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1 Introduction

Automorphic forms are generalizations of periodic functions; they are functions on a group that
are invariant under a discrete subgroup. A natural way to arrange this invariance is by averaging.
Eisenstein series are an important class of functions obtained in this way. It is possible to give
explicit formulas for their Fourier coefficients. Such formulas can provide clues to deep connections
with other fields. As an example, Langlands’ study of Eisenstein series inspired his far-reaching
conjectures that dictate the role of automorphic forms in modern number theory.

In this article, we present two new explicit formulas for the Fourier coefficients of (certain)
Eisenstein series, each given in terms of a combinatorial model: crystal graphs and square ice.
Crystal graphs encode important data associated to Lie group representations while ice models
arise in the study of statistical mechanics. Both will be described from scratch in subsequent
sections.

We were led to these surprising combinatorial connections by studying Eisenstein series not just
on a group, but more generally on a family of covers of the group. We will present formulas for their
Fourier coefficients which hold even in this generality. In the simplest case, the Fourier coefficients
of Eisenstein series are described in terms of symmetric functions known as Schur polynomials, so
that is where our story begins.

2 Schur polynomials

The symmetric group on n letters, Sn, acts on the ring of polynomials Z[x1, . . . , xn] by permuting
the variables. A polynomial is symmetric if it is invariant under this action. Classical examples are
the familiar elementary symmetric functions

ej =
∑

1≤i1<···<ij≤n

xi1 · · ·xij .

Since the property of being symmetric is preserved by sums and products, the symmetric polyno-
mials make up a subring Λn of Z[x1, . . . , xn]. The ej , 1 ≤ j ≤ n, generate this subring.

Since Λn is also an abelian group under polynomial addition, it is natural to seek a set that
generates Λn as an abelian group. One such set is given by the Schur polynomials (first considered
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0844185, DMS-1001079, and DMS-1001326, and NSA grants H98230-07-1-0015 and H98230-10-1-0183.
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by Jacobi), which are indexed by partitions. A partition of a positive integer k is a non-increasing
sequence of non-negative integers λ = (λ1, λ2, . . .) such that k =

∑
λi; necessarily only a finite

number of terms in the sequence are nonzero. Partitions are added componentwise. If λ = (λi) is
a partition with λi = 0 for i > n, let ρ = (n− 1, n− 2, . . . , 0, . . .), and let

aλ+ρ = det(x
λj+n−j
i )1≤i,j≤n.

Then aρ divides aλ+ρ and the quotient sλ := aλ+ρ/aρ is the Schur polynomial. It is a homogeneous,
symmetric polynomial of degree k. For example, we have

s(k,0)(x1, x2) = xk1 + xk−1
1 x2 + · · ·+ x1x

k−1
2 + xk2 (1)

s(2,1,0)(x1, x2, x3) = x2
1x2 + x2

1x3 + x1x
2
2 + 2x1x2x3 + x1x

2
3 + x2

2x3 + x2x
2
3. (2)

The sλ, running over all partitions λ with λi = 0 for i > n, form a basis for Λn. Schur showed
that these polynomials describe the characters of representations of the symmetric and general
linear groups. (See Macdonald [16] for more details.) As we will see in subsequent sections, these
characters are connected to the Fourier coefficients of Eisenstein series.

3 Eisenstein series on SL(2)

Let H = {z = x+ iy ∈ C | y > 0} denote the complex upper half plane. The group SL2(R) acts on
H by linear fractional transformation:

γ(z) =
az + b

cz + d
, where γ =

(
a b
c d

)
∈ SL2(R).

It is of interest to find functions that are automorphic—invariant under the action of a discrete
subgroup of SL2(R). The modular group Γ = SL2(Z) is of particular importance. One may create
a family of automorphic functions on Γ by averaging. To this end for each s ∈ C with Re(s) > 1,
define the unnormalized Eisenstein series

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γ(z))s, where Γ∞ =

{(
1 n
0 1

) ∣∣∣∣ n ∈ Z
}
.1

Note that we must quotient out by the subgroup Γ∞ since this is an infinite group that stabilizes
the imaginary part of z. The definition makes clear that the Eisenstein series is automorphic –
E(γ(z), s) = E(z, s) for all γ ∈ Γ. Using the identity Im(γz) = y/|cz + d|2, we may reparametrize
the sum in terms of integer pairs (c, d). Indeed each pair of relatively prime integers (c, d) is the
bottom row of a matrix in Γ and two matrices γ1 and γ2 ∈ Γ have the same bottom row if and only
if γ1γ

−1
2 ∈ Γ∞. Thus the Eisenstein series may be expressed in the form

E(z, s) =
∑

(c,d)∈Z2

gcd(c,d)=1

ys

|cz + d|2s
, (3)

