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Abstract

This is the first of a series of three lectures concerning multiple Dirichlet
series arising from sums of twisted automorphic L-functions. This lecture
begins with an historical overview, explaining how such series arise from
Rankin-Selberg constructions. Then more recent work, using Hartogs’s con-
tinuation principle in place of such constructions, is described. Applications
to the nonvanishing of L-functions and to other problems are also discussed.

I wish to thank Steven J. Miller, who took TEX notes on my conference
lecture as I was delivering it. His file was very valuable in preparing these
notes.—Sol Friedberg.
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1 Multiple Dirichlet Series and Automorphic Forms,
I (Lecture by Sol Friedberg)

This is the first of a three part mini-course, with the remaining two lectures to be
presented by Gautam Chinta. I will start with an overview and historically-based
introduction.

1.1 The Family of TwistedL-Functions

Fix ann ≥ 2 and letF be a global field containing nnth roots of unity. (Though
the reader may focus on number fields, later, in one of Gautam Chinta’s talks,
we’ll see examples in the function field case.)

A basic problem is the following: letπ be an automorphic representation of
GL(r) over the fieldF , with standardL-function

L(s, π) =
∑

c(n)||n||−s.

(In this lecture I will write the finite part of theL-function asL(s, π) for conve-
nience.) We want to study the family of twistedL-functions

L(s, π × χ) =
∑

c(n)χ(n)||n||−s

where we fixπ and vary the twist by a characterχ; χ will range over the idèle
class characters of orderexactlyn. We may also wish to modify the problem a
little bit, and suppose instead thatχ ranges over the subset of idèle class characters
of order exactlyn with χv specified at a finite number of places. (We will also use
the notationL-functionL(s, π, χ) for the twistedL-function.)

1.2 Questions

What kind of questions can we ask? The first is non-vanishing.

1.2.1 Non-vanishing

1. Non-vanishing: given a point in the critical strips0 (with 0 < Re(s0) < 1),
can one show there exist infinitely manyχ as above withL(s0, π×χ) 6= 0?
Goes back to Shimura, Rohrlich, and Waldspurger. A natural question: if
we had perfect knowledge about RH then the interesting choice iss0 = 1

2
,
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where sometimes theL-function is zero and sometimes not (for example,
elliptic curves of rank greater than zero where when you twist you get rank
0).

2. If n = 2 (quadratic twists) andπ = π̃ (self-dual) and ifε(1
2
, π×χ) = −1 for

all twistsχ under consideration, can one show there exist infinitely manyχ
such thatL′(1

2
, π×χ) 6= 0? Note that under these hypotheses, the functional

equation guarantees a zero of odd order for each twistedL-function at the
center of the critical strip.

Note: In these questions, we are not assumingπ is cuspidal –L(s, π) could be
a product. Then the first question becomes that of establishing a simultaneous
non-vanishing theorem. For example, take two independentGL(2) holomorphic
modular forms. It isn’t know if there is a twist such that both do not vanish at
the center of the critical strip (ourL-functions are normalized so thats → 1− s).
Using Multiple Dirichlet Series, one can establish simultaneous non-vanishing
for pointss0 in the critical strip but sufficiently far from the center of the strip
(Chinta-Friedberg-Hoffstein).

1.2.2 Distribution

1. Study the distribution ofL(s, π × χ) as we varyχ as above. For example,
we study ∑

cond(χ)<X

L(s, π × χ)ka(s, π, d) ∼ what? (1)

Herea(s, π, d) is some weight factor.

One approach that has been fruitful is the Multiple Dirichlet Series approach,
and becomes a nice way to introduce the whole field. If these are the objects we
want to study as we varyχ, why not construct a function of two variables that
adds them up. For example,

Z(s, w) =
∑

d

L(s, π × χd)a(s, π, d)

|d|w
. (2)

Above we haveRes, Rew > 1 andχd corresponds toF ( n
√

d)/F , and is given by
annth power residue symbol. We have put in a weight functiona(s, π, d). We will
say quite a bit more about this weight factor later.
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The goal, the approach, is to construct this function. We understand its behav-
ior in s as it is a sum ofGL(r) L-functions; we want to obtain analytic information
in the new variablew. Thes andw information gets smeared together (more than
you might think). You might think we just sum over extensions (asd corresponds
to certain cyclical extensions), but will see this isn’t the whole story.

