem. We have
2
Z / ( +it, f®X> dt~ cz(log(z))™ T2,
Ix(z)

x€Co,s

where Jy(x)={t e R|K,(t,— 1) <z}.

Let us analyze a bit. One might be surprised that z is just to the power 1 here but
this is a matter of normalization. When x = 1, Jy(z) ~ z'/*®] As x varies, J,(z) will

shrink and the sum is essentially finite. To see this we use (1). The number of terms is
of the order z!*®QI—1,



CONVEXITY BREAKING 3

Convexity breaking

/ L(lﬂ't, f>
Jiz) | \2

Although this is not provable, the method is still enough to break convexity.

Assuming

(1) Z(w) has mero continuation to a region re(w) < 1 — ¢, and that the only pole in
this region is at w =1, with order r; +7r2— 1, and

(2) Z(w) has polynomial growth in this region in vertical strips.

It is conjectured that

2
dt ~ cz/FR(log(z)) .

Part (2) is not proved, but Adrian expects to do it. Then

Z /Jx(fv)

Xeéms

2dt~ x P(log(x)) + O(z?)

L(%+it, f® X)

where P is a polynomial and 6 < 1. The argument goes as follows.
The first step is to prove a mean value result. Let

1 2
S(z) = L =+it, fox )| dt
@= 2 Ty(@) (2 d X)
x€Co,s X
and let E(z)=S(z) —zP(log(z)). Then
/ B(u)?du < 225+, @)
0

The second step invokes the following

Lemma. (Ivic and Motohashi) If

/ E(u)?du < z?°+!
0
then

2543

E(z)<z 3 .

To get the mean value result, make use of

1 [T gw 1 ifz>1 e 1
270 J1eir ?dw_{o ifo<z<1 O 27 min 1’Tlog(:1:) '

Integrate around a rectangle with vertices 1+¢—4T, 14+e+44T, §+iT, 6 —iT

% ctanale Z(w)%dw =z P(log(z)) + error.



4 SECTION

Split the integral into four parts.

1 1+€+ZT :L,'w

lim — Z(w)—dw=5(x).
o 2 l4e T (w)w v (z)

Using Phragmen-Lindeldf we can choose § < 1 such that Z(w) < |Im(w)|very small power,
What we need is to choose d so that Z(w)/w is L?, i.e.

d+1i00 23(10)
§ —%00 w
By the Plancherel formula

[
-

—100

2
dw < 0.

2 oo
dwg/ E(u)?u=2°"1du.
0

(Titchmarsh argument.)

/ E(u)?u=2"1du=0(1)
0
and so

/ E(u)?u=2"ldu < 1.
0

r=20-1 E(u)2<</ E(u)?u=2"lduk1
z/2 z/2
which gives (2).
Now using the Lemma of Ivic and Motohashi, we have

2043

E (z) < 2?, 0= 3

<1

and we can use this to break convexity.

S(x)= Y L(%—Fit,f@x)
XEC'O,S

with 0 < 1. If 2’ <z J,(2") C J,(z). We consider
S(x+ H)— S(z).

dt~z P(log(z)) + O(z?)

Ix(z)

(We will eventually take H = z%.) In this difference we are left with positive terms. That
is, any term that appears in S(z + H) appears in S(z). We get

1, .
1;(:E§_+_Zt, j?>

Ji(z)\J1(z) = {t eR|z< (1+t))(1+4t>)2<z+ H},

so with d=[k: Q)]
1 . 1 .
L(§+Zt,f> L(§+Ztaf>

zdt <S(z+H) - S(z).

J(;X z+H)\Tx(z
Now ( NI (=)

2
dt << H'1#

/((:c+H)/4T2)1/d1
(

2
at< |
z/472)1/ 4 Ix(z+H)\Tx(z)



CONCLUDING REMARK

as long as

[ H i
L <10.

We can replace z by 4™z and H by 4"H and we get

(z+H)1/d 1
/ L(—+z’t,f>
L1/d 2

1/d_ .1/d H\"
(z+H)/*=x 1-1—? :

/D1
Ll/d L<5+zt’ f)

2
dt < H1 T,

This gives
2
dt < AlTe.

Take

T+ M 1
[ (i)
T

Now by an argument of Anton Good this implies that

2
dt < (Td_lM)1+€<<Td9(1+E), Td0+1—d o N & Td0+1—d

L(%Jrit,f)«tde/zﬁ_

Convexity is

L(%+z’t, f) < tH2re,

By the same argument you can break convexity in the Grossencharacter parameter.

Concluding remark

What allows us to break convexity is

E: /gAmWQ)

XEC'O,S

2
dt ~ cz*Rl(log(z))1 72 + O(x%).

L(%—I—it, fe® x>

If we had an exponent z2*'®! we couldn’t break convexity since

[k: Q]



