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Abstract

We show that elements of a natural basis of the Iwahori fixed vec-
tors in a principal series representation of a reductive p-adic group
satisfy certain recursive relations. The precise identities involve oper-
ators that are variants of the Demazure-Lusztig operators, with cor-
rection terms, which may be calculated by a combinatorial algorithm
that is identical to the computation of the fibers of the Bott-Samelson
resolution of a Schubert variety. This leads to an action of the affine
Hecke algebra on functions on the maximal torus of the L-group. A
closely related action was previously described by Lusztig using equiv-
ariant K-theory of the flag variety, leading to the proof of the Deligne-
Langlands conjecture by Kazhdan and Lusztig. In the present paper,
the action is applied to give a simple formula for the basis vectors of
the Iwahori Whittaker functions. We also show that these Whittaker
functions can be expressed as nonsymmetric Macdonald polynomials.

1 Introduction

One of Steve Rallis’ many enthusiasms was the proof of the Casselman-
Shalika formula, exploiting the property of the Iwahori fixed vectors in the
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Whittaker model. This paper reconsiders these Iwahori fixed vectors for the
unramified principal series of a split, reductive Chevalley group G over a
non-archimedean local field F .

By the Iwasawa decomposition, G = BK with B the standard Borel
subgroup of G and K a certain maximal compact subgroup, and B = NT
with N a maximal unipotent subgroup and T a maximal F -split torus. Given
an unramified quasi-character of T (i.e. a character trivial on T (o) where o
denotes the ring of integers of F ), then we may form the induced principal
series representation π := IndGB(τ).

Let B− be the Borel subgroup opposite to B and let N− denote its unipo-
tent radical. Fix a character ψ of N−(F ) lying in an open T -orbit. A Whit-
taker functional is a linear map

Ωτ : IndGB(τ) −→ C with Ωτ (π(n−)f) = ψ(n−)Ωτ (f)

for all f ∈ IndGB(τ) and all n− ∈ N−. Rodier showed that the space of such
functionals is one-dimensional [28], building on earlier work of Gelfand and
Graev, Gelfand and Kazhdan, Piatetski-Shapiro, and Shalika. This is true
even if IndGB(τ) is reducible. However we will assume that τ is in general
position, and that this induced representation is irreducible.

Let J be the Iwahori subgroup which is the preimage of B−(Fq) in the
special maximal compact subgroup G(o). Let M(τ) := IndGB(τ)J , the space
of Iwahori fixed vectors in the principal series. Then to any f ∈ M(τ), we
may associated an “Iwahori Whittaker function” defined by

Wτ,f (g) := Ωτ̂ (π(g)f), (1)

where τ̂ indicates that we are taking the contragredient representation of
IndGB(τ). For most τ , the dimension of M(τ) is equal to the order of the Weyl
group W of G. Here we study Iwahori Whittaker functions for the so-called
“standard basis” of M(τ), denoted {Φw}w∈W and made from characteristic
functions on J-double cosets of K. See Section 2 for their precise definition
and [16] for further information. The notation in (1) will be slightly modified
in Section 3, corresponding to a convenient normalization of the Whittaker
function.

Iwahori fixed vectors were employed in Casselman [7] and Casselman and
Shalika [8] in their computation of the spherical and Whittaker function-
als on the unique (up to constant) spherical vector in unramified principal
series. Clever use of intertwining operators allowed them to avoid explicit
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computation of the Whittaker functional on all but one Iwahori fixed vector.
Later Reeder [26] gave a closed formula for Iwahori Whittaker functions of
the so-called “Casselman basis” and an answer in terms of a Lefschetz trace
for a certain subset of standard basis elements – those w ∈ W corresponding
to standard parabolic subgroups of G.

In this paper, we build Iwahori Whittaker functions for any standard basis
element from certain operators on the ring O(T̂ ) of regular functions on the
dual torus of T . The precise form of the operators will be determined by
formulas relating the Whittaker functional and intertwining operators found
in [8].

To explain this, we may identify an unramified character τ of T (F ) with
an element z of the dual torus T̂ (C), and we may associate an element a−λ of
T (F ) with a weight λ of T̂ (C). The Whittaker function Wτ,f (a−λ) vanishes

unless λ is dominant. We may also think of λ as a rational character of T̂ (C)
which we may apply to z−1, the Langlands parameter of the contragredient,
and we will denote the result as z−λ. Recall that for each simple reflection
si ∈ W , the Demazure operator ∂i is defined as follows:

∂if(z) := (1− z−αi)−1(f(z)− z−αif(siz)). (2)

The operators we use to describe Iwahori Whittaker functions are:

Di = (1− q−1z−αi)∂i, and Ti = Di − 1. (3)

Using these operators, we give three answers for the value of Iwahori
Whittaker functions – in terms of Hecke (A)lgebras, geometry of (B)ott-
Samelson varieties, and (C)ombinatorics of Macdonald polynomials.

For the first answer, let v be a parameter that may be either a complex
number or an indeterminate, and let Hv be the Iwahori Hecke algebra with
generators Ti satisfying T 2

i = (v − 1)Ti + v and the braid relations. In
Section 4, we show that the map Ti 7→ Ti gives a representation of this Hecke
algebra on O(T̂ (C)).

Let H̃v be the (extended) affine Iwahori Hecke algebra (Section 4), ob-
tained from Hv by adjoining an abelian subalgebra isomorphic to the group
algebra of the weight lattice.

