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Abstract

This is the first of a series of three lectures concerning multiple Dirichlet
series arising from sums of twisted automorphic L-functions. This lecture
begins with an historical overview, explaining how such series arise from
Rankin-Selberg constructions. Then more recent work, using Hartogs’s con-
tinuation principle in place of such constructions, is described. Applications
to the nonvanishing of L-functions and to other problems are also discussed.

I wish to thank Steven J. Miller, who took gX notes on my conference
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notes.—Sol Friedberg.



1 Multiple Dirichlet Series and Automorphic Forms,
| (Lecture by Sol Friedberg)

This is the first of a three part mini-course, with the remaining two lectures to be
presented by Gautam Chinta. | will start with an overview and historically-based
introduction.

1.1 The Family of Twisted L-Functions

Fix ann > 2 and letF be a global field containing n™ roots of unity. (Though
the reader may focus on number fields, later, in one of Gautam Chinta’s talks,
we’ll see examples in the function field case.)

A basic problem is the following: let be an automorphic representation of
GL(r) over the fieldF’, with standard.-function

L(s,m) =Y _c(n)lnl|™

(In this lecture | will write the finite part of thé.-function asL(s, 7) for conve-
nience.) We want to study the family of twistédfunctions

L(s,m X x) Zc n)||n||~*

where we fixm and vary the twist by a charactgr x will range over the idele
class characters of ordekactlyn. We may also wish to modify the problem a
little bit, and suppose instead thatanges over the subset of idéle class characters
of order exactlyh with y,, specified at a finite number of places. (We will also use
the notationZ-function L(s, 7, ) for the twistedL-function.)

1.2 Questions

What kind of questions can we ask? The first is non-vanishing.

1.2.1 Non-vanishing

1. Non-vanishing: given a point in the critical step (with 0 < SRe(so) < 1),
can one show there exist infinitely magyas above with.(sy, 7 x x) # 0?
Goes back to Shimura, Rohrlich, and Waldspurger. A natural question: if
we had perfect knowledge about RH then the interesting choiggds L,
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where sometimes thé-function is zero and sometimes not (for example,
elliptic curves of rank greater than zero where when you twist you get rank
0).

2. If n = 2 (quadratic twists) and = 7 (self-dual) and ife(%, Txx) = —1for
all twists y under consideration, can one show there exist infinitely many
suchthatl/(3, m x x) # 0? Note that under these hypotheses, the functional
equation guarantees a zero of odd order for each twistkahction at the
center of the critical strip.

Note: In these questions, we are not assumirig cuspidal —L(s, ) could be

a product. Then the first question becomes that of establishing a simultaneous
non-vanishing theorem. For example, take two indepen@éri2) holomorphic
modular forms. It isn’t know if there is a twist such that both do not vanish at
the center of the critical strip (our-functions are normalized so that— 1 — s).

Using Multiple Dirichlet Series, one can establish simultaneous non-vanishing
for points s in the critical strip but sufficiently far from the center of the strip
(Chinta-Friedberg-Hoffstein).

1.2.2 Distribution

1. Study the distribution of.(s, 7 x x) as we varyy as above. For example,
we study
Z L(s,m x x)*a(s,7,d) ~ what? (1)

cond(x)<X

Herea(s, 7, d) is some weight factor.

One approach that has been fruitful is the Multiple Dirichlet Series approach,
and becomes a nice way to introduce the whole field. If these are the objects we
want to study as we vary, why not construct a function of two variables that
adds them up. For example,

Z(s.w) = Z L(s,m % ’);Tia(s,w, d)‘ @
d

Above we havéRes, Rew > 1 andy, corresponds t@'(¥/d)/F, and is given by
ann™ power residue symbol. We have put in a weight functin =, d). We will
say quite a bit more about this weight factor later.
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The goal, the approach, is to construct this function. We understand its behav-
iorin s asitis asum oGL(r) L-functions; we want to obtain analytic information
in the new variablev. Thes andw information gets smeared together (more than
you might think). You might think we just sum over extensionsdasrresponds
to certain cyclical extensions), but will see this isn’t the whole story.