1In the first line of this article, we described automorphic forms as functions on groups, but here we’ve de-
fined E(z, s) as a function on the upper half plane H. The resolution of this apparent discrepancy is that
H ' SL2(R)/SO2(R) where SO2(R) =

{(
cos θ sin θ
− sin θ cos θ

) ∣∣ θ ∈ [0, 2π)
}
. Indeed, SL2(R) acts transitively on the point i

by linear fractional transformation with stabilizer SO2(R).
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from which one may deduce that the series converges absolutely for Re(s) > 1.
The series E(z, s) has many spectacular analytic properties. To describe them, define the

normalized Eisenstein series,

E∗(z, s) = 1
2π
−sΓ(s)ζ(2s)E(z, s), (4)

where ζ(s) is the Riemann zeta function and Γ(s) is the Gamma function. One can show that
E∗(z, s) has analytic continuation to a meromorphic function for s ∈ C and satisfies the functional
equation E∗(z, s) = E∗(z, 1 − s). This may be proved by spectral methods, as E(z, s) is an
eigenfunction of the Laplace-Beltrami operator on H.

This fact has far reaching consequences for the theory of automorphic forms. As an illustration
in our present case, observe that the invariance under γ = ( 1 1

0 1 ) implies that E∗(z+1, s) = E∗(z, s).
Hence the Eisenstein series admits a Fourier series with respect to the real variable x as follows:

E∗(z, s) =

∞∑
r=−∞

a(r, y, s)e2πinx, where a(r, y, s) =

∫ 1

0

E∗(x+ iy, s)e−2πirx dx.

In the special case r = 0, one can show that

a(0, y, s) = ysξ(2s) + y1−sξ(2− 2s),

where ξ(s) = 2π−sΓ(s)ζ(2s). Because a(0, y, s) inherits the analytic properties of the Fourier series,
the analytic continuation and functional equation of the Riemann zeta function follow.

What about the remaining Fourier coefficients? A calculation (see for example [6], Section 1.6)
shows that if r 6= 0 then

a(r, y, s) = 2|r|s−1/2σ1−2s(|r|)y1/2Ks−1/2(2π|r|y) where σ1−2s(r) =
∑
m|r

m1−2s

and K denotes a K-Bessel function.
Let us shift s to s+ 1

2 and examine the “arithmetic parts” of the non-constant Fourier coefficients
of E∗(z, s+ 1

2 ):

a(r)
def
= |r|sσ−2s(|r|).

They are multiplicative. That is, if gcd(r1, r2) = 1, then a(r1r2) = a(r1)a(r2). Thus they are
completely determined by their values at prime powers r = pk. Moreover,

a(pk) = pks + p(k−2)s + . . .+ p−ks.

A fundamental theme of automorphic forms identifies these coefficients with values of characters
of a representation. Let V denote the standard representation of SL2(C) and let ∨kV denote
the k-th symmetric power. Thus if A ∈ SL2(C) has eigenvalues α, β then ∨kA has eigenvalues
αk, αk−1β, . . . , αβk−1, βk. The character χk of the representation ∨kV is given by

χk(A) = tr(∨k(A)) =
∑

k1+k2=k

αk1βk2 .

Comparing with our earlier expression for the arithmetic piece a(pk), we find

a(pk) = χk

((
ps

p−s

))
. (5)
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Notice that a(pk) is thus the Schur polynomial in (1) evaluated at (x1, x2) = (ps, p−s):

a(pk) = s(k,0)(p
s, p−s). (6)

This identity has substantial generalizations. Indeed, one can define Eisenstein series analogous
to E(z, s) for any reductive group G. In this generality, the notion of Fourier coefficient is re-
placed by that of Whittaker coefficient. The Casselman-Shalika formula [7], first proved for GL(n)
by Shintani [17], states that the values on prime powers of these coefficients may be captured by
characters of a representation. For GL(n), these characters are expressed in terms of Schur poly-
nomials. For more general groups, the representation is not of the complex points of G, but rather
a representation of the Langlands dual group2 of G.

These generalizations are usually stated in a different language. The coefficients a(pk) above
are expressible as integrals on groups over p-adic fields known as p-adic Whittaker functions. The
local version of the Eisenstein series is an induced representation, and the Whittaker function is
a p-adic integral evaluated on a canonical vector in the representation space. Similarly, one may
study the Whittaker functions attached to more general Eisenstein series, corresponding to more
general induced representations. These may be shown to be products of Langlands L-functions,
and this observation is important in the study of those L-functions.