Theorem A (Theorem 2, Section 4). To any w ∈ W and any dominant
weight λ,

Wτ,Φw(a−λ) = (∗) Twzλ. (4)
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The action of Hq−1 on O(T̂ (C)) extends to H̃q−1, and the resulting module is
antispherical.

The constant (∗) in (4) is an unimportant normalization. The “antispher-

ical” module is the H̃v-module obtained from inducing the sign character of
Hv. At least the statement of this result (or closely related ones) has ap-
peared in the literature. See for example [2] and [27].

Turning to the second answer, we demonstrate that the recursive for-
mula is closely connected to the geometry of Bott-Samelson varieties, which
provide a resolution of singularities for Schubert varieties in the flag variety
G/B, and are a key ingredient in the proof that Demazure characters com-
pute the cohomology of line bundles over Schubert varieties ([4], [12], [1]). To
any w ∈ W , the construction of the Bott-Samelson variety over the Schubert
variety Xw depends on a reduced decomposition for w.

Let w = si1 · · · sik be a choice of reduced word for w. To w and any

dominant weight λ ∈ Λ, the group of rational characters of T̂ , define an
operator on O(T̂ ) by

Zw := Di1 · · ·Dik .

When we want to emphasize the connection to Schubert varieties, we write
Y w := Tw, and in view of Theorem A, applying the operator to zλ with λ
dominant gives the Whittaker function.

Theorem B (Theorem 6, Section 7). Given any w ∈ W with a corresponding
reduced word w,

Zw =
∑
u6w

Pw,u(q
−1)Y u,

where q denotes the cardinality of the residue field of F , 6 is the Bruhat
order, and Pw,u is the Poincaré polynomial of the fiber in the Bott-Samelson
variety Zw over any point in the open Schubert cell Yu contained the Schubert
variety Xw.

We remark here that similar connections between the geometry of Bott-
Samelson and Schubert varieties and representations of Hecke algebra also
appear in the theory of Soergel bimodules; see for example [30] and [32]. It
would be interesting to establish a direct connection between Soergel bimod-
ules and Whittaker models, though we do not address this question in the
current paper. There is a close connection between Soergel bimodules and
equivariant cohomology of Schubert varieties, but the problem at hand seems
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even closer to equivariant K-theory, a connection which might be important
to develop.

Finally, we connect Iwahori Whittaker functions for the standard basis to
specializations of non-symmetric Macdonald polynomials using results of Ion
[19]. Recall that (symmetric) Macdonald polynomials are a Weyl group in-
variant two-parameter (commonly q and t) family of polynomials associated
to a finite, irreducible root system. Members are indexed by anti-dominant
elements of the corresponding weight lattice Λ. They simultaneously general-
ize many known classes of symmetric functions and possess deep connections
to zonal spherical functions for real and p-adic groups, and to the represen-
tation theory of affine Kac-Moody groups. See [25] for details.

Non-symmetric Macdonald polynomials, defined more recently by Heck-
man, Opdam, Macdonald, Cherednik, and Sahi, are a family {Eλ(q, t)} where
λ may now be any element of the full weight lattice Λ. By symmetriz-
ing over the W -orbit of λ, we obtain the symmetric Macdonald polynomial.
Non-symmetric Macdonald polynomials are an important tool in the study
of double affine Hecke algebras, but their interpretation in terms of matrix
coefficients for classical or p-adic representations has been investigated in
[9, 10, 11]. In certain specializations of q, t, one may say more. Ion has
shown that Eλ(q,∞) are Demazure characters of basic representations of
affine Kac-Moody groups [17] and Eλ(∞, t) are matrix coefficients for M(τ)
using the spherical functional [18]. (See also [6].) The following result gives
a further specialization.

Theorem C (Theorem 7, Section 8). Given a dominant weight λ and a
w ∈ W , the Iwahori Whittaker function for the standard basis element Φw

at a−λ
Wτ,Φw(a−λ) = b(τ, w)w0Ew0w(λ+ρ)(0, v

−1).

Here v−1 is the cardinality of the residue field of F , b(τ, w) is a simple,
explicit constant depending only on τ and w, and w0 acts on E by permuting
the variables z.

We caution the reader that notations for non-symmetric Macdonald poly-
nomials differ among various authors, and here we are using the notation in
[19]. As a further point of confusion, the parameter t in Eλ(q, t) is associated
to the cardinality of the residue field, even though the letter q is commonly
used in the literature of p-adic group representations.

In addition to these three theorems on Iwahori Whittaker functions, in
Section 6 we provide efficient proofs of the Casselman-Shalika formula for
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the spherical Whittaker function and the Demazure character formula, using
specializations of the parameter appearing in the operators Ti.

We thank Bogdan Ion for pointing out that our recursion could be used
to connect to a specialization of the nonsymmetric Macdonald polynomial.
We also thank Gautam Chinta, Solomon Friedberg, Paul Gunnells, David
Kazhdan, Daniel Orr, Arun Ram, Mark Reeder, and Anne Schilling for help-
ful conversations. Schilling, Mark Shimozono, and Nicolas Thiéry wrote Sage
code for non-symmetric Macdonald polynomials was instrumental in helping
us to refine our results. This work was supported by NSF grants DMS-
0652817, DMS-0844185, and DMS-1001079.