Similarly we could look at a sum over more variables:

ZL(8177T17Xd)L(8277r27Xd)”' (3)
|d[” '

1.3 A First Example

Why is this series a reasonable thing to construct? Goes back to Siegel and half
integral weight Eisenstein series. Lgty, z) be the theta multiplier: it is (in
standard notationd; ' (<) (cz + d)'/2. Note that(%) is a (quadratic) Kronecker
symbol. We can build

E(z;s) = Y jly.2) ' Im(yz)". (4)

€T \T'o(4)

Maass showed (1937) that the" Fourier coefficient ofﬁ(z, s) is essentially
equal toL(2s, x.,) wherey,, is a quadratic character given by a Legendre symbol.

What doesessentially equainean? It means it isn’t exactly the right formula,
but correct up t@®-factors (something happensat= 2), archimedean factors
(suppressing from the notation) and most importantly correction factors that take
into account thain might not be square-free. This factor will be a product of
polynomials in||v||~* at the places such thabrd,(m) > 2.

Siegel took Maass’ observation and said

*©r~ L(2
/0 <E(y, s) — const term) yd*y =~ ; % (5)
Goldfeld-Hoffstein in 1984 used this to get asymptotics for
> L2, xm). (6)
0<m<X

Similarly can do form negative. Later Goldfeld-Hoffstein-Patterson used these
Eisenstein series over an imaginary quadratic field together with the Asai integral
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to get similar results for -functions attached to CM elliptic curves, and then
Hoffstein and Rosen used the method over the rational function fig(d’{).

Goldfeld and Hoffstein anticipated the difficulty of settling a similar question
for automorphic forms in the higher rank case. They write:

At present, however, we cannot obtain mean value theorems for quadratic
twists of an arbitrary_-function associated to an automorphic form...
These appear to be difficult problems and their solution may ulti-
mately involve the analytic number theory@1.(n).

1.4 Other Examples of MDS’s Arising From Rankin-Selberg
Integrals

There are other examples of Rankin-Selberg integrals that give rise to multiple
Dirichlet series (a more modern point of view to look at Siegel’'s work this way).
A number of interesting examples can be understood as follows: in the previous
Section, we saw that the Mellin transform, which gives a standafanhction if
applied to something of integral weight, gives a Multiple Dirichlet Series of the
desired type when applied to an Eisenstein series of half-integral weight. Note
that the integral is no longer an Euler product in that case. In a similar way we can
look at other integrals that give Euler products (Rankin-Selberg type integrals)
when applied to an automorphic form. Replacing the automorphic form by a
metaplectic Eisenstein series (like the half-integral weight Eisenstein d€)jes
one can hope that the resulting object is an interesting multiple Dirichlet series.

1.4.1 Examples

1. Letw be aGL(2) automorphic form. Then Bump-Friedberg-Hoffstein con-
struct a half-integral weight Eisenstein series@#p,. Take an integral
(represents a spih-function, called Novodvorsky integral, when applied
in the non-metaplectic case) and get a similar type construction for a gen-
eral GL(2) automorphic form, that is, a sum of quadratic twists ¢fla(2)
standard_.-function, i.e. a functior? (s, w) as above.

(There is also another construction of Friedberg-Hoffstein that obtains such
a sum of twistedzL(2) without usingGSp,.)

2. Letw be aGL(3) automorphic form. Work of Bump-Friedberg-Hoffstein-
Ginzburg (never published) obtains the double Dirichlet series as an integral
of an Eisenstein series on the double covetBf.
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3. Suzuki, Banks-Bump-Lieman, generalizing earlier work of Bump-Hoffstein:
there is a metaplectic Eisenstein series onitHeld cover of GL(n) (in-
duced from the theta function on thefold cover of GL(n — 1)) whose
Whittaker coefficients are-th order twists of a give:L(1) L-series. One
can then take an integral and get a sum of twistsDbf1):

(n)
Z L<s|7d§|z}<d ) : (7)
d

where¢ is onGL(1) and is fixed. One is then able to control such sums, at
least modulo technical difficulties, discussed below. (This series has been
studied by Friedberg-Hoffstein-Lieman, using a different method to be ex-
plained below.)