Similarly we could look at a sum over more variables:∑ L(s1, π1, χd)L(s2, π2, χd) · · ·
|d|w

. (3)

1.3 A First Example

Why is this series a reasonable thing to construct? Goes back to Siegel and half
integral weight Eisenstein series. Letj(γ, z) be the theta multiplier: it is (in
standard notation)ε−1

d

(
c
d

)
(cz + d)1/2. Note that

(
c
d

)
is a (quadratic) Kronecker

symbol. We can build

Ẽ(z, s) =
∑

γ∈Γ∞\Γ0(4)

j(γ, z)−1Im(γz)s. (4)

Maass showed (1937) that themth Fourier coefficient ofẼ(z, s) is essentially
equal toL(2s, χm) whereχm is a quadratic character given by a Legendre symbol.

What doesessentially equalmean? It means it isn’t exactly the right formula,
but correct up to2-factors (something happens atp = 2), archimedean factors
(suppressing from the notation) and most importantly correction factors that take
into account thatm might not be square-free. This factor will be a product of
polynomials in||v||−s at the placesv such thatordv(m) ≥ 2.

Siegel took Maass’ observation and said∫ ∞

0

(
Ẽ(y, s)− const term

)
ywd×y ≈

∑
m

L(2s, χm)

mw
. (5)

Goldfeld-Hoffstein in 1984 used this to get asymptotics for∑
0<m<X

L(2s, χm). (6)

Similarly can do form negative. Later Goldfeld-Hoffstein-Patterson used these
Eisenstein series over an imaginary quadratic field together with the Asai integral
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to get similar results forL-functions attached to CM elliptic curves, and then
Hoffstein and Rosen used the method over the rational function field (Fq(T )).

Goldfeld and Hoffstein anticipated the difficulty of settling a similar question
for automorphic forms in the higher rank case. They write:

At present, however, we cannot obtain mean value theorems for quadratic
twists of an arbitraryL-function associated to an automorphic form...
These appear to be difficult problems and their solution may ulti-
mately involve the analytic number theory ofGL(n).

1.4 Other Examples of MDS’s Arising From Rankin-Selberg
Integrals

There are other examples of Rankin-Selberg integrals that give rise to multiple
Dirichlet series (a more modern point of view to look at Siegel’s work this way).
A number of interesting examples can be understood as follows: in the previous
Section, we saw that the Mellin transform, which gives a standardL-function if
applied to something of integral weight, gives a Multiple Dirichlet Series of the
desired type when applied to an Eisenstein series of half-integral weight. Note
that the integral is no longer an Euler product in that case. In a similar way we can
look at other integrals that give Euler products (Rankin-Selberg type integrals)
when applied to an automorphic form. Replacing the automorphic form by a
metaplectic Eisenstein series (like the half-integral weight Eisenstein seriesẼ),
one can hope that the resulting object is an interesting multiple Dirichlet series.

1.4.1 Examples

1. Letπ be aGL(2) automorphic form. Then Bump-Friedberg-Hoffstein con-
struct a half-integral weight Eisenstein series onGSp4. Take an integral
(represents a spinL-function, called Novodvorsky integral, when applied
in the non-metaplectic case) and get a similar type construction for a gen-
eralGL(2) automorphic form, that is, a sum of quadratic twists of aGL(2)
standardL-function, i.e. a functionZ(s, w) as above.

(There is also another construction of Friedberg-Hoffstein that obtains such
a sum of twistedGL(2) without usingGSp4.)

2. Letπ be aGL(3) automorphic form. Work of Bump-Friedberg-Hoffstein-
Ginzburg (never published) obtains the double Dirichlet series as an integral
of an Eisenstein series on the double cover ofGSp6.
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3. Suzuki, Banks-Bump-Lieman, generalizing earlier work of Bump-Hoffstein:
there is a metaplectic Eisenstein series on then-fold cover ofGL(n) (in-
duced from the theta function on then-fold cover ofGL(n− 1)) whose
Whittaker coefficients aren-th order twists of a givenGL(1) L-series. One
can then take an integral and get a sum of twists ofGL(1):

∑
d

L(s, ξχ
(n)
d )

|d|w
, (7)

whereξ is onGL(1) and is fixed. One is then able to control such sums, at
least modulo technical difficulties, discussed below. (This series has been
studied by Friedberg-Hoffstein-Lieman, using a different method to be ex-
plained below.)