2 Preliminaries

The papers of Casselman [7] and Casselman and Shalika [8] will serve as
the basic references for the local theory. We will slightly change the point
of view: our Whittaker functionals will be computed with respect to the
opposite maximal unipotent subgroup to the Borel from which we induce.

Let G be a split reductive Chevalley group. By this we mean an affine
algebraic group scheme over Z, whose Lie algebra gZ has a fixed Chevalley
basis defined over Z corresponding to a root system ∆∨. This is the dual of
the root system ∆ for the Langlands dual group Ĝ. We will call elements of
∆∨ coroots . They are roots of G or coroots of Ĝ. If T and T̂ are standard
maximal split tori of G and Ĝ, then the ambient spaces of ∆∨ and ∆ are the
groups Λ∨ = X∗(T ) and Λ = X∗(T̂ ) of rational characters of T and T̂ . Note
that ∆ is the root system of T̂ , not T , since this root system plays a bigger
role in describing the Whittaker function. The lattices X∗(T ) and X∗(T̂ )
are identified with the cocharacter groups X∗(T̂ ) and X∗(T ), respectively.
If α ∈ ∆ then α∨ will denote the corresponding coroot. We will denote by
{α1, · · · , αr} the simple roots. As usual, ∆ is partitioned into positive and
negative roots, ∆ = ∆+ ∪∆− and similarly ∆∨.

If α∨ is a coroot, let xα∨ : Ga −→ G be the corresponding one-parameter
subgroup. We normalize it so that its differential dxα∨ ∈ gZ is a Chevalley
basis vector. By the theory of Chevalley groups there exist a homomorphism
iα∨ : SL(2) −→ G such that

xα∨(t) = iα∨

(
1 t
0 1

)
.
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Let N be the unipotent subgroup generated by the images of the xα∨ where
α∨ runs through the positive coroots, and let N− be the group generated
by the x−α∨ . Then B = TN is the standard Borel subgroup of G, and
B− = TN− is the opposite Borel.

Let F be a nonarchimedean local field and o its ring of integers, p the
maximal ideal of o, and let q = |o/p|. The residue field will be denoted by
Fq. The group G(F ) has K = G(o) as a maximal compact subgroup. This
is the group generated by the xα∨(o) with α∨ ∈ ∆∨. The Weyl group W is
N(T )/T . If w is an element of the Weyl group W , we will choose a fixed
representative of w in G(o), and by abuse of notation we will denote this
element also as w. Nothing will depend on this choice in any essential way.
The long Weyl group element will be denoted w0.

The group X∗(T ) of rational cocharacters is isomorphic to T (F )/T (o),
where the one-parameter subgroup ϕ ∈ X∗(T ) corresponds to the coset
ϕ($)T (o) with $ a prime element. A character τ of T (F ) is called un-
ramified if it is trivial on T (o). We will let W act on unramified characters
τ , so that

(wτ)(t) = τ(ω−1tω), w ∈ W, t ∈ T (F ), (5)

where ω is any representative of w in the normalizer of T . Since τ is unram-
ified, this does not depend on the choice of representative ω.

As we have mentioned the group X∗(T ) of rational cocharacters of T is
identified with the weight lattice Λ, which is the group X∗(T̂ ) of rational
characters of T̂ . Thus we have a surjection

T (F ) −→ T (F )/T (o) ∼= X∗(T ) ∼= X∗(T̂ ) = Λ. (6)

If λ ∈ Λ we will choose a representative aλ ∈ T (F ) of the corresponding
coset in T (F )/T (o). Also if z ∈ T̂ (C) and λ ∈ Λ we will denote by zλ the
application of the character λ to z. Also if t ∈ T (F ) we may apply the
homomorphism (6) to t and apply the resulting rational character of T̂ to
z; we will denote the result by τz(t). Thus τz is an unramified character
of T and z 7−→ τz is an isomorphism of T̂ (C) with the group of unramified
characters of T (F ). The action (5) is compatible with natural action of W
on T̂ (C).

Let τ = τz be such an unramified character. Let I(τ) = I(z) be the space
of the representation of G(F ) induced from τz. This is the space of locally
constant functions f : G(F ) −→ C that satisfy

f(bg) = (δ1/2τ)(b)f(g), b ∈ B(F ),
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where δ : B(F ) −→ R× is the modular character. The action of G(F ) is by
right translation. Thus the corresponding representation π = πz : G(F ) −→
GL
(
I(z)

)
satisfies π(g)f(x) = f(xg).

We pick a character ψ of N−(F ). We assume that ψ ◦ i−α∨ : F −→ C
is trivial on o but no larger fractional ideal. We will consider the Whittaker
functional Ωz on the module M(z) with respect to the fractional ideal ψ.
This is defined by the integral

Ωz(f) :=

∫
N−(F )

f(n) ψ(n)−1 dn.

The integral is convergent if |zα| < 1 for every α ∈ ∆+. The functional can
be extended to all z by analytic continuation.

Let J be the Iwahori subgroup of G(F ) which is the preimage of B(Fq)
and B−(Fq) under the mod p reduction map K −→ G(Fq). We will denote
by M(τ) = M(z) the space of Iwahori fixed vectors in I(z).

Lemma 1. N−(F ) ∩BJ = N(o).

Proof. We have the Iwahori factorization J = N(p)T (o)N−(o). SinceN(p)T (o) ⊂
B an element of N−(F ) ∩ BJ may be written as n = bn′ with b ∈ B and
n′ ∈ N−(o). Now b ∈ B ∩N−(F ) so b = 1 and thus n = n′ ∈ N−(o).

