Gautam Chinta, 7/9

The objective is to talk about the joint work with Gunnells, but I will start with the simplest case.

1 Instructive example

- $n=2$ Quadratic Weyl group multiple Dirichlet series.
A_{2} Dynkin diagram: \circ - ○

$$
Z(s, w)=\sum_{d, m}\left(\frac{d}{m}\right) d^{-w} m^{-s}
$$

originally studied by Siegel as the Mellin transform of $\mathrm{GL}_{2}^{(2)}$ Eisenstein series. Later this was taken up by Goldfeld and Hoffstein. The interest is that the coefficients of the Eisenstein series are quadratic L-functions. This may be seen directly from the description above by collecting the coefficients of m :

$$
Z(s, w)=\sum_{d, m} d^{-w} L\left(s, \chi_{d}\right)
$$

Under the functional equation $L\left(s, \chi_{d}\right)=d^{\frac{1}{2}-s} L\left(1-s, \chi_{d}\right)$ which leads to

Simlarly

$$
Z(s, w)=Z\left(1-s, s+w-\frac{1}{2}\right)
$$

$$
Z(s, w)=Z\left(s+w-\frac{1}{2}, 1-w\right)
$$

These two functional equations generate a group of order 6 .

- Italy won the world cup.

We want

$$
Z(s, w)=\sum_{d} \sum_{m} \frac{\chi_{d_{0}}(\hat{m}) a(d, m)}{d^{w} m^{s}}
$$

where

$$
d=d_{0} d_{1}^{2}, \quad d_{0} \text { squarefree }
$$

and \hat{m} is the part of m relatively prime to d_{0} and $a(d, m)$ is the multiplicative weight factor to be defined. In the context of the previous talk

$$
\chi_{d_{0}}(\hat{m}) a(d, m) \longleftrightarrow H(d, m) .
$$

Multiplicativity:

$$
a(d, ; m)=\prod_{\substack{p^{\alpha}\left\|d \\ p^{\beta}\right\| m}} a\left(p^{\alpha}, p^{\beta}\right)
$$

Note: $(d, m) \longmapsto \chi_{d_{0}}(\hat{m}) a(d, m)$ "twisted mult."
Returning to

$$
\sum_{d} \frac{1}{d^{w}} \sum_{m} \frac{\chi_{d_{0}}(\hat{m}) a(d, m)}{m^{s}}
$$

the inner sum is

$$
\prod_{p}\left(1+\frac{a(d, p) \chi_{d_{0}}(\hat{p})}{p^{s}}+\ldots\right)=L\left(s, \chi_{d_{0}}\right) P_{d}(s)
$$

Want (for the inner sum)

$$
L\left(s, \chi_{d_{0}}\right) P_{d}(s) \longleftrightarrow d^{\frac{1}{2}-s} L\left(1-s, \chi_{d_{0}}\right) P_{d}(1-s) .
$$

We know the functional equation of L and so

$$
P_{d}(s)=d_{1}^{1-2 s} P_{d}(1-s)
$$

Euler product form $P_{d}(s)$:

Want to know

$$
P_{d}(s)=\prod_{p^{2 k+1} \| d} P_{p^{2 k+1}}(s) \cdot \prod_{p^{2 k} \| d} P_{p^{2 k}}\left(s, \chi_{d_{0}}(p)\right) .
$$

$$
\begin{aligned}
P_{p^{2 k+1}}(s) & =\left(p^{2 k}\right)^{\frac{1}{2}-s} P_{p^{2 k+1}}(1-s), \\
P_{p^{2 k}}(s) & =\left(p^{2 k}\right)^{\frac{1}{2}-s} P_{p^{2 k 1}}(1-s) .
\end{aligned}
$$

Next re-express FE above in terms of the $a(d, m)$. p-part of $L(s, \widehat{\chi d})$. Case 1:

$$
p^{2 k+1} \| d, \quad \text { so } p \| d_{0}
$$

Principle: Suppose that

$$
f(x)=x^{n} f\left(\frac{1}{x}\right), \quad f \text { entire }
$$

Then f is a polynomial in x of degree n.
We extract the p-part

$$
\mathcal{G}(x, y)=\sum_{k, l=0}^{\infty} a\left(p^{k}, p^{l}\right) x^{k} y^{l}
$$

Break this into two parts, $\mathcal{G}=\mathcal{G}_{0}+\mathcal{G}_{1}$ where \mathcal{G}_{0} is the part where k is even and \mathcal{G}_{1} is the part where k is odd. We get.