4. Similarly, working withn-th order twists,∑ |L(s, χm)|2

mw
. (8)

can be obtained as a Rankin-Selberg integral of metaplectic Eisenstein se-
ries. (This series has been studied by A. Diaconu, again using the new
method.)

The point is these multiple series come out in natural ways from constructions
like this.

1.4.2 Obstructions

Why isn’t the rest of the talk just doing these integrals? These integrals involve
some difficult things:

1. truncation (can be handled, general theory of Arthur, though complicated to
do in practice; needed as these Eisenstein integrals are not convergent);

2. bad primes (bad primes are difficult to handle in Rankin-Selberg type in-
tegrals, unlike Langlands-Shahidi method, and this is particularly true in
the case of integrals involving metaplectic automorphic forms, where the
primes dividingn present additional complications);

3. integrals of archimedean Whittaker functions (the general theory here is not
as well developed).
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Since many properties ofL-functions are already known, one might hope that
one can write down and study multiple Dirichlet serieswithout Rankin-Selberg
integrals. Remarkably, this is possible in many cases, and it is one main goal of
this conference to explain how. However, we note that such integrals do play a
role in the study of higher twists, as we shall explain at the end of this lecture.

1.5 Conceptual Overview

Question: why should these be well-behaved inw? There are lots of cases
where we think they should be better behaved then we can prove.

1.5.1 Heuristic: BFH 1996

Let F = Q, n = 2 (quadratic twists only!). We start with anL-function

L(s, π) =
∑

n

c(n)n−s. (9)

The family of objects of interest isL(s, π × χm):

L(s, π, χm) =
∑

n

c(n)
(m

n

)
n−s, (10)

though this is not quite right (problem ifm, n not both square-free). We set

Z(s, w) =
∑
m

L(s, π, χm)

mw
. (11)

We have, using the definition of theL-function, that

Z(s, w) =
∑
m

∑
n

c(n)
(m

n

)
n−sm−w. (12)

We reverse the order of summation, to obtain

Z(s, w) ≈
∑

n

c(n)L(w, χn)n−s. (13)

Note that we started with a sum ofL(s, π, χm), that is, a sum ofGL(r) L-
functions, and we obtain a sum ofL(w, χn), that is, a sum ofGL(1) L-functions!!
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For the moment, this is only a heuristic, as it assumes
(

m
n

)
=

(
n
m

)
and all numbers

square-free and prime to the conductor.
We need to keep track of how functional equations work while we twist. We

have a functional equation sending

L(s, π × χm) → |m|r(
1
2
−s)L(1− s, π̃ × χm); (14)

this assumesm is square-free. ThusZ(s, w) satisfies two types of functional
equations:

1. First we have the functional equations froms → 1 − s, but because of the
power ofm we havew → w + r(s − 1

2
). Thus there is a link between the

two:
(s, w) → (1− s, w + r(s− 1/2)). (15)

2. The second, coming fromw → 1− w in the equality (13), is

(s, w) → (s + w − 1/2, 1− w). (16)

The observation is that these functional equations generate a finite group of
functional equations forGL(1), GL(2) andGL(3), but an infinite group forGL(4)
(affine Weyl group) and higher. This suggests that a goodZ(s, w) (heregooddeals
with all numbers including those that are not square-free) should continue toC2

for GL(1), GL(2) andGL(3) but to a proper subregion forGL(4) and higher.
What about poles? There should be a pole atw = 1 (sinceζ(w) arises in

equation (13) whenn is 1). If this does have a pole atw = 1, then by (11) this
implies the non-vanishing ofL(s0, π×χm) for infinitely manyχm! Similarly if all
epsilon factors are−1 then one gets a non-vanishing theorem forL′(1/2, π×χm)
from the pole of ∂

∂s
Z(s, w) at w = 1. (In fact there are several polar divisors

meeting at(1/2, 1) and one must check that they do not cancel.) Then standard
methods involving contour integrals give mean value theorems.