Lemma 2. Let λ ∈ Λ, and let Φ ∈ M(z). Then Ωz(π(a−λ)Φ) = 0 unless λ
is dominant.

Compare Casselman and Shalika [8] Lemma 5.1.

Proof. Let W (g) = Ωz(π(g)Φ). Then if n ∈ N−(F ) and k ∈ J we have
W (ngk) = ψ(n)W (g). If λ is not dominant, it is easy to see we may find n ∈
N−(o) such that ψ(a−λnaλ) 6= 1. Then W (a−λ) = W (a−λn) = W (a−λnaλ ·
a−λ) = ψ(a−λnaλ)W (a−λ) showing that W (a−λ) = 0.

If w ∈ W let us define Φz
w ∈ M(z) as follows. Every element of G(F )

may be written as bw′k with b ∈ B, Weyl group element w′ having its
representative (also denoted w′ by abuse of notation) in N(T ) ∩ K, and
k ∈ J . Define

Φz
w(bw′k) :=

{
δ1/2τz(b) if w′ = w,
0 otherwise.

These are a basis of M(z).
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Proposition 1. Given an unramified character τ of T (F ) we have

Ωz(π(a−λ)Φ
z
1) =

{
δ1/2(aλ)z

−λ if λ is dominant,
0 otherwise.

(7)

Proof. By Lemma 2 we may assume that λ is dominant. Then

Ωz(π(a−λ)Φ
z
1) =

∫
N−(F )

Φz
1(na−λ)ψ(n) dn.

Make the variable change n→ a−λnaλ which introduces a factor of δ(aλ). So

Ωz(π(a−λ)Φ
z
1) = δ(aλ)

∫
N−(F )

Φz
1(a−λn)ψ(a−λnaλ) dn

which equals

δ(aλ)
1/2z−λ

∫
N−(F )

Φz
1(n)ψ(a−λnaλ) dn.

By Lemma 1 we have Φz
1(n) = 0 unless n ∈ N−(o), in which case a−λnaλ ∈

N−(o) also, so ψ(a−λnaλ) = 1. The statement follows.

The standard intertwining integral Aw : I(z) −→ I(wz) is

Az
wΦ(g) =

∫
N(F )∩wN−(F )w−1

Φ(w−1ng) dn.

The integral is convergent for τ = τz with |zα| < 1 when α ∈ ∆+. It makes
sense for other z by meromorphic continuation in a suitable sense. Let τ = τz
and define

Cα(τ) =
1− q−1zα

1− zα
. (8)

Proposition 2. For any w ∈ W ,

Ωwz ◦ Az
w =

∏
α ∈ ∆+

wα ∈ ∆−

1− q−1z−α

1− zα
Ωz. (9)

Proof. We will derive this from Casselman and Shalika [8], Proposition 4.3.
Let Ω′z be the Whittaker functional with respect to the upper triangular
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unipotent, which is the functional appearing in their formulas. Casselman
and Shalika prove

Ω′wz ◦ Az
w =

∏
α ∈ ∆+

wα ∈ ∆−

1− q−1z−α

1− zα
Ω′z.

We take the character of N(F ) to be the conjugate of the character ψ of
N−(F ) by π(w0); thus

Ω′(f) =

∫
N(F )

f(w0n) ψ(w0nw
−1
0 ) dn =

∫
N−(F )

f(nw0)ψ(n) dn.

So Ω′z = Ωz ◦ π(w0) and since Az
w is an intertwining operator, the statement

follows.

Proposition 3. Let α = αi be a simple root and s = si the corresponding
simple reflection. Then

Aszs Φsz
w + Cα(z)Φz

w =

{
Φz
w + Φz

sw if sw > w,
q−1(Φz

w + Φz
sw) if sw < w.

The order is the Bruhat order. With s a simple reflection, sw > w is
equivalent to the condition l(sw) = l(w) + 1. See also Rogawski [29] who
interprets the operator as a Kazhdan-Lusztig element in the affine Hecke
algebra.

Proof. We will deduce this from Casselman [7], Theorem 3.4. We observe
that Casselman’s φw is π(w0)Φww0 . The map w 7→ ww0 is inclusion reversing
with respect to the Bruhat order. Thus the case sw < w corresponds to
Casselman’s first formula, which is

Az
sΦz

w = (Cα(z)− 1)Φsz
w + q−1Φsz

sw.

Now we make use of the identity Cα(z) + C−α(z) = 1 + q−1 and write this

Az
sΦz

w = (q−1 − C−α(z))Φsz
w + q−1Φsz

sw.

Then we replace z by sz and since C−α(sz) = Cα(z) we obtain

Aszs Φsz
w = (q−1 − Cα(z))Φz

w + q−1)Φz
sw.
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This gives the second case.
For the first case, assume that sw > w. We use Casselman’s second

identity but replace w by sw. So his second identity gives us

Az
sΦz

w = Φsz
sw + (Cα(z)− q−1)Φsz

w = Φsz
sw + (1− C−α(z))Φsz

w .

Again changing z to sz gives the second case of our identity.