4. Similarly, working withn-th order twists,

can be obtained as a Rankin-Selberg integral of metaplectic Eisenstein se-
ries. (This series has been studied by A. Diaconu, again using the new
method.)

The point is these multiple series come out in natural ways from constructions
like this.

1.4.2 Obstructions

Why isn'’t the rest of the talk just doing these integrals? These integrals involve
some difficult things:

1. truncation (can be handled, general theory of Arthur, though complicated to
do in practice; needed as these Eisenstein integrals are not convergent);

2. bad primes (bad primes are difficult to handle in Rankin-Selberg type in-
tegrals, unlike Langlands-Shahidi method, and this is particularly true in
the case of integrals involving metaplectic automorphic forms, where the
primes dividingn present additional complications);

3. integrals of archimedean Whittaker functions (the general theory here is not
as well developed).



Since many properties di-functions are already known, one might hope that
one can write down and study multiple Dirichlet seneishout Rankin-Selberg
integrals. Remarkably, this is possible in many cases, and it is one main goal of
this conference to explain how. However, we note that such integrals do play a
role in the study of higher twists, as we shall explain at the end of this lecture.

1.5 Conceptual Overview

Question: why should these be well-behaved im? There are lots of cases
where we think they should be better behaved then we can prove.

1.5.1 Heuristic: BFH 1996
Let FF = Q, n = 2 (quadratic twists only!). We start with aixfunction

L(s,m) = Y c(nyn™". (9)
The family of objects of interest i5(s, 7 X x.):
Lis,mxm) = 3 e(n) (%) n"?, (10)
though this is not quite right (problemiifi, n not both square-free). We set
Z(s,w) = Y. W (11)

m

We have, using the definition of thiefunction, that
m
Z(s,w) = Z Zc(n) (g) n=*m=". (12)

We reverse the order of summation, to obtain

Z(s,w) ~ Zc(n)L(w,Xn)n_s. (13)

n

Note that we started with a sum df(s, 7, x,,), that is, a sum ofGL(r) L-
functions, and we obtain a sum bfw, x,), thatis, a sum o&zL(1) L-functions!!



For the moment, this is only a heuristic, as it assuffeés = (Z) and all numbers
square-free and prime to the conductor.

We need to keep track of how functional equations work while we twist. We
have a functional equation sending

L(s,m X Xm) — |[m"G™IL(1 = 5,7 X xpm); (14)

this assumesn is square-free. Thug(s,w) satisfies two types of functional
equations:

1. First we have the functional equations frem- 1 — s, but because of the
power ofm we havew — w + r(s — 3). Thus there is a link between the
two:

(s,w) = (1 =s,w+r(s—1/2)). (15)

2. The second, coming from — 1 — w in the equality (13), is

(s,w) = (s+w—1/2,1—w). (16)

The observation is that these functional equations generate a finite group of
functional equations fo&L (1), GL(2) andGL(3), but an infinite group foGL(4)
(affine Weyl group) and higher. This suggests that a goedw) (heregooddeals
with all numbers including those that are not square-free) should contin@ié to
for GL(1), GL(2) andGL(3) but to a proper subregion fé¥L.(4) and higher.

What about poles? There should be a polevat 1 (since((w) arises in
equation (13) whem is 1). If this does have a pole at = 1, then by (11) this
implies the non-vanishing df(sg, 7 x x,,,) for infinitely manyy.,,! Similarly if all
epsilon factors are-1 then one gets a non-vanishing theorem#ftin /2, 7 x x,,)
from the pole of%Z(s,w) atw = 1. (In fact there are several polar divisors
meeting at(1/2, 1) and one must check that they do not cancel.) Then standard
methods involving contour integrals give mean value theorems.