Consider the case ofGL(4) and higher. There the group of functional equa-
tions is infinite. If we take this infinite group and move this linew = 1 around,
the poles accumulate in what looks like a barrier to continuation. See BFH’s 1996
article in the Bulletin AMS. So we shouldn’t expect continuation to all ofC2.
However, if we could get continuation up to the conjectured barrier, that would be
very significant; we would get a tremendous amount of information (Lindelöf in
twisted aspect, simultaneous non-vanishing at the center of the critical strip). At
the moment this problem seems difficult.
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The situation forGL(1), GL(2) andGL(3) is different. There we can make
the heuristic rigorous and thereby prove continuation toC2 without using Rankin-
Selberg integrals. Applications (non-vanishing, mean-value theorems) then fol-
low. The key point is to take advantage of the finite group of functional equations,
and Hartogs’s Continuation Principle.

1.6 Hartogs’s Continuation Principle

Definition 1.1 (Tube Domain). An open setΩ ⊂ Cm is called atube domainif
there is an open setω ∈ Rm such thatΩ = {s ∈ Cm : Re(s) ∈ w}. We write
Ω = T (ω) to denote this relation.

Definition 1.2 (Convex Hull). If R ⊂ Rm or Cm andm ≥ 2, let R̂ be theconvex
hull of R.

It is easy to see that ifΩ = T (ω) thenΩ̂ = T (ω̂).
With this as background, the relevant result is

Theorem 1.3. If Ω is a connected tube domain, then any holomorphic function in
Ω can be extended to a holomorphic function onΩ̂.

When we continue complex functions, we get to take convex hullsfor free!

1.7 Continuation of Z(s, w) to C2 for GL(r) if r ≤ 3

We can now sketch the continuation ofZ(s, w). First we introduce some weight
functions so that the interchange of summations is actually valid. What we mean
by this is that interchange of summation implicitly assumed everything was square-
free, which is not the case. In the work on Rankin-Selberg integral representations
for Z(s, w), these weight factors arise from Fourier coefficients; remarkably, they
are exactly the ones needed to make the interchange of summation work.

Thus we look at∑
L(s, π × χm)a(s, π, m)ξ(m)m−w, (17)

whereξ is onGL(1)), and we write this as a sum of series∑
L(w, ξχn)b(w, ξ, π, n)n−s. (18)

This comes (for the correct choice of weight factorsa(·), b(·)) from interchanging
sums and using the Law of Quadratic Reciprocity.
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The sum ofL-functions ins is also a sum ofL-functions inw. We can use
the convexity bounds on each of theseL-functions to extend the regions of con-
vergence, and, on these enlarged regions, to prove the corresponding functional
equations. Thus the heuristic arguments can be made rigorous, though we need to
study how theε-factors change under twisting. As Fisher and Friedberg show, by
a congruence sieving one can arrange it so that the sign of theε-factor does not
vary. So the interchange and functional equation gives another multiplie Dirichlet
series that is basically of the same form. (As we will explain later, for higher order
twists something more complicated happens!)

We iterate this procedure until we get a region whose convex hull isC2, and
then use Hartogs. There are finitely many poles, but we can remove these by
multiplying by a finite product of linear terms.

1.7.1 Example: Quadratic Twists ofGL(3)

Everything hasn’t been done in the full generality it could be, but this will show
many key features. Recall ifπ′ is a cuspidal automorphic representation ofGL(2)
then there is the Gelbart-Jacquet liftAd2(π′) which is an automorphic represen-
tation ofGL(3). (This was referred to in other conference talks as the symmetric
square lift.)

Theorem 1.4(Bump-Friedberg-Hoffstein: Shalika Volume). Letπ′ be on GL2(AQ).
Let M be a finite set of places including2, ∞, primes dividingcond(π′). Then
there exist infinitely many quadratic charactersχd such thatd falls in a given
quadratic residue class modv for all v ∈ M (mod8 if v = 2) and such that
L(1

2
, Ad2(π′)× χd) 6= 0.

Remarks

1. Q is not essential. Moreover, with a little more work one could specifyχv

for all placesv ∈ M . And one should be able to do non-lifts with extra
work.