These constructions have been known for many years. The goal of this article is to put them
in a new context, by considering a group together with its covers. When we do this, we find that
the formula (5) and its generalizations may be reinterpreted in terms of crystal graphs, which are
combinatorial structures introduced by Kashiwara in the context of representations of quantum
groups. We begin by illustrating this for covers of SL(2) before discussing higher rank.

4 Eisenstein series on covers of SL(2)

The classical metaplectic group is a two-sheeted cover of a symplectic group over either the reals or a
p-adic field. This group was introduced by Weil and explains the transformation formulas for theta
functions. More generally, Kubota and Matsumoto, working over a number field L containing a full
set of n-th roots of unity, defined a family of n-sheeted covers of SL(2) (or any simply connected
group) for each n > 1. Informally, we may think of such a cover as follows: it is an n-sheeted cover,
where the sheets are indexed by the n-th roots of unity. The group law requires moving between
the sheets, and the n-th root of unity that arises in taking the product of two group elements is
computed using the arithmetic of the field L.3 In fact, the existence of this group is closely related
to the n-th power reciprocity law.

For these groups, one may define an Eisenstein series En(z, s) as an average, similar to (3). The
definition is modified by adding an extra factor in the average that keeps track of the sheets of the
cover. The Fourier coefficients of En(z, s) turn out to be of great interest: they are Dirichlet series
made with Gauss sums.

A Gauss sum is a discrete analogue of the Gamma integral Γ(s) =
∫∞

0
yse−y dy

y – a product
of multiplicative and additive characters summed over the invertible elements of a finite ring. For

2In fact, the dual group enters subtly into the computation above. The Eisenstein series E(z, s) may be regarded
as a function on PGL2 and the Langlands dual of this group is SL2(C).

3In more detail, let AL denote the adèles, an appropriately restricted product over all completions of L. Then n-
fold metaplectic group is a central extension of SL2(AL) by µn: 1 −→ µn −→ G̃ −→ SL2(AL) −→ 1. This extension
is described by means of a two-cocycle which is constructed using the n-power Hilbert symbols of completions of L.
(It is not the adelic points of an algebraic group). See [3] for further information.

4



example if the cover degree is n = 3, we may take L = Q(e2πi/3) with ring of integers oL = Z[e2πi/3].
Let e(·) be an additive character of L which is trivial on oL but no larger fractional ideal. Then for
integers m, c ∈ oL with c 6= 0, let

g3(m, c) =
∑

t(mod c)
gcd(t,c)=1

(
t

c

)
3

e(mt/c), (7)

where the sum is over t ∈ oL that are invertible mod c and (−)3 is the cubic residue symbol.4 For
general n and L, we may define a Gauss sum gn(m, c) made with n-th power residue symbols. To
do so, we must pass from the ring of integers oL to a localization oL,S where denominators are
allowed at a finite set of places S, and some additional technicalities result.

Kubota computed the Fourier expansion of En(z, s), whose m-th coefficient is a K-Bessel func-
tion times an arithmetic part a(m). In the special case n = 3,

a(m) = ‖m‖s−1/2
∑
c∈oL

c≡1 (mod 3)

g3(m, c)

‖c‖2s
, (8)

where ‖ ‖ denotes the absolute norm. The form for general n is much the same with an arithmetic
part involving gn(m, c) in place of g3. The series is easily seen to converge absolute for <(s) > 3/4,
and since E(z, s) has analytic continuation and functional equation, a(m) inherits these properties
as well. This series (and its generalizations) are basic objects of interest.

Let us recall two properties of Gauss sums valid for any n ≥ 1. Using the Chinese Remainder
Theorem, one may show that if gcd(c1, c2) = 1, then

gn(m, c1c2) =

(
c1
c2

)
n

(
c2
c1

)
n

gn(m, c1)gn(m, c2) (9)

and if gcd(m1, c) = 1 then an easy change of variables shows that for any integer m2

gn(m1m2, c) =
(m1

c

)−1

n
gn(m2, c).

In particular, (9) shows that the Dirichlet series in (8) is not expressible as an Euler product – a
product over primes – when n > 2. This is quite different from the situation for n = 1, 2 and, more
generally, for Langlands L-functions. Instead, we see that to combine contributions from relatively
prime c1 and c2, we must introduce n-th roots of unity depending on arithmetic. For these reasons,
we call series with such a property twisted Euler products. See [11] for more information and further
examples.

Though not strictly multiplicative, these two properties allow one to reconstruct gn(m, c) from
its values at prime powers gn(pa, pb) for non-negative integers a, b. Thus we may restrict to these
simpler cases in describing the Fourier coefficients.