Consider the case @kL(4) and higher. There the group of functional equa-
tions is infinite. If we take this infinite group and move this lime= 1 around,
the poles accumulate in what looks like a barrier to continuation. See BFH’s 1996
article in the Bulletin AMS. So we shouldn’t expect continuation to allC3t
However, if we could get continuation up to the conjectured barrier, that would be
very significant; we would get a tremendous amount of information (Lindel6f in
twisted aspect, simultaneous non-vanishing at the center of the critical strip). At
the moment this problem seems difficult.
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The situation forGL(1), GL(2) andGL(3) is different. There we can make
the heuristic rigorous and thereby prove continuatioB*avithout using Rankin-
Selberg integrals. Applications (non-vanishing, mean-value theorems) then fol-
low. The key point is to take advantage of the finite group of functional equations,
and Hartogs’s Continuation Principle.

1.6 Hartogs’s Continuation Principle

Definition 1.1 (Tube Domain) An open sef) ¢ C™ is called atube domainf
there is an open set € R™ such that) = {s € C™ : Re(s) € w}. We write
) = T'(w) to denote this relation.

Definition 1.2 (Convex Hull) If R ¢ R™ or C™ andm > 2, let R be theconvex
hull of R.

Itis easy to see that it = T'(w) thenQ = T().
With this as background, the relevant result is

Theorem 1.3.1f €2 is a connected tube domain, then any holomorphic function in
(2 can be extended to a holomorphic functionfan

When we continue complex functions, we get to take convex failged

1.7 Continuation of Z (s, w) to C? for GL(r) if r < 3

We can now sketch the continuation ©fs, w). First we introduce some weight
functions so that the interchange of summations is actually valid. What we mean
by this is that interchange of summation implicitly assumed everything was square-
free, which is not the case. In the work on Rankin-Selberg integral representations
for Z(s,w), these weight factors arise from Fourier coefficients; remarkably, they
are exactly the ones needed to make the interchange of summation work.

Thus we look at

> Lls,mx xm)als, m, m)(m)m™", (17
where¢ is onGL(1)), and we write this as a sum of series
> L(w, §x0)b(w, &, 7, m)n ", (18)

This comes (for the correct choice of weight factefs, o(-)) from interchanging
sums and using the Law of Quadratic Reciprocity.
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The sum ofL-functions ins is also a sum of.-functions inw. We can use
the convexity bounds on each of thelséunctions to extend the regions of con-
vergence, and, on these enlarged regions, to prove the corresponding functional
equations. Thus the heuristic arguments can be made rigorous, though we need to
study how the-factors change under twisting. As Fisher and Friedberg show, by
a congruence sieving one can arrange it so that the sign effdtor does not
vary. So the interchange and functional equation gives another multiplie Dirichlet
series that is basically of the same form. (As we will explain later, for higher order
twists something more complicated happens!)

We iterate this procedure until we get a region whose convex h@kt jsand
then use Hartogs. There are finitely many poles, but we can remove these by
multiplying by a finite product of linear terms.

1.7.1 Example: Quadratic Twists ofGL(3)

Everything hasn’t been done in the full generality it could be, but this will show
many key features. Recall4f is a cuspidal automorphic representatiori:af(2)

then there is the Gelbart-Jacquet it* (') which is an automorphic represen-
tation of GL(3). (This was referred to in other conference talks as the symmetric
square lift.)

Theorem 1.4(Bump-Friedberg-Hoffstein: Shalika Volumd)etr’ be on Gla(Ag).
Let M be a finite set of places includirgy co, primes dividingcond(z’). Then
there exist infinitely many quadratic characteys such thatd falls in a given
guadratic residue class modfor all v € M (mod8 if v = 2) and such that
L(%uAdZ(W/> X Xxa) # 0.