2. If π is onGL(3) this method gives a new proof that the symmetric square
L(s, π, sym2) is holomorphic (more precisely, one sees that the product
ζ(3s − 1)L(s, π, sym2) is holomorphic excpet ats = 1, 2/3). We shall
see why the symmetric square arises presently.

Sketch of the proof.
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1. In the paper it is shown that not only do weight factors exist, but they are
unique (complicated set of recursion relations). These weight factors allow
us to interchange summations.

2. Establish the functional equations

α(s, w) = (1− s, w + 3s− 3/2)

β(s, w) = (s + w − 1/2, 1− w). (19)

(Note thatα andβ generate a dihedral group of order12.)

3. Useα, β, α and get a continuation to a region whose convex hull isC2. In
fact, one shows that

w(w−1)(3s+w−5/2)(3s+2w−3)(3s = w−3/2)×bad prime factor×Z(s, w)

has analytic continuation toC2.

Theorem 1.5. Supposeπ is automorphic onGL3(AQ) with trivial central char-
acter. Then forσ = ±1 we have∑

d>0

LM(
1

2
, π, χσd)a(

1

2
, π, σd)e−d/X = CX log X + C ′X + C ′′ + O(X−3/4),

(20)
whereC is a non-zero multiple of

lim
s→1

(s− 1/2)LM(2s, π, sym2); (21)

The termC arises by contour integration as the residue of the pole atw =
1. Note that by equation (13), this residue arises from the summands indexed
by n a perfect square, so it is approximately

∑
c(n2)n−2s, which is related to

L(2s, π, sym2).
To complete the proof of this Theorem, suppose thatπ = Ad2(π′). Then

L(s, π, sym2) = ζ(s)L(s, sym4(π′), χ2
π′). (22)

Hereχπ′ denotes the central character ofπ′. Using this equality, one can see that
L(s, π, sym2) has a simple pole ats = 1. The proof in our paper uses the Kim-
Shahidi result on the automorphicity ofsym4(π′) as well as the Jacquet-Shalika
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nonvanishing theorem to conclude that the second term does not vanish ats = 1,
and hence thatC 6= 0. Prof. Shahidi has kindly informed me that a simpler proof
thatL(1, sym4(π′), χ2

π′) 6= 0 is available in an older paper of his.
If we took something onGL(3) that isn’t a lift thenC = 0; thus this provides

an analytic way to tell if something is a lift or not from the asymptotic behavior
of its quadratically-twistedL-functions.

1.8 Summary of the Quadratic Twist Case

For GL(1), GL(2) andGL(3): quadratic twists continue toC2 (resp.C3, C4 for
the multi-variable sums corresponding toGL(1) × GL(1) andGL(1) × GL(2),
GL(1)×GL(1)×GL(1)). The weight factors needed to make the heuristic rigor-
ous (i.e. to show that a sum of Euler products ins is also a sum of Euler products
in w) are unique.

Though the heuristics are easiest to explain overQ, we emphasize that the
method works over a general global field (Fisher-Friedberg). For example, over a
function field we get a rational function inq−s andq−w with a specified denomina-
tor; this comes from the functional equations. For example, to any algebraic curve
over a finite field and a conductor one gets a finite dimensional vector space of ra-
tional functions of two complex variables; see Fisher-Friedberg 2004 for details
and examples.

1.9 Higher Twists

The most recent work is here, where some new phenomena occur. The heuristic
we wrote earlier goes into the trash bin. We cannot use it: the functional equations
involve Gauss sums – we cannot ignore them. We can use higher reciprocity, but
we are naturally in the world of Gauss sums. The basic idea of adopting the
Hartogs’s method is that we need to consider several different families of multiple
Dirichlet series that are linked by functional equations. The weight functions often
involve Gauss sums.

The basic fact is that onGL(r) the twist of anL-function by ann-th order
characterχm has an epsilon factor involvingG(χm)r whereG is a normalized
Gauss sum. Moreover, when one carries out the operations of “take the functional
equation" and “interchange summation", these two operations are not commuting
involutions (even ignoring scattering matrix, bad primes, etc.) in contrast to the
quadratic-twist case. Instead, these operations give rise to the linked families of
MDS of the previous paragraph.
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1.9.1 n-Fold Twists of GL(1)

This is work of Friedberg-Hoffstein-Liemann 2004. We end up with two different
families, then-th order twists of the originalL-function and a multiple Dirichlet
series built up from infinite sums ofn-th order Gauss sums. These latter sums arise
as the Fourier coefficients of Eisenstein series on then-fold cover ofGL(2), and
they can thus be controlled by using the theory of metaplectic Eisenstein series.
Note that automorphic methods, which could be for the most part avoided in the
quadratic twist case, seem unavoidable in many problems involvingn-th order
twists forn > 2.