$$
\mathcal{G}_{0}(x, y)=\mathcal{G}_{0}\left(x y \sqrt{p}, \frac{1}{p y}\right)\left(1-\frac{1}{p y}\right)
$$

and can do FE for

Note

$$
(x, y) \longmapsto\left(x y \sqrt{p}, \frac{1}{p y}\right) .
$$

$$
\begin{aligned}
& G_{0}(x, y)=\frac{G(x, y)+G(-x, y)}{2} \\
& G_{1}(x, y)=\frac{G(x, y)-G(-x, y)}{2} .
\end{aligned}
$$

Conclusion:

$$
\begin{aligned}
\mathcal{G}(x, y) & =\frac{1-\frac{1}{p y}}{1-y}\left[\frac{\mathcal{G}\left(x y \sqrt{p}, \frac{1}{p y}\right)+\mathcal{G}\left(-x y \sqrt{p}, \frac{1}{p y}\right)}{2}\right] \\
& +\frac{1}{y \sqrt{p}}\left[\frac{\mathcal{G}\left(x y \sqrt{p}, \frac{1}{p y}\right)-\mathcal{G}\left(-x y \sqrt{p}, \frac{1}{p y}\right)}{2}\right] .
\end{aligned}
$$

Similarly with x and y reversed. We also have limiting conditions

$$
\begin{aligned}
\mathcal{G}(x, 0) & =\frac{1}{1-x} \\
\mathcal{G}(0, y) & =\frac{1}{1-y} .
\end{aligned}
$$

2 Reformulation

We define an action of the Weyl group W on power series in x and y.

$$
W=S_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1}^{2}=\sigma_{2}^{2}=1,\left(\sigma_{1} \sigma_{2}\right)^{3}=1\right\rangle .
$$

Define

$$
\begin{aligned}
\left(f \mid \sigma_{2}\right)(x, y) & =\frac{1-\frac{1}{p y}}{1-y}\left[\frac{f\left(x y \sqrt{p}, \frac{1}{p y}\right)+f\left(-x y \sqrt{p}, \frac{1}{p y}\right)}{2}\right] \\
& +\frac{1}{y \sqrt{p}}\left[\frac{f\left(x y \sqrt{p}, \frac{1}{p y}\right)-f\left(-x y \sqrt{p}, \frac{1}{p y}\right)}{2}\right]
\end{aligned}
$$

and similarly for σ_{1}. It may be verified that this is an action. This requires checking that the braid relation $\left(\sigma_{1} \sigma_{2}\right)^{3}=1$ is satisfied.

Let

$$
\Delta=\left(1-p x^{2}\right)\left(1-p y^{2}\right)\left(1-p^{2} x^{2} y^{2}\right)=\prod_{\alpha \in \Phi^{+}}\left(1-p^{l(\alpha)} \boldsymbol{x}^{2 \alpha}\right) .
$$

This is not the normalizing factor of the Eisenstein series. Then

$$
\frac{\Delta(\boldsymbol{x})}{\Delta(w \boldsymbol{x})}=j(w, \boldsymbol{x})=\operatorname{sign}(w) p^{d(\alpha)} \boldsymbol{x}^{2 \alpha} .
$$

Then

$$
\mathcal{G}(x, y)=\frac{\sum_{w \in W}(j \mid w) j(w, \boldsymbol{x})}{\Delta(\boldsymbol{x})}
$$

This is similar to the Weyl character formula. $\mathcal{G}(x, y)$ is a rational function with denominator

$$
\left(1-x^{2}\right)\left(1-y^{2}\right)\left(1-p x^{2} y^{2}\right)=\prod_{\alpha \in \Phi^{+}}\left(1-p^{l(\alpha)-1} \boldsymbol{x}^{2 \alpha}\right)
$$

Actually the denominator is

$$
(1-x)(1-y)\left(1-p x^{2} y^{2}\right)
$$

but it is proper to multiply both the numerator and denominator by $(1+x)(1+y)$.

3 Problems

1. Is \mathcal{G} unique? Uniqueness has been proved for $A_{r}(r \leqslant 5)$ and D_{4}.
2. What happens for infinite root systems? We don't expect analytic continuation to all \mathbb{C}^{r}, but we do expect continuation to the "Tits cone". We don't expect uniqueness without imposing more conditions.
3. One can investigate the case of an affine root system when $p=1$. Is there a product structure in the affine case? Are there generalizations of Macdonalds identities?
4. General n
5. Connection to $G \times T$
6. Function field.