3 Whittaker functions and Hecke algebras

Let λ be a dominant weight. We do not want the z−λ in (7); rather, we want
zλ. So we will apply the functional Ω to the contragredient of I(z). This is
the representation I(z−1). Thus our principal object of study is

Wλ,w(z) = δ−1/2(aλ) Ωz−1(π(a−λ)Φ
z−1

w ). (10)

We have divided by the constant δ1/2(aλ) just to keep it out of the formulas.
If si is a simple reflection, let Di and Ti be the operators that were defined

in (3) of the introduction. The factor δ−1/2(aλ) in (10) is independent of z
and therefore commutes with the operators ∂i, Di and Ti.

Proposition 4. Let s = si be a simple reflection. Then

Ωz−1(Asz−1

s Φsz−1

w + C−αi(z)Φz−1

w ) = DiΩz−1Φz−1

w . (11)

Proof. We use Proposition 2 with z replaced by sz−1. The left-hand side
of (11) equals(

1− q−1z−αi

1− zαi

)
Ωsz−1Φsz−1

w +

(
1− q−1z−αi

1− z−αi

)
Ωz−1Φz−1

w

= (1− q−1z−αi)(1− z−αi)−1(Ωz−1Φz−1

w − z−αiΩsz−1Φsz−1

w ) = DiΩz−1Φz−1

w .

Theorem 1. (i) For any dominant weight λ,

Wλ,1(z) = zλ.

(ii) Suppose that siw > w. Then

Wλ,siw(z) = TiWλ,w(z).
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Proof. Part (i) follows from Proposition 1. Since Ti = Di − 1, part (ii)
follows from combining Proposition 4 with the result of Proposition 3 (with
z−1 instead of z).

In the remainder of the section, we show that the operators Ti generate an
algebra isomorphic to the (finite) Hecke algebra. Recall that to a parameter
v, the Hecke agebra Hv is a C(v) algebra generated by Ti (1 6 i 6 r) subject
to the quadratic relations

T 2
i = (v − 1)Ti + v

and the braid relations

TiTjTi · · · = TjTiTj · · ·

where the number of terms on both sides is the order of sisj. For the con-
nection to Whittaker functions, set v = q−1.

We first make use of the Whittaker function to give a short proof that
the Ti satisfy the braid relation. Let D be the ring of operators on O(T̂ ) of
the form

∑
w∈W fw ·w where fw ∈ O(T̂ ), and the multiplication is defined by

(f1 · w1)(f2 · w2) = fw1
1 f2 · w1w2. The Di are naturally elements of this ring.

Lemma 3. Suppose that D ∈ D and that D annihilates zλ for every domi-
nant weight λ. Then D = 0.

Proof. Define the support of f ∈ O(T̂ ) to be the finite set of weights with
nonzero coefficients in f . LetD =

∑
w∈W fw·w. We may choose the dominant

weight λ so that the functions fwz
wλ have disjoint support. Then Dzλ = 0

implies that each fw = 0 and so D = 0.

Proposition 5. Let s = si and sj be simple reflections. Then the operators
Ti and Tj satisfy the same braid relations as si and sj. That is, if k is the
order of sisj then

TiTjTi · · · = TjTiTj · · · , (12)

where k is the number of factors on both sides of this equation.

Proof. By Lemma 3 it is enough to show that these both have the same
effect on zλ where λ is a dominant weight. By Proposition 1, Wλ,1(z) = zλ.
Applying either side of (12) toWλ,1 givesWλ,w, so the statement is clear.

The quadratic relations for the Ti is simpler, and may be checked directly.

12



Proposition 6. For any simple reflection si,

D2
i = (1 + q−1)Di, or equivalently, T2

i = (q−1 − 1)Ti + q−1.

Proof. We prove the relation on the Di. Note that the Demazure operator
∂i satisfies

∂2
i = ∂i, ∂iz

−αi∂i = −∂i.
On the other hand

D2
i = (1− q−1z−αi)∂i(1− q−1z−αi)∂i = (1− q−1z−αi)(∂2

i − ∂iq−1z−αi∂i)

and so D2
i = (1 + q−1)Di.

4 Extended affine Hecke algebra modules

The Hecke algebra Hv defined in the previous section may be expanded to
the extended affine Hecke algebra H̃v. The algebra H̃v is generated by Hv

and a commutative subalgebra Θ, which is isomorphic to the group algebra
of the weight latice Λ. As a vector space, H̃v

∼= Hv ⊗ Θ. Let ζλ (λ ∈ Λ) be
the basis vectors of Θ corresponding to its realization as the group algebra
of Λ, so that ζλ+µ = ζλζµ. Thus to describe the multiplication in H̃v it is
sufficient to explain how the generators Ti move past the ζλ. This is the
Bernstein relation:

ζλTi − Tiζsiλ =

(
v − 1

1− ζ−αi

)
(ζλ − ζsiλ). (13)

Note that the right-hand side is in Θ; the numerator is divisible by the
denominator in this ring. Let Ov(T̂ ) = C(v) ⊗O(T̂ ) be the ring of rational
functions on T̂ with the ground field extended to C(v).

We use the operators ∂i, Di and Ti to give an action of H̃v on Ov(T̂ ) as
follows. For ∂i we still use the formula (2). For Di and Ti we replace q−1 by
v in (3) so that:

Di = (1− vz−αi)∂i, Ti = Di − 1.

It is easy to see that

Tif =
f − sif
zαi − 1

− vf − z−αisif

zαi − 1
. (14)
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The operator Ti is similar to but slightly different from Demazure-Lusztig
operators defined by Lusztig [24]. For comparison, these are

f 7−→ f − sif
zαi − 1

− vf − zαisif

zαii − 1
.