In the case at hand, the continuation of the MDS toC2 is obtained by using
the functional equation of the Fourier coefficients of Eisenstein series on then-
fold cover ofGL(2), which is inherited from the Eisenstein series themselves.
Note that earlier we mentioned such a sum could be approached by an integral
of an Eisenstein series on then-fold cover ofGL(n). Thus the Hartogs-based
method allows one to replace the use of Eisenstein series on then-fold cover of
GL(n) with the use of Eisenstein series on then-fold cover ofGL(2), which are
considerably simpler. We shall see a similar reduction toGL(2) in the work of
Brubaker, Bump, and Friedberg on Weyl group multiple Dirichlet series that is the
subject of the other minicourse.

1.9.2 Cubic Twists ofGL(2)

This is work of Brubaker-Friedberg-Hoffstein in 2005.
Let K = Q(

√
−3). For d ∈ OK ,d ≡ 1 mod 3 let ‖d‖ denote the absolute

norm ofd. Let χ
(n)
d (a) =

(
d
a

)
n

denote the Hecke character associated by class-

field theory to the extensionK( n
√

d)/K, with n = 2, 3, 6. Let P (s; d) denote a
certain Dirichlet polynomialdefined in our paper.P (s; d) depends onπ but we
suppressthis from the notation.P (s; d) is a complicated object, but has the prop-
ertiesthat if one factorsd = d1d

2
2d

3
3 with eachdi ≡ 1 mod 3, d1 square-free,d1d

2
2

cube-free, thenP (s; d) = 1 if d3 = 1 and also for fixedd1, d2, the sum∑
d3≡1 mod 3

P (s; d1d
2
2d

3
3)

‖d3‖3w

converges absolutely forRew > 1/2 andRes ≥ 1/2.
Then we prove

Theorem 1.6.Letπ = ⊗πv be an automorphic representation ofGL(2, AK) such
that L(s, π, χ) isentire for all Hecke charactersχ such thatχ3 = 1. Let S be a
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finite set of primes including the archimedean prime and the primes dividing2, 3
and thelevel ofπ.Then, for any sufficiently large positive integerk, the asymptotic
formula ∑

‖d‖<X

LS(s, π, χ
(3)

d1d2
2
)P (s; d)

(
1− ‖d‖

X

)k

∼ 1

k + 1
c(3)(s, π)X

holds for anys with Res ≥ 1/2. The constantc(3)(s, π) isnon-zero, and is given
by

c(3)(s, π) = cSLS(3s, π,∨3)ζS(6s)ζS(6s+1)−1
∏
p/∈S

(1−γ3
p‖p‖−3s−1)(1−δ3

p‖p‖−3s−1),

whereζS denotes the Dedekind zeta function ofK with the Euler factors at the
places inS removed,γp, δp are the Satake parameters of the representationπp,
andcS is a non-zero constant.

An immediate consequence of this, the convergence of the basic sum, and the
usualconvexity bound forL(1/2, π, χ

(3)

d1d2
2
) is

Corollary 1.7. Letπ be as in the Main Theorem. Then there exist infinitely many
cube-freed such thatL(1/2, π, χ

(3)
d ) 6= 0. More precisely, letN(X) denote the

number of suchd with ‖d‖ ≤ X. Then for anyε > 0, N(X) � X1/2−ε.

Sketch of the Proof:Define the multiple Dirichlet series

Z1(s, w) =
∑

d≡1 mod 3,(d,S)=1

LS(s, π, χ
(3)

d1d2
2
)P (s; d)

‖d‖w
.