Remarks

1. Qis not essential. Moreover, with a little more work one could spegify
for all placesv € M. And one should be able to do non-lifts with extra
work.

2. If 7 is on GL(3) this method gives a new proof that the symmetric square
L(s,m,sym?) is holomorphic (more precisely, one sees that the product
((3s — 1)L(s,m,sym?) is holomorphic excpet at = 1,2/3). We shall
see why the symmetric square arises presently.

Sketch of the proof.
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1. In the paper it is shown that not only do weight factors exist, but they are
unique (complicated set of recursion relations). These weight factors allow

us to interchange summations.
2. Establish the functional equations
a(s,w) = (1—s,w+3s—3/2)
Bls,w) = (s+w—1/2,1—w). (19)
(Note thate and? generate a dihedral group of ordex.)

3. Useaq, 3, o« and get a continuation to a region whose convex hulls In
fact, one shows that

w(w—1)(3s+w—5/2)(3s+2w—3)(3s = w—3/2) xbad prime factorx Z(s, w)

has analytic continuation t62.
O

Theorem 1.5. Supposer is automorphic orGL3(Ag) with trivial central char-
acter. Then fow = £1 we have
1 1
> Lut(5:7, Xoa)a(5, 7, od)e¥* = CXlog X + C'X +C" + O(X 73/,

2
d>0
(20)

whereC' is a non-zero multiple of

lin%(s —1/2)Lys(25, 7, sym?); (21)

The termC' arises by contour integration as the residue of the pole at
1. Note that by equation (13), this residue arises from the summands indexed

by n a perfect square, so it is approximatély c(n?)n=2¢, which is related to
L(2s,7,sym?).
To complete the proof of this Theorem, suppose that Ad?*(7’). Then
L(s,m,sym?) = ((s)L(s,sym*(7"),x%). (22)

Herey,. denotes the central charactermdf Using this equality, one can see that
L(s,m,sym?) has a simple pole at = 1. The proof in our paper uses the Kim-
Shahidi result on the automorphicity efm*(7’) as well as the Jacquet-Shalika
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nonvanishing theorem to conclude that the second term does not vanish Bt
and hence that' # 0. Prof. Shahidi has kindly informed me that a simpler proof
thatZL(1,sym*(’), x2,) # 0 is available in an older paper of his.

If we took something orizL(3) that isn’t a lift thenC' = 0; thus this provides
an analytic way to tell if something is a lift or not from the asymptotic behavior
of its quadratically-twisted.-functions.

1.8 Summary of the Quadratic Twist Case

For GL(1), GL(2) andGL(3): quadratic twists continue t62 (resp.C?, C* for

the multi-variable sums corresponding®d.(1) x GL(1) andGL(1) x GL(2),
GL(1) x GL(1) x GL(1)). The weight factors needed to make the heuristic rigor-
ous (i.e. to show that a sum of Euler products is also a sum of Euler products
in w) are unique.

Though the heuristics are easiest to explain d@yemwe emphasize that the
method works over a general global field (Fisher-Friedberg). For example, over a
function field we get a rational function i7° andg~" with a specified denomina-
tor; this comes from the functional equations. For example, to any algebraic curve
over a finite field and a conductor one gets a finite dimensional vector space of ra-
tional functions of two complex variables; see Fisher-Friedberg 2004 for details
and examples.

1.9 Higher Twists

The most recent work is here, where some new phenomena occur. The heuristic
we wrote earlier goes into the trash bin. We cannot use it: the functional equations
involve Gauss sums — we cannot ignore them. We can use higher reciprocity, but
we are naturally in the world of Gauss sums. The basic idea of adopting the
Hartogs’s method is that we need to consider several different families of multiple
Dirichlet series that are linked by functional equations. The weight functions often
involve Gauss sums.