Let us consider the coefficients gn(pa, pb) at a given prime p. Here a is fixed (it is the order of m
at p) and b is varying. These coefficients come in three flavors. First, there is the case b = 0, where

4Thus (t/c)3 is a cube root of unity and is 1 if c is a cube, and (t1t2/c)3 = (t1/c)3(t2/c)3.
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the coefficient is simply 1 = pb. Second, there are the coefficients for 1 ≤ b ≤ a. The inequality
b ≤ a makes the additive character in (7) trivial, and so this coefficient is the function

hn(b) =

{
φ(pb) if n|b,
0 otherwise,

where φ(pb) = |(oL,S/pboL,S)×| is the Euler phi function for oL,S . Finally, there is the case b = a+1.
In this case, the Gauss sum is always nonzero and it is not possible to evaluate it in closed form
except in special cases. We write this sum simply as gn(a+ 1) for short. For b ≥ a+ 2, the Gauss
sum is zero (which follows from expressing the sum in terms of a nontrivial character over a group).
Hence the entire contribution to the pa-th Fourier coefficient can be summarized in the following
diagram.

b = 0 1 2 a a+ 1

· · ·

g = 1 hn(1) hn(2) hn(a) gn(a+ 1)

(10)

We have circled the location b = 0 and boxed the location b = a + 1 since the contributions are
special at these locations, while at b such that 1 ≤ b ≤ a, the contribution is hn(b). This is the
most common situation. Notice that the diagram is the same for any n, it is only the functions gn
and hn that depend on n.

For the non-metaplectic Eisenstein series (the special case n = 1), we saw in Section 3 that the
coefficients at powers of p may also be described in terms of Schur polynomials. The connection to
the sums of Gauss sums presented here is as follows. We work over Q for convenience. The residue
symbol (t/c)1 is trivial, and

h1(a) = φ(pa), g1(a+ 1) =
∑

t(mod pa+1)
gcd(t,p)=1

e(t/p) = −pa. (11)

Thus the arithmetic part a(pk) of the pk-th Fourier coefficient described in this Section has the
form

pk(s−1/2)
(

1 + φ(p)p−2s + · · ·+ φ(pk)p−2ks − pkp−2(k+1)s
)

= (1− p−2s)s(k,0)(p
s−1/2, p−(s−1/2)).

After sending s 7→ s + 1/2 as before, this coincides with the formula (6) above. Note that the
Eisenstein series defined in (4) was normalized by a zeta function which explains the extra factor
(1− p−2s) here.

Returning to the case of general n, the description of the Fourier coefficient as a sum of Gauss
sums governed by (10) above has broad generalizations. Indeed the underlying graph in (10) may
be viewed as a crystal graph associated to a highest weight representation of SL2. In the next
section, we will discuss crystal graphs in more detail and explain how they may be used to give a
generalization to covers of SLr+1 for any r and any cover degree n.

5 Eisenstein series on covers of SLr+1 and crystal graphs

We continue to work over a number field L containing n n-th roots of unity. One can define an
n-fold cover of (the adelic points of) SLr+1 for any r, and a corresponding Eisenstein series En
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for this group. It is an average of a suitable function, this time a function of r complex variables
s1, . . . , sr, over a discrete subgroup.5

Fourier coefficients generalize to Whittaker coefficients. These are defined by integrating En
against a character of U , the subgroup of upper triangular unipotent matrices of SLr+1(AL). The
characters of U are indexed by r-tuples m = (m1, . . . ,mr) of elements of oL. Indeed, a character of
U depends only on the r locations just above the main diagonal since everything else is in [U,U ].
Then the Whittaker coefficients are defined by integration against this character.

The main theorem of [3] expresses the arithmetic part a(m) of these Whittaker coefficients as

‖m‖s1−1/2
1 · · · ‖m‖sr−1/2

r times the multiple Dirichlet series∑
c1,...,cr

Hn(m; c1, . . . , cr)

‖c1‖2s1 · · · ‖cr‖2sr
.

This is a generalization of (8). The coefficients Hn are once again twisted multiplicative, and this
allows one to reduce to their study to that of the coefficients Hn(p`1 , . . . , p`r ; pk1 , . . . , pkr ) attached
to a given prime p of oL. Here the `i and ki are non-negative integers. The coefficients H turn out
to be built out of the functions gn, hn, and powers of ‖p‖, that already appeared in the previous
section for the n-fold cover of SL(2). However, the exact description is considerably more subtle.
It involves the theory of crystal graphs.