(Here the sum is over alld ∈ OK with d ≡ 1 mod 3 andordv(d) = 0 for all finite
v ∈ S.) This series convergesabsolutely forRe(s), Re(w) > 1. We establish the
continuation of this function to a larger region. Let

Z∗(s, w) = Z1(s, w) ζS(6s + 6w − 5) ζS(12s + 6w − 8)×∏
p/∈S

(1− γ3
p‖p‖2−3s−3w)−1(1− δ3

p‖p‖2−3s−3w)−1,

whereγp, δp are the Satake parameters of the representationπp.We show thatZ∗(s, w)
has a meromorphic continuation to the half planeRe(s+w) > 1/2 and is analytic
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in this region except for polarlines atw = 1, w = 0, w = 5/3−2s, w = 3/2−2s,
w = 4/3−2s, w = 7/6−s, w = 1−s, w = 5/6−s. We alsoshow that theresidue
atw = 1 satisfies

Resw=1Z
∗(s, w) = cS LS(3s, π, sym3) ζS(6s) ζS(12s− 2)

and is an analytic function ofs for Res > −1/2, except possibly at the points
s = 1/3, 1/4, 1/6, 0, which require a more detailed analysis. The properties of
thesymmetric cubeL-series have been completely described by Kim and Shahidi.

The First Two Series and the First Functional Equation

This step is based on the exact functional equation for the cubically-twisted
L-series.Writed = d1d

2
2d

3
3as above. Ignoring bad primes such asthose dividing

the level ofπ and the infinite place,L(s, π, χ
(3)

d1d2
2
) has a functional equation of the

form
L(s, π, χ

(3)

d1d2
2
) → επG(χ

(3)

d1d2
2
)2L(1− s, π̃, χ̄

(3)

d1d2
2
)‖d1d2‖1−2s.

Hereπ̃ denotes the contragredient ofπ,επ (the central value of the usual epsilon-
factor forπ) has absolute value 1 andG(χ

(3)
d ) is the usual Gauss sum associated

to χ
(3)
d ,normalized to have absolute value 1. The crucial factor‖d1d2‖1−2s arises

as part of the epsilon-factor of the twistedL-function sinceπ⊗ χ
(3)
d is ramified at

the primes dividingd1d2. This functional equationgives rise to a functional equa-
tion for the double Dirichlet seriesZ1,reflectingZ1(s, w) into a second double
Dirichletseries

Z6(s, w) =
∑ LS(s, π̃, χ̄

(3)

d1d2
2
) G(χ

(3)

d1d2
2
)2 P (1− s; d1d

2
2d

3
3) ‖d2d

3
3‖1−2s

‖d1d2
2d

3
3‖w

.

More precisely, the functional equation above induces a transformationrelating
Z1(s, w) to Z6(1− s, w + 2s− 1).(The exact transformation is somewhat compli-
cated due to bad primes.)

The Second Functional EquationNext we study the seriesZ6(s, w) itself.The

appearance ofG(χ
(3)

d1d2
2
)2, the square of a cubic Gauss sum,introduces, via the

Hasse-Davenport relation, a conjugate6th order Gausssum. However, the Fourier
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coefficients of Eisenstein series on the6-fold cover ofGL(2) may be written as
sums of Gauss sums ∑

d≡1 mod 3,(d,S)=1

G(6)(m, d)

‖d‖w
,

and accordingly series of this type possess a functional equation inw. We show,
using this functional equation, thatZ6(s, w) possesses a functional equation as(s, w) →
(s + 2w − 1, 1− w), transforming into itself.

The Third Series and the Third Functional Equation

We show that the order of summation inZ1(s, w)written as a doubly-indexed
Dirichlet series can beinterchanged, leading to an expression of the form

Z1(s, w) =
∑ LS(w, χ

(3)

m1m2
2
) Q(w; m1m

2
2m

3
3)

‖m1m2
2m

3
3‖s

,

whereQ is once again a specific Dirichlet polynomial depending onπand theL-
series on the right are HeckeL-series.Applying the functional equation inw for
the HeckeL-series weare led to introduce the third double Dirichlet series

Z3(s, w) =
∑ LS(w, χ̄

(3)

m1m2
2
) G(χ

(3)

m1m2
2
) Q(1− w; m1m

2
2m

3
3) ‖m2m

3
3‖1/2−w

‖m1m2
2m

3
3‖s

.

The functional equation for the HeckeL-series induces a transformationrelating
Z1(s, w) to Z3(s + w − 1/2, 1− w).