Lusztig [24] used these operators to give a representation of the Hecke algebra
on the equivariant K-theory of the flag variety, which was applied by Kazhdan
and Lusztig [22, 23] to prove the Deligne-Langlands conjecture.

We note that Hv admits an algebra homomorphism sgn : Hv −→ C(v) in
which Ti 7→ −1. Indeed, this specialization is consistent with both the braid
and quadratic relations. We may induce this representation to H̃v, obtaining
what is called the antispherical representation, which we now describe. If V
is any Hv-module, let us call a vector v ∈ V antispherical if

φ · v = sgn(φ) v, φ ∈ Hv.

The H̃v-moduleManti of the antispherical representation is generated by an
antispherical vector m0, such that if V is any module containing an antispher-
ical vector v, then there is a unique H̃v-module homomorphismManti −→ V
such that m0 7→ v. Since it is characterized by a universal property, Manti

is unique up to isomorphism. To prove existence, such a module may be
constructed by quotienting H̃v by the left ideal generated by the Ti + 1.

Theorem 2. Let v be an indeterminate. Then there is a representation of H̃v

on Ov(T̂ ) in which Tif(z) = Tif(z) and ζλf(z) = z−λf(z) for λ ∈ Λ. The
resulting module is isomorphic to the antispherical module with antispherical
vector z−ρ. Furthermore

Wλ,w(z) =

{
Twζ

−λ · 1 if λ is dominant,
0 otherwise.

Closely related facts may be found in Arkhipov and Bezrukavnikov [2]
and Reeder [27]. One would like to say that the antispherical vector corre-
sponds to W−ρ,1. Now if λ is dominant, by (10) we know that that Wλ,w is,
up to a normalization, the value of a Whittaker function at a−λ. But this in-
terpretation fails when λ = −ρ, because −ρ is not dominant, and indeed the
Whittaker function vanishes at aρ by Lemma 2. So the antispherical vector
in the model corresponds to a “phantom” value of the Whittaker function at
a point where the actual value is zero!
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Proof. First, let us observe that the results of the previous section imply
the braid and quadratic actions. For the quadratic relations, the proof of
Proposition 6 works with q−1 replaced by an indeterminate v. For the braid
relations, note that if v is specialized to q−1 where q is a prime power, then
the braid relations are are proved in Proposition 5; since there are an infinite
number of such q this implies that they are true as algebraic identities.

This proves that we have a representation of Hv on Ov(T̂ ). To show
that we have a representation of H̃v, we must also check the Bernstein rela-
tion (13). Apply the left-hand side of (13) to f(z). Writing f and sif instead
of f(z) and f(siz), this gives

z−λ
f − sif
zαi − 1

− vz−λf − z−αisif

zαi − 1
− z−siλf − z−λsif

zαi − 1
− vz

−siλf − z−αi−λsif

zαi − 1
.

The terms involving sif all cancel. We rewrite the remaining terms by mul-
tiplying each numerator and denominator by −1 to obtain

[
−z−λ 1

1− zαi
+ vz−λ

1

1− zαi
+

z−siλ

1− zαi
+ v

z−siλ

1− zαi

]
f =(

v − 1

1− ζ−αi

)
(ζλ − ζsiλ)f.

It remains for us to show that Ov(T̂ ) ∼= Manti. First we observe that
there is an antispherical vector z−ρ, where ρ is the Weyl vector (half the sum
of the positive roots). Indeed, z−ρ is annihilated by ∂i since siz

−ρ = zαizρ,
and so Diz

−ρ = 0, which implies that the vector z−ρ is antispherical.
By the universal property of the antispherical module, we have a homo-

morphism Manti −→ Ov(T̂ ) such that m0 7−→ z−λ. We will argue that this
map is injective. First, we have

H̃v =
⊕
λ∈Λ

ζλHv,

soManti is spanned by the vectors ζλm0, which are mapped to z−ρ−λ. These
are a basis of Ov(T̂ ). From this, it is clear that the map is both injective and
surjective.

Proposition 7. There is a unique action of H̃q−1 on M(τ) in which

Ts · Φw =

{
Φsw if sw > w,
q−1Φsw + (q−1 − 1)Φw if sw < w,

(15)
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and for λ ∈ Λ,
ζλ · Φ1 = zλΦ1.

For any dominant weight λ, the map from M(z−1) to O(T̂ )

Wλ : φ 7→ Wλ,φ(z) := δ−1/2(aλ) Ωz−1(π(a−λ)φ
z−1

) (16)

is an intertwiner of H̃q−1 modules.

Proof. The fact that (15) defines an action of the finite Hecke algebra Hq−1

on M(τ) follows from the fact that both Hq−1 and M(τ) are vector spaces
with bases indexed by W ; so Tw 7→ Φw defines a vector space isomorphism.
Therefore we may transport the action of Hq−1 to an action on M(τ) by this
isomorphism, and this regular representation is the action (15).

To check that (16) is an Hq−1-module homomorphism, it suffices to verify
that for any simple reflection si and any w ∈ W ,

Wλ(Ti · Φw) = TiWλ(Φw) (17)

The case where siw > w is just Theorem 1, Part (ii). The case siw < w
follows by the same proof using Propositions 3 and 4.