To explain further, we briefly recall several important facts about finite dimensional represen-
tations of Lie groups and their crystal graphs. A weight of GLr+1 is a rational character of the
diagonal torus T of GLr+1. The weights may be identified with elements of the lattice Λ = Zr+1:
if µ = (µ1, · · · , µr+1) ∈ Λ then tµ :=

∏
tµii with t = diag(t1, . . . , tr+1) ∈ T is such a character. A

weight for a representation V of the associated Lie algebra glr+1(C) is a weight µ such that there
exists a non-zero vector in V that transforms under the torus by µ; it is highest if no larger weight
satisfies this property.6 Cartan’s Theorem of the Highest Weight states that every finite-dimensional
irreducible complex representation of glr+1(C) (or any complex semisimple finite-dimensional Lie
algebra) has a unique highest weight vector (up to scalars) and that the highest weight classifies
the representation.

The quantum group Uq(glr+1(C)) is a deformation of the universal enveloping algebra of glr+1(C)
that is obtained when a parameter q is introduced into the relations that describe the universal
enveloping algebra. (See Hong and Kang [13].) Finite-dimensional representations are once again
classified by highest weight. Let λ be a dominant weight (that is, λ1 > λ2 > · · · > λr+1). Then
Kashiwara [14] associates with λ a crystal graph Bλ, a directed graph whose vertices correspond
to basis vectors for the representation of Uq(glr+1(C)) with highest weight λ. The edges of this
graph are colored with one color for each simple root, and describe the action of the unipotents
in the Lie algebra on this basis as q → 0. The crystal graph Bλ comes endowed with a map “wt”
to the weight lattice Λ which is compatible with the graph structure. Walking one step along an
edge of Bλ in the direction of the highest weight vector (resp. lowest weight vector) corresponds to
increasing (resp. decreasing) the weight of the vertex by the simple root with which it is labeled.7

5There are more general Eisenstein series built from automorphic forms on lower rank groups, but we do not
consider them here.

6Recall that the weights are partially ordered as follows: λ > µ if λ − µ is a non-negative linear combination of
simple roots. In terms of coordinates, λi = µi + hi − hi+1 for each i, where the hi are non-negative integers and
h0 = hr+2 = 0.

7The map “wt” is such that
∑
v∈Bλ twt(v) is the character of an irreducible representation of GLr+1(C) whose

associated Lie algebra representation has highest weight λ.
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λ

v

w0λ

Figure 1: The crystal graph with highest weight λ = (4, 2, 0)

Figure 1 depicts a gl3 crystal with highest weight λ = (4, 2, 0) and lowest weight w0λ = (0, 2, 4).
It is drawn so that vertices of the same weight are clustered together diagonally.

Berenstein and Zelevinsky [2] and Littelmann [15] associate paths to each vertex in Bλ.8 To do
this, choose a reduced factorization of the long element w0 of the Weyl group into simple reflections
(i.e., one of minimal length). Walk the graph toward the highest weight vector in the order that
the simple reflections appear in the factorization, going as far in a given direction as the graph will
allow before changing to the next color. It turns out that such a factorization always leads to a
path to the highest weight vector λ. The sequence BZL(v) of path lengths so obtained parametrizes
the vertex v of Bλ. (Alternatively, we could record path lengths toward the lowest weight vector
w0λ from v.)

For example, in Figure 1 we have indicated a walk from a vertex v to the highest weight vector
λ. It corresponds to the factorization of the long element w0 = s1s2s1 of the symmetric group S3,
the Weyl group of GL3. Thus we walk along the graph in order s1, s2, s1 (=blue,red,blue). The
lengths of the corresponding paths are 1, 3, 2, respectively, so BZL(v) = (1, 3, 2).

The main theorem of [3] computes the coefficients Hn(p`1 , · · · , p`r ; pk1 , · · · , pkr ) by attaching
products of Gauss sums to BZL sequences. Let λr+1 = 0 and λi = `i + λi+1 when i ≤ r, and let
λ be the dominant weight λ = (λ1, λ2, . . . , λr+1).9 Let ρ denote the Weyl vector, that is, half the
sum of the positive roots, or in coordinates (r, r − 1, . . . , 1, 0).

Theorem 1 The coefficient Hn is given by

Hn(p`1 , · · · , p`r ; pk1 , · · · , pkr ) =
∑

v∈Bλ+ρ
wt(v)=µ

Gn(v), (12)

where the function Gn(v) is described below and µ is the weight related to (k1, · · · , kr) by the
condition that

∑r
i=1 kiαi = (λ+ ρ)− µ where αi are the simple roots.

