Hoffstein, 7/10

There are these mysterious objects that people would like to understand, and they
are defined like this.
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We are of course over a field containing the n-th roots of unity. We denote
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This is a Fourier coefficient of an Eisenstein series on the metaplectic n-fold cover of
GL(2), and its residue 7(m) is thus the Fourier coefficient of the residue, which is the
theta function 8. The fact that the Eisenstein series has a pole can be read off from
the constant term, and from this it can be deduced that 7(m) is nonzero for some m.
The Eisenstein series is an eigenfunction of the Hecke operators, and so 6 is also. For
example, if n=2 and m =1, we want to compute
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In this quadratic case, G(1, d) is essentially 1 and this is the Dedekind zeta function. By
contrast, if n =3, the answer is much harder and it was figured out by Patterson that

73 (p)=G(1, p) (cubic Gauss sum.)
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Patterson used a delicate argument involving a converse theorem, but it was pointed out

later by Deligne that one could also prove this as a consequence of the uniqueness of

Whittaker models — which is true for #®) when n = 2 or 3 but not when n > 3. This

result was used by Patterson and Heath-Brown to disprove the Kummer conjecture.
Discussion of the second moment of the Gauss sums, and the identity
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was invoked to explain why these are problematic.
Returning to Deligne’s point, this can be expressed in classical language using the
Hecke operators. In general
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where (m, p) =1. If we normalize 7(1) =1 we have
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(The last identity is true if — 1 is an n-th power, and it is useful to assume this.)
In general

7(mp™) = 7(m)Np*/?,

and this fact, known as the “periodicity theorem” is valid even if m and p are not
assumed to be coprime.

When n = 4, uniqueness of Whittaker functions fails, and the coefficients 7(m) are
only partly known. Toshiaki Suzuki as well as Patterson worked on this.
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If p and ¢ are distinct primes

T®(pq) =G (q, p)T®(pq).

Now Ggl)(q, p) is actually a quadratic Gauss sum and can be evaluated:
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This means that 7*)(pg) =0 if ¢ is a nonresidue.
The Patterson conjecture is a conjectured identity of two Rankin-Selberg Dirichlet
series:
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The evidence is that this implies identities between the (partially determined) coeffi-
cients 7(*) that are consistent with everything that is already known to be true; on the
other hand, the gamma factors and locations of the poles are consistent. If m is square-
free, the conjecture implies

T(m)?= Z G(1,m1)G(1,mg).

mimao=m

This gives

7(p)? = 2G(1,p)
7(pq) = 2Ml1+<§>+(%>+1}.

Note that if (p/q) =—1 this is equivalent to the previously mentioned vanishing.
Bump and Hoffstein gave related conjectures that are different from the Patterson

conjecture. For the first order theta function, let 95") be the theta function on the n-
cover of GL,. BH conjectured

L(s,05" x 050) = L(s,05" x 0V);



the right-hand side should be interpreted as just the Mellin transform L(s, 054) ).
Patterson’s conjecture implies the BH conjecture for 62, but unlike the Patterson
conjecture, the BH has a substantial generalization to other general linear groups.
If n=>5, very little is known but D, gives a potential attack.
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We think if D, as the third in a progression of Dynkin diagrams, As, Az and Dy.
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For A and the n =3 cover, consider the following
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The residue
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has a pole at s; = %, which makes it plausible that the argument of 7'(3)(m1) and the
argument of G(1,mq) are opposite. In this case, we can verify this because the value of
7®)(m;) is known. However the same idea is applicable in cases where such information

is not available.
Turning next to Az and n =4,
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Taking the residue at so and s3 :% gives
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and the fact that this has a pole at s; =3/4 gives evidence for the Patterson conjecture.
Now turning to D4. We will get an application if n=2>5.
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The residue is at s =s3=54= % + % When n=5

Z G(1,m1)T(m1)? _ Z G(l,m1)7'(m1)3.
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There appears to be a pole to the right of 7/10 but this is believed not to be a real pole.
There is a question about whether the Eisenstein series on SOg has a pole at that loca-
tion; even if it does, the Dirichlet series might not have a pole if the residue of the
Eisenstein series does not have a Whittaker model.

From the multiple Dirichlet series point of view, we set s; = so = s3 = s and ask for
the functional equations of
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(From now on n = 5). There is a pole of order 3 at s = 7/10. The normalizing factor
involves T'5(s)® and I's(w), where ['s is the Gamma function needed by the Kubota
Dirichlet series (see WMD1). The functional equations are

Z(s,w)|—>Z(1—s,w—|—33—g>, or Z(s—l—w—%,l—w).

We iterate the functional equations several times:

Z(s,w) = Z(s+w—%,1—w>
= Z(w+2s—1,3—2w — 3s)
= Z(?—Qs—w,w—l—Ss—é)

2
= Z(s,g—&s—w).

As a sanity check we can go one more time and get Z(1 —s,1 — w), but the last expres-
sion is what we need.
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The notation means that since s is really three variables s; = so = s3 this is not really the

residue but the coefficient of (s — ")=3 in the Taylor expansion. We needed
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in the normalizing factor (and actually one more gamma function).
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There is a reality check at this point.
Returning to Z(s,w) there are poles at
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These notes will be completed when Jeff finishes straightening this out.