The basic fact is that ot L(r) the twist of anL-function by ann-th order
charactery,, has an epsilon factor involving'(x.,)” whereG is a normalized
Gauss sum. Moreover, when one carries out the operations of “take the functional
eguation” and “interchange summation", these two operations are not commuting
involutions (even ignoring scattering matrix, bad primes, etc.) in contrast to the
guadratic-twist case. Instead, these operations give rise to the linked families of
MDS of the previous paragraph.
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1.9.1 n-Fold Twists of GL(1)

This is work of Friedberg-Hoffstein-Liemann 2004. We end up with two different
families, then-th order twists of the original-function and a multiple Dirichlet
series built up from infinite sums afth order Gauss sums. These latter sums arise
as the Fourier coefficients of Eisenstein series omtfed cover ofGL(2), and
they can thus be controlled by using the theory of metaplectic Eisenstein series.
Note that automorphic methods, which could be for the most part avoided in the
guadratic twist case, seem unavoidable in many problems invotwitigorder
twists forn > 2.

In the case at hand, the continuation of the MDStois obtained by using
the functional equation of the Fourier coefficients of Eisenstein series om-the
fold cover of GL(2), which is inherited from the Eisenstein series themselves.
Note that earlier we mentioned such a sum could be approached by an integral
of an Eisenstein series on thefold cover of GL(n). Thus the Hartogs-based
method allows one to replace the use of Eisenstein series onfibid cover of
GL(n) with the use of Eisenstein series on théold cover of GL(2), which are
considerably simpler. We shall see a similar reductiot&ig2) in the work of
Brubaker, Bump, and Friedberg on Weyl group multiple Dirichlet series that is the
subject of the other minicourse.

1.9.2 Cubic Twists of GL(2)

This is work of Brubaker-Friedberg-Hoffstein in 2005.
Let K = Q(v/—3). Ford € Og,d = 1 mod 3 let ||d|| denote the absolute
norm ofd. Let XE,”) (a) = (g)n denote the Hecke character associated by class-

field theory to the extensioR (/d)/K, with n = 2,3,6. Let P(s;d) denote a
certain Dirichlet polynomialdefined in our papef(s;d) depends onr but we
suppressthis from the notatioR.s; d) is a complicated object, but has the prop-
ertiesthat if one factots= d,d3d3 with eachd; = 1 mod 3, d; square-freel;d3
cube-free, therP(s; d) = 1if d3 = 1 and also for fixed!;, ds, the sum
Z P(s;dyd3d3)
JEEY RS

d3=1 mod 3

converges absolutely fORew > 1/2 andfRes > 1/2.
Then we prove

Theorem 1.6.Letm = ®m, be an automorphic representation@f.(2, A ) such
that L(s, 7, x) isentire for all Hecke characterg such thaty® = 1. LetS be a
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finite set of primes including the archimedean prime and the primes dividihg
and thelevel ofr.Then, for any sufficiently large positive integerthe asymptotic
formula

d|\" 1
Z LS($>7T7 ng)d%)P(S; d) (1 — H)(—”) ~ k—HC(g)(S, 7T)X
lldll<X

holds for anys with SRes > 1/2. The constant® (s, ) isnon-zero, and is given
by

(s, ) = csLs(3s,m,V*)Cs(65)Cs (6s+1) 7 T (1= llpll =) (=03 IplI=**7),
p¢sS

where(s denotes the Dedekind zeta functionfofwith the Euler factors at the
places inS removed,y,, J, are the Satake parameters of the representatign
andcg is a non-zero constant.