8Berenstein and Zelevinsky refer to these paths as “strings.”
9By fixing λr+1 = 0, we parametrize representations of SLr+1(C), the Langlands dual group of PGLr+1.
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The definition of Gn(v) depends on a recipe for walking the graph, so it depends on the choice of
a reduced expression for w0 in the symmetric group Sr+1. We will work with two different choices;
these give rise to two different functions Gn(v). In terms of the simple reflections si (recorded by
their index i ∈ [1, r]), let us fix either

Σ = Σ1 := (r, r − 1, r, r − 2, r − 1, r, · · · , 1, 2, 3, · · · , r) (13)

or
Σ = Σ2 := (1, 2, 1, 3, 2, 1, · · · , r, r − 1, · · · , 3, 2, 1) (14)

and take the associated path lengths BZL(v) = (b1, . . . , bN ) to the highest weight vector. (We
suppress the dependence on Σ.) We then decorate the entries bi as follows. The length bi is boxed if
the i-th leg of the path is maximal (i.e. contains the entire root string). In Figure 1, with Σ = Σ2,
BZL(v) = (1, 3, 2), both the 1 and 2 are boxed while the 3 is not (since it is part of an s2 root string
of length 4). An entry bi is circled if the (`(w0)− i)-th leg of the path to the lowest weight vector
is maximal (here `(w0) denotes the length of w0). Thus in Figure 1, the path lengths to the lowest
weight vector are (0, 1, 1), none of which are maximal. Hence none of the entries in the decorated

BZL sequence ( 1 , 3, 2 ) are circled.
Then we prove that

Gn(v) = Gn,Σ(v) =
∏

bi∈BZL(v)


‖p‖bi if bi is circled (but not boxed),
gn(bi) if bi is boxed (but not circled),
hn(bi) if neither,
0 if both,

(15)

where gn(b) and hn(b) are the Gauss sum and degenerate Gauss sum, respectively, described in the
previous section. Notice that this definition exactly matches the description given in Section 4 and
pictured in (10) in the special case of SL2.

In Figure 1, the vertex v belongs to a weight space with multiplicity two. Again using Σ =
(1, 2, 1), the other vertex in the weight space containing v has decorated BZL sequence (2, 3 , 1).
Thus applying Theorem 1 with Gn(v) as in (15), we have

Hn(p2, p; p3, p3) = Gn

(
1 , 3, 2

)
+Gn

(
2, 3 , 1

)
= gn(1)hn(3)gn(2) + hn(2)gn(3)hn(1). (16)

Since hn(b) = 0 unless n divides b, this term is non-zero only for the cover degrees n = 1 or 3. It is
noteworthy that expressions like (16) for the function Hn in terms of Gauss sums are uniform in n.

Because we may use either Σ1 or Σ2 to define Gn(v), these are two explicit formulas for the
Whittaker coefficient. The equality of the expression in (12) for Σ1 and Σ2 is not formal, and is
established directly in [2] by an elaborate blend of number-theoretic and combinatorial arguments.
It is an open problem to give a definition of Gn(v) obtaining the Whittaker coefficient for an
arbitrary reduced decomposition of the long element w0 of the Weyl group.

In closing this section, we mention that there are not one but two distinct generalizations of
the Casselman-Shalika formula to the metaplectic case. Chinta and Gunnells [8] and Chinta and
Offen [9] show that the p-parts of the Whittaker coefficients of metaplectic Eisenstein series on
covers of SLr+1 can also be expressed as quotients of sums over the Weyl group, directly analogous
to the Weyl character formula.
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6 The case n = 1: Tokuyama’s deformation formula

When n = 1, we are concerned with Eisenstein series on an algebraic group and not a cover. In
that case, the Whittaker coefficients may be computed in two different ways. First, Theorem 1
provides an answer in terms of crystal graphs. This result holds for any n ≥ 1. Second, the
formula of Shintani [17] and Casselman and Shalika [7] (which holds only for n = 1) expresses the
Whittaker coefficients of normalized Eisenstein series as the values of the characters of irreducible
representations of SLr+1(C). These characters are given by Schur polynomials sλ, as described in
Section 2.

These two expressions for the Whittaker coefficients are related by the following result (cf. [2]).

Theorem 2 Let z = (z1, . . . , zr+1) and let q = ‖p‖. For any dominant weight λ,∏
i<j

(zi − q−1zj)

 sλ(z) =
∑

v∈Bρ+λ

G1(v)q−〈λ+ρ−wt(v),ρ〉zwt(v),

where the G1(v) are computed as in (15) using the reduced word Σ2.

We illustrate Theorem 2 with λ = (2, 1, 0), so that λ + ρ = (4, 2, 0) and Bλ+ρ is the crystal
pictured earlier. Let us compare the monomials z1z

2
2z

3
3 appearing on both sides of the theorem

for this choice of λ. The coefficient of this monomial appearing on the right-hand side is (up to
a power of q) just the value of Hn(p2, p; p3, p3) computed in (16) in the special case n = 1. After
simplification using (11),

H1(p2, p; p3, p3) = qφ(p3)− q2φ(p2)φ(p) = −q5 + 3q4 − 2q3.