We claim that the image of Wλ in O(T̂ ) is closed under the action of H̃q−1 .
Indeed, it is clear that the image of Φ1 lies in a one-dimensional subspace
invariant under Θ, and since H̃q−1 = Hq−1Θ, the statement follows. Since
(16) is obviously injective on M(τ) we may therefore pull back the action of
H̃q−1 on O(T̂ ) and obtain an action on M(τ).

5 Bruhat order

In addition to the functionsWλ,w(z) defined by (10) it is also natural to sum
over the Bruhat order and write

W̃λ,w(z) =
∑
y6w

Wλ,w(z).

In this section, we present formulas for W̃λ,w using the operator Di and
combinatorics of the Bruhat order.

Of particular note is the spherical Whittaker function W̃λ,w0 computed
by Casselman and Shalika [8]. In our modified setup the Casselman-Shalika
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formula states that

W̃λ,w0(z) =
∏
α∈∆+

(1− q−1z−α)χλ(z),

where χλ is the irreducible character of Ĝ(C) with highest weight λ. An
alternate proof of this fact will be given in the next section.

Proposition 8. Let s be a simple reflection and w1, w2 ∈ W .
(i) Assume that sw1 < w1 and sw2 < w2. Then w1 6 w2 if and only if

sw1 6 w2 if and only if sw1 6 sw2.
(ii) Assume that sw1 > w1 and sw2 > w2. Then w1 > w2 if and only if

sw1 > w2 if and only if sw1 > sw2.

Proof. Part (i) is a well-known property of Coxeter groups, called property
Z(s, w1, w2) by Deodhar [13]. Note that w 7−→ ww0 is an order reversing
bijection of W . Applying this gives (ii).

Suppose that s = si is a left ascent of w ∈ W : sw > w. Then we will
define

H(w, s) = {u ∈ W |u, su 6 w}.

Proposition 9. The set H(w, s) is cofinal in W in the sense that if u ∈
H(w, s) and t 6 u then t ∈ H(w, s).

Proof. We have t 6 u with both u, su 6 w. We wish to show that t ∈
H(w, s). We may assume without loss of generality that su < u. For if not,
then u < su so t 6 su. Thus interchanging u and su if necessary, we may
assume that su < u. Also without loss of generality, t < st since otherwise
both t, st are 6 u 6 w as required. Now taking w1 = su and w2 = t in
Proposition 8 (ii), we see that both t, st 6 u and so t ∈ H(w, s).

Define an integer-valued function cw,s on W by

cw,s(u) =
∑

t ∈ H(w, s)
t > u

(−1)l(t)−l(u).

Theorem 3. Let α = αi be a simple root, and let s = si denote the corre-
sponding reflection. Assume that sw > w. Then

W̃λ,sw(z) = (1− q−1z−α) ∂iW̃λ,w(z)− q−1
∑

u∈H(w,s)

Wλ,u(z). (18)
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Equivalently,

W̃λ,sw(z) = (1− q−1z−α) ∂iW̃λ,w(z)− q−1
∑

u∈H(w,s)

cw,s(u) W̃λ,u(z). (19)

Proof. By Proposition 4

δ1/2(aλ)(1− q−1z−α)∂iW̃λ,w =
∑
x6w

Ωz−1(Asz−1

s Φsz−1

x + C−α(z)Φz−1

x ).

We split the sum into two parts according as sx > x or sx < x and use
Proposition 3. We have∑
x > w
sx < x

Ωz−1(Asz−1

s Φsz−1

x +C−α(z)Φz−1

x ) = δ1/2(aλ)
∑
x > w
sx < x

(Wλ,x(z)+Wλ,sx(z)).

By Proposition 8 (ii) with w1 = w and w2 = x, we see that⋃
x > w
sx > x

{x, sx} = {u ∈ W |u > sw}.

Therefore this contribution equals δ1/2(aλ) W̃λ,sw(z).
On the other hand, let us consider the contributions from sx < x. By

Propositions 3 and 4 these contribute

q−1 δ1/2(aλ)
∑
x > w
sx < x

(Wλ,x(z) +Wλ,sx(z)) = q−1 δ1/2(aλ)
∑

u∈H(w,s)

Wλ,u(z).

This proves (18). By Möbius inversion (Verma [31], Deodhar [13]) we may
write

Φz
u =

∑
t6u

(−1)l(t)−l(u)Φ̃z
t ,

and substituting this gives (19).

The function cw,s has a tendency to take on only a few nonzero values.
It vanishes off H(w, s). But even if H(w, s) contains many elements, cw,s(u)
will typically vanish for most of these. This sparseness means there are
usually only a few terms on the right-hand side in (19). For example, in the
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group SL4, with Cartan type A3, if we consider the pairs w, s where s is a
left ascent of w, we find sixteen such pairs where cw,s is always zero. Thus
for these pairs the identity (19) takes the form

W̃λ,sw(z) = (1− q−1z−α) ∂iW̃λ,w(z).

There are seventeen pairs (w, s) such that cw,s(u) 6= 0 for only one particular
u. Then

W̃λ,sw(z) = (1− q−1z−α)∂iW̃λ,w(z)− q−1W̃λ,u(z).