An immediate consequence of this, the convergence of the basic sum, and the

usualconvexity bound far(1/2, 7, X\, ) is
2

Corollary 1.7. Letw be as in the Main Theorem. Then there exist infinitely many
cube-freed such thatL(l/z,n,XEf’>) # 0. More precisely, letV(X) denote the
number of sucll with ||d|| < X. Then for any > 0, N(X) > X1/2,

Sketch of the ProofDefine the multiple Dirichlet series

LS(Sv T, ng)(p)P(S? d)
A= 2 fa

d=1 mod 3,(d,S)=1

(Here the sumis over afl € O withd =1 mod 3 andord, (d) = 0 for all finite
v € S.) This series convergesabsolutely 8¢(s), Se(w) > 1. We establish the
continuation of this function to a larger region. Let

Z*(s,w) = Z1(s,w) (s(6s + 6w — 5) (s(12s 4+ 6w — 8)

LT = A2lplP 2~ (1 = a3 lpl > %),
¢S

wherey,, 6, are the Satake parameters of the representafidide show that (s, w)
has a meromorphic continuation to the half pl&hes+w) > 1/2 and is analytic
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in this region except for polarlinesat= 1, w = 0, w = 5/3 —2s, w = 3/2 —2s,
w=4/3-2s,w="T/6—s,w=1—s,w=5/6—s. We alsoshow that theresidue
atw = 1 satisfies

Resy—1Z*(s,w) = cg Lg(3s, 7, sym?) (s(6s) (5(12s — 2)

and is an analytic function of for 2Res > —1/2, except possibly at the points
s = 1/3,1/4,1/6,0, which require a more detailed analysis. The properties of
thesymmetric cubé-series have been completely described by Kim and Shahidi.

The First Two Series and the First Functional Equation

This step is based on the exact functional equation for the cubically-twisted
L-series.Writed = d;d3d3as above. Ignoring bad primes such asthose dividing
the level ofr and the infinite placé,(s, r, Xg?dg) has a functional equation of the
form r f

L(s,m Xp) = GO L = 5,7, X5 [dadal '~
Herew denotes the contragredientok, (the central value of the usual epsilon-
factor for ) has absolute value 1 a@cﬂxfig)) is the usual Gauss sum associated
to Xff),normalized to have absolute value 1. The crucial faitht, || =2 arises
as part of the epsilon-factor of the twistéefunction sincer ® Xf’) is ramified at
the primes dividing/;d,. This functional equationgives rise to a functional equa-
tion for the double Dirichlet serie&,reflectingZ; (s, w) into a second double
Dirichletseries

d1d2

Zg(s,w) =
olow) =2 | BT

More precisely, the functional equation above induces a transformationrelating
Z1(s,w) 10 Zg(1 — s, w + 2s — 1).(The exact transformation is somewhat compli-
cated due to bad primes.)

Ls(s,7 Xy ) GO)? P(L = s; drd3d}) [[dadd] '~

The Second Functional Equatitdext we study the serieg; (s, w) itself. The

appearance oG(Xéf)dz)% the square of a cubic Gauss sum,introduces, via the
2
Hasse-Davenport relation, a conjugéfeorder Gausssum. However, the Fourier
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coefficients of Eisenstein series on thold cover of GL(2) may be written as
sums of Gauss sums
Z G(6)(m, d)
laffe

d=1 mod 3,(d,S)=1
and accordingly series of this type possess a functional equation VWWe show,
using this functional equation, th&g (s, w) possesses a functional equatio(sas) —
(s + 2w — 1,1 — w), transforming into itself.

The Third Series and the Third Functional Equation
We show that the order of summationh (s, w)written as a doubly-indexed
Dirichlet series can beinterchanged, leading to an expression of the form

Ls(w, X\ 2) Q(w; mam3m3)

Zy(s,w) =) s

[mamzm3]|*

Y

where() is once again a specific Dirichlet polynomial dependingrand theL-
series on the right are Heclleseries.Applying the functional equation dmfor
the Heckel-series weare led to introduce the third double Dirichlet series

Ls(w, Xt ) GO, ) Q1 — w; mam3m3) |[mom|| /2~

mlmg mims3

Als) =2 g

The functional equation for the Heckeseries induces a transformationrelating
Zi(s,w)t0 Zs(s +w —1/2,1 —w).