Since 〈λ+ ρ− wt(v), ρ〉 = 6, these terms should be multiplied by q−6 to obtain the complete
contribution to the monomial z1z

2
2z

3
3 on the right-hand side.

The left-hand side is just (z1− q−1z2)(z1− q−1z3)(z2− q−1z3)s(2,1,0)(z1, z2, z3) where s(2,1,0)(z)
is given in (2). Expanding, we see that the coefficients of z1z

2
2z

3
3 indeed match. For example, terms

with q−3 on the left can only come from taking the term 2z1z2z3 in the Schur polynomial and
multiplying by q−3z2z

2
3 from the product.

In general, after taking into account the normalizing factors that appear in the Casselman-
Shalika formula, Theorem 2 shows that the Casselman-Shalika formula and Theorem 1 in the case
n = 1 are equivalent.

Theorem 2 is equivalent to an earlier result of Tokuyama [18], and may be viewed as a deforma-
tion of the Weyl character formula (which results from setting q = 1). Tokuyama’s formulation uses
combinatorial arrays called Gelfand-Tsetlin patterns. We highlight that the character with highest
weight λ is expressed as a combinatorial sum over basis vectors of a crystal of highest weight λ+ ρ.

7 Ice models for Whittaker coefficients

In this final section, we describe another combinatorial representation of the p-parts of Whittaker
coefficients. These can be described using square ice, a particular example of a two-dimensional
lattice model . We describe these in detail when n = 1; that is, when the Whittaker coefficients at
the prime p are given in terms of Schur polynomials. An ice model description for arbitrary covers
is presented in [5].
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Two-dimensional lattice models arise in statistical mechanics, where they can be used to repre-
sent thin sheets of matter such as ice. Any such model has a certain set of admissible configurations
called states and each state is assigned a value known as a Boltzmann weight. A primary goal is to
understand the behavior of the partition function of the model, the sum of the Boltzmann weights
over all states.10 Lattice models for which the partition function may be explicitly evaluated are
called exactly solved and are of particular interest. See Baxter [1]. The study of ice models was
advanced by ideas of representation theory and ultimately led to the discovery of quantum groups.
See Faddeev [10] for a history.

For the application to Whittaker functions, a lattice model is given for any partition λ =
(λ1, . . . , λr+1) having λr+1 = 0 as follows. Form a rectangular array of lattice points with r + 1
rows (numbered r+ 1 to 1 from top to bottom) and λ1 + r+ 1 columns numbered 0 to λ1 + r from
right to left. Add vertical and horizontal edges from each lattice point, so the points are embedded
in a rectangular array of line segments.

Each boundary edge of this configuration is labeled with a fixed “spin” + or −. The left and
bottom edges are all assigned a + spin and the right edge spins are all −. The spins along the top
edges correspond to λ+ ρ = (λ1 + r, λ2 + r− 1, · · · , λr + 1, 0) as follows: place a − spin at the top
of a column numbered λi + (r + 1 − i) for i ∈ [1, r + 1] and place a + spin above the remaining
columns. The figure below illustrates these boundary conditions associated to λ = (2, 1, 0) so that
λ+ ρ = (4, 2, 0), our running example.

4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(17)

The states of this model will be assignments of spins to the internal edges, pictured with open
circles above. The only requirement on these spins is that each vertex in the grid has adjacent spins
matching one of the following six configurations:

Ice
Configuration

i i i i i i

A model with this restriction is often called a six-vertex model or square ice.11 Given the boundary

10The term ‘partition function’ should not be confused with our earlier use of ‘partition’ of a positive integer.
11We may think of the vertices in the grid as oxygen atoms, and the six possible choices of adjacent spins are the(4

2

)
ways of arranging two nearby hydrogen atoms on adjacent edges.
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conditions as above, here is one such admissible filling (i.e. a state).

4 3 2 1 0

3

2

1

3

2

1

3

2

1

3

2

1

3

2

1

(18)

To describe the Boltzmann weight for a state, we first assign a weight to each of the six types of
vertices (which is allowed to vary depending on the row in which it appears). Then the Boltzmann
weight of the state is the product of all weights of vertices appearing in the grid. Summing the
Boltzmann weight over all states with fixed boundary conditions gives the partition function for
the model.