ContinuingZ3 Once again, the seriesZ3may be studied using metaplectic

Eisenstein series. Indeed, we showthat this series is a sum of cubictwists of
Rankin-Selberg convolutions ofπ with the theta function on the3-fold cover of
GL(2). (Recall that this function is the residue of anEisenstein series on the 3-
fold cover ofGL(2); see Patterson’s Crelle paper.) From the meromorphic con-
tinuation of the twisted Rankin-Selberg convolutionswe deduce a corresponding
continuation forZ3.

Applying Hartogs’s TheoremWe now apply Hartogs’s theorem to obtain the

continuation of these 3 functions.The functionsZ1(s, w) andZ6(s, w) have over-
lapping regions of absoluteconvergence. If the functional equation interchanging
Z1(s, w) andZ6(s, w) is used several times, the convexity principle for several-
complex variables applied to the union of translates of these regions impliesan
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analytic continuation ofZ1(s, w) andZ6(s, w) to the half planeRe(w+s) > 3/2.
The relations withZ3(s, w) then imply an analyticcontinuation to the half plane
Re(w + s) > 1/2, which is what we require forour applications.

Remarks:

1. A furtherfunctional equation transformingZ3(s, w) into itself as(s, w) →
(1 − s, w + 4s − 2), can be proved. This then allows ananalytic contin-
uation of all three double Dirichlet series toC2. This alsogives rise to a
group of functional equations which is non-abelianand of order 384. These
computations have not been written down in detail.

2. As mentioned above, in the quadratic twist case the double Dirichletseries
for r = 1, 2, 3 can be identified, up to afinite number of places, with certain
integral transforms ofmetaplectic Eisenstein series. In the case at hand,
althoughthere is no known way to construct the double Dirichlet series as
asimilar integral transform (or as a Rankin-Selberg convolution),there is a
natural candidate attachedto the cubic cover ofG2, and it is possible that our
complicatedformulas reflect in a certain sense combinatorial issues arising
fromthat group.

3. One may also obtain a mean value result for the product of two HeckeL-
functionsin different variables when they aresimultaneously twisted by cu-
bic characters. This has been accomplishedby BEN BRUBAKER in his
Brown University doctoral dissertation.

1.10 Concluding Remarks

The Multiple Dirichlet Series that continue to a product of complex planes are
ready-made for establishing distribution results via contour integration. We em-
phasize that the MDS method applies over a general global field containing suf-
ficiently many roots of unity; thus such mean value theorems may be established
without being constrained by the proliferation of Gamma factors in higher degree
extensions. The most natural theorems to prove involve sums ofL-functions times
weighting factorsa(s, π, d).

There are many additional recent applications of Multiple Dirichlet Series to
automorphic forms and analytic number theory. These will be discussed by Chinta
is his lectures. For completeness, we note some of them now.
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1. A proof that one twist of aGL(2) L-function of ordern (a prime) has
nonzero central value implies that infinitely many do (Brubaker, Bukur,
Chinta, Frechette, Hoffstein).

2. Generalization of the Luo-Ramakrishnan theorem (which characterizes a
GL(2) modular form by the central values of its quadratically-twistedL-
functions) to all number fields, due to my doctoral student Li Ji.

3. A generalization of the Luo-Ramakrishan theorem toGL(3) over Q by
Chinta and Diaconu.

4. The use of unweighted multiple Dirichlet series to prove simultaneous non-
vanishing theorems inside the critical strip and also a distribution theorem
ats = 1, by Chinta, Friedberg, and Hoffstein. (Note: Unfortunately, Chinta
did not have time to discuss this in his talk. But I am hoping that he will
include it in his lecture notes.)

5. Chinta’s mean value theorem for biquadratic extensions ofQ.

6. Work of Diaconu and Tian applying MDS to study twisted Fermat curves
over totally real fields.

7. Work of Diaconu, Goldfeld, and Hoffstein relating MDS to predictions
coming from random matrix theory.

An additional set of lectures by Bump and Brubaker describes the very new theory
of MDS’s attached to a reduced root system, which we have dubbed Weyl Group
Multiple Dirichlet Series. As this list shows, the theory of MDS seems quite rich.
In the rest of this conference these matters will be developed further.
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