Continuing Z3 Once again, the seriegsmay be studied using metaplectic

Eisenstein series. Indeed, we showthat this series is a sum of cubictwists of
Rankin-Selberg convolutions af with the theta function on tfsefold cover of
GL(2). (Recall that this function is the residue of anEisenstein series on the 3-
fold cover of GL(2); see Patterson’s Crelle paper.) From the meromorphic con-
tinuation of the twisted Rankin-Selberg convolutionswe deduce a corresponding
continuation forZ;.

Applying Hartogs’s TheorertWe now apply Hartogs’s theorem to obtain the

continuation of these 3 functions.The functiafig s, w) and Zs(s, w) have over-
lapping regions of absoluteconvergence. If the functional equation interchanging
Z1(s,w) andZg(s, w) is used several times, the convexity principle for several-
complex variables applied to the union of translates of these regions impliesan
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analytic continuation of/; (s, w) andZs(s, w) to the half planéie(w +s) > 3/2.
The relations withZ;(s, w) then imply an analyticcontinuation to the half plane
Re(w + s) > 1/2, which is what we require forour applications.

Remarks:

1. A furtherfunctional equation transformirig; (s, w) into itself ags, w) —
(1 — s,w + 4s — 2), can be proved. This then allows ananalytic contin-
uation of all three double Dirichlet series @F. This alsogives rise to a
group of functional equations which is non-abelianand of order 384. These
computations have not been written down in detail.

2. As mentioned above, in the quadratic twist case the double Dirichletseries
for r = 1,2, 3 can be identified, up to afinite number of places, with certain
integral transforms ofmetaplectic Eisenstein series. In the case at hand,
althoughthere is no known way to construct the double Dirichlet series as
asimilar integral transform (or as a Rankin-Selberg convolution),there is a
natural candidate attachedto the cubic covergfand itis possible that our
complicatedformulas reflect in a certain sense combinatorial issues arising
fromthat group.

3. One may also obtain a mean value result for the product of two Hecke
functionsin different variables when they aresimultaneously twisted by cu-
bic characters. This has been accomplishedby BEN BRUBAKER in his
Brown University doctoral dissertation.

1.10 Concluding Remarks

The Multiple Dirichlet Series that continue to a product of complex planes are
ready-made for establishing distribution results via contour integration. We em-
phasize that the MDS method applies over a general global field containing suf-
ficiently many roots of unity; thus such mean value theorems may be established
without being constrained by the proliferation of Gamma factors in higher degree
extensions. The most natural theorems to prove involve surbdafictions times
weighting factorsi(s, 7, d).

There are many additional recent applications of Multiple Dirichlet Series to
automorphic forms and analytic number theory. These will be discussed by Chinta
is his lectures. For completeness, we note some of them now.
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. A proof that one twist of &1L(2) L-function of ordern (a prime) has
nonzero central value implies that infinitely many do (Brubaker, Bukur,
Chinta, Frechette, Hoffstein).

2. Generalization of the Luo-Ramakrishnan theorem (which characterizes a
GL(2) modular form by the central values of its quadratically-twisted
functions) to all number fields, due to my doctoral student Li Ji.

3. A generalization of the Luo-Ramakrishan theoremGib(3) over Q by
Chinta and Diaconu.

4. The use of unweighted multiple Dirichlet series to prove simultaneous non-
vanishing theorems inside the critical strip and also a distribution theorem
ats = 1, by Chinta, Friedberg, and Hoffstein. (Note: Unfortunately, Chinta
did not have time to discuss this in his talk. But | am hoping that he will
include it in his lecture notes.)

5. Chinta’s mean value theorem for biquadratic extensiorg. of

6. Work of Diaconu and Tian applying MDS to study twisted Fermat curves
over totally real fields.

7. Work of Diaconu, Goldfeld, and Hoffstein relating MDS to predictions
coming from random matrix theory.

An additional set of lectures by Bump and Brubaker describes the very new theory
of MDS’s attached to a reduced root system, which we have dubbed Weyl Group
Multiple Dirichlet Series. As this list shows, the theory of MDS seems quite rich.
In the rest of this conference these matters will be developed further.
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