For example, choose weights for the vertices as follows:

Ice
Configuration

i i i i i i

Weight 1 tizi 1 zi zi(ti + 1) 1

(19)

where the ti and zi are arbitrary parameters corresponding to the row number i.12 Then the
Boltzmann weight of the state (18) is:

t3(1 + t3)z3
3 · t2z2

2 · z1.

Setting t2 = t3 = −1/q, this is precisely equal to G1(v) q−〈λ+ρ−wt(v),ρ〉zwt(v), which appears in the
right-hand side of Theorem 2, where v is the vertex pictured in the crystal graph of Section 5. This
is no accident. There is a bijection between vertices v of the crystal Bλ+ρ having G1(v) 6= 0 and
states of the model with boundary conditions corresponding to λ+ ρ as above. See [4] for details.

Hamel and King [12] evaluated the partition function of an equivalent model and choice of
Boltzmann weights by means of tableaux combinatorics, and showed that it exactly equals the left-
hand side of Tokuyama’s theorem. In [4], we show that as long as the Boltzmann weights satisfy
a single algebraic relation (which includes the case of Hamel and King), the resulting partition
function may be given in terms of a Schur polynomial. We also give a different approach to these
results which we now sketch.

Let Sλ denote the set of states for the model above with boundary conditions corresponding to
λ+ρ. Let Z(Sλ) be the partition function of the model with Boltzmann weights assigned according
to the table (19). We prove in [4] that

Z(Sλ) =
∏
i<j

(tjzj + zi)sλ(z1, · · · , zn), (20)

12Note that these Boltzmann weights are not symmetric under the interchange of + and −, in contrast to the
‘field-free’ situation that is often considered in the literature.
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where the right-hand side has already appeared in the statement of Theorem 2. The critical step
of the proof is to show that Z(Sλ)

∏
i<j(tjzj + zi)

−1 is symmetric in the sense that it is unchanged
if the same permutation is applied to both (z1, . . . , zr+1) and (t1, . . . , tr+1). Once this is known,
it is possible to show that it is a polynomial in the zi and ti, and by comparing degrees that it
is independent of the ti; finally, taking ti = −1 one may invoke the Weyl character formula and
conclude that it is equal to the Schur polynomial.

In order to prove the desired symmetry property we use an instance of the Yang-Baxter equation.
In the context of a lattice model, given three fixed sets of weights R,S, and T , the Yang-Baxter
equation is the identity of partition functions

Z


τ

σ

β

α

θ

ρ

R

S

T


= Z


τ

σ

β

α

θ

ρ

T

S

R


, (21)

for all choices of boundary spins ± for α, β, σ, τ, θ, ρ. Here the R vertices have been rotated by
45◦ for ease in drawing the diagram. Note that both sides of this identity are sums over all states
resulting from choices of the three internal edge spins indicated by empty circles above.13 Baxter
first employed the Yang-Baxter equation as a method for obtaining exactly solved models.

In the application at hand, S and T are weights given in (19) for two rows. It may be shown
(cf. [4]) that there exists a choice of weights R such that the Yang-Baxter equation holds. Attach
this vertex between the S and T rows thus:

S S

T T

−→ R

S S

T T

(22)

This multiplies the partition function by a weight of R, which happens to be one of the linear
factors in (20). Then applying the Yang-Baxter equation several times, this R-vertex may be

13This may be reformulated algebraically by regarding the Boltzmann weights R,S, T as giving endomorphisms of
V ⊗ V for an abstract two-dimensional vector space V . See [4] for an exposition. Then the Yang-Baxter equation is
the identity

R12S13T23 = T23S13R12,

where the notation Rij is the endomorphism of V ⊗ V ⊗ V in which R is applied to the i-th and j-th copies of V
and the identity map to the k-th copy, where {i, j, k} = {1, 2, 3}.
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moved rightward, leaving the partition function invariant. Picking up from (22), this looks like:

−→ R

T S

S T

−→ R

T T

S S

Then discarding the R-vertex divides by another Boltzmann weight of R, which is another one of
the linear factors in (20). Note that S and T are interchanged, reflecting the symmetry of the Schur
function in (20), and leading to a proof of that equation.

The Yang-Baxter equation can also be used to directly establish the equivalence of the two
descriptions in Theorem 1 obtained from the reduced decompositions (13) and (14) when n = 1.
See Chapter 19 of [2].

The Langlands program describes the role of automorphic forms on reductive groups in number
theory. Automorphic forms on covering groups have been used to prove cases of the Langlands
conjectures, but they themselves do not strictly fit into its usual formulations. Studying automor-
phic forms on covers reveals connections with crystals and lattice models, which are mathematical
objects that first appeared in other contexts—quantum groups and mathematical physics. The
exploration of these exciting connections is only beginning.
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