Finally, there are three cases where

W̃λ,sw(z) = (1− q−1z−α)∂iW̃λ,w(z)− q−1W̃λ,u(z)− q−1W̃λ,v(z) + q−1W̃λ,t(z)

These cases are given by the following by the following table.

w s u v t
s1s2s3s2s1 s2 s1s2s3s1 s2s3s2s1 s2s3s1

s2s1s3s2 s1 s1s2s1 s1s3s2 s1s2

s2s1s3s2 s3 s2s3s2 s1s3s2 s3s2

6 Specializations

There are two interesting specializations of the parameter v, besides v =
q−1 which produces the Whittaker function. We may also take v = 0 and
v = 1. Using information we get from these specializations, we will prove
two well-known interesting results: the Casselman-Shalika formula for the
spherical Whittaker function, and Demazure’s formula (22) below expressing
the character of an irreducible representation as a Demazure character.

We’ve proved using Whittaker functions that the operator Ti satisfies the
braid relation:

TiTjTi · · · = TjTiTj · · ·
where the number of terms on both sides equals the order of sisj. Recall that

Tif =
f − sif
zαi − 1

− q−1f − z−αisif

zαi − 1
.

The two components of this are the divided difference operator

Dif =
f − sif
zαi − 1
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and −q−1z−αi∂i, with ∂i the Demazure operator. It is easy to check that
Di = ∂i − 1. We will denote by ρ the Weyl vector (half the sum of the
positive roots).

Proposition 10. Both Di and ∂i satisfy the braid relation.

Proof. For Di we may just specialize q−1 → 0 in the braid relation for Ti. To
deduce the braid relation for ∂i, note that−Di and ∂i are conjugate in the ring
of endomorphisms of O(T̂ ). Inded, if f ∈ O(T ) define θf(z) = z−ρf(−z).
We have θ2 = 1 and θ(−Di)θ = ∂i, so ∂i also satisfies the braid relation.

Now we may define ∂w = ∂i1 · · · ∂ik where w = si1 · · · sik a reduced de-
composition of w ∈ W . We may emphasize the dependence on q by writing,
instead of Wλ,w(z) and W̃λ,w(z) the notationsWλ,w(z, q−1) and W̃λ,w(z, q−1).

Proposition 11. For any dominant weight λ and w ∈ W , thenWλ,w(z, 1) =
(−1)l(w)zw(λ+ρ)−ρ.

Proof. If w = 1, we know this. We argue by induction on l(w). Specializing
to q = 1 the operator Ti becomes

Tif =
f − sif
zαi − 1

− f − z−αisif

zαi − 1
=

z−αi − 1

zαi − 1
sif = −z−αisif.

So it is sufficient to show that the function fw(z) = (−1)l(w)zw(λ+ρ)−ρ satisfies
the recursion

−z−αisifw(z) = fsiw(z)

when siw > w and this follows from siρ = ρ− αi.

Proposition 12. We have

W̃λ,w(z, 0) = ∂wz
λ.

Proof. This is true if w = 1, so we argue by induction on l(w). We have
proven the recursion

W̃λ,siw(z, q−1) = (1− q−1z−αi) ∂iW̃λ,w(z, q−1)− q−1
∑

u∈H(s,w)

Wλ,u(z, q
−1).

Specializing q−1 → 0 we have

W̃λ,siw(z, 0) = ∂iW̃λ,w(z, 0),

and the statement follows.
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Let E be the ring of finite linear combinations of zµ with µ ∈ Λ in which
the coefficients are polynomials in q−1. The ring E is a principal ideal domain.

Lemma 4. Let f(z, q−1) ∈ E. Suppose that for each simple reflection si we
have f(z) = (1−q−1z−α)fi(z, q

−1) where fi ∈ E and fi is si-invariant. Then

f(z, q−1) =
∏
α∈∆+

(1− q−1z−α)f0(z, q−1) (20)

where f0 ∈ E and f0 is W -invariant.

Proof. The factors (1 − q−1z−α) with α ∈ ∆+ are coprime in E . First let
us show that f is divisible by each of them. If not, let α be such that
(1 − q−1z−α) does not divide f . Write α =

∑
niαi where ni ∈ Z and call∑

ni the height of α. We assume the counterexample α is minimal with
respect to the height. By hypothesis, α is not simple, so ht(α) > 1. Thus we
may find si such that α = si(β) where β is a positive root of lower height. By
induction f(z) is divisibe by (1−q−1zβ). However f(z) = (1−q−1z−αi)fi(z)
where fi(z) is si-invariant. Since β and si(β) are both positive, β 6= αi and
so fi is divisible by (1 − q−1z−β). Since it is not divisible by (1 − q−1z−α)
this is a contradiction.

Thus we have (20) for f0 in E . To see that f0 is invariant under W , write

f0(z) =
∏

α ∈ ∆+

α 6= αi

(1− q−1z−α)−1fi(z),

where fi is si-invariant, and the factors in the product are permuted by si,
so f0 is si-invariant for every simple reflection si.

Let W◦λ(z) := W̃λ,w0 =
∑

wWλ,w(z) be the spherical Whittaker function.

Theorem 4. (Casselman-Shalika) Let λ be a dominant weight. Then

W◦λ(z) =
∏
α∈∆+

(1− q−1z−α)∂w0z
λ. (21)

This can be compared with the Casselman-Shalika formula as it is usu-
ally stated when we show in Theorem 5 that ∂w0z

λ is the character of the
irreducible representation of Ĝ(C) with highest weight λ.
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Proof. Let

gi =
∑
w ∈W
siw > w

Wλ,w(z), fi = ∂igi.

Since fi is in the image of ∂i it is si-invariant. Moreover W◦λ = Digi =
(1− q−1z−αi)fi. By the Lemma it follows that∏

α∈∆+

(1− q−1z−α)f0(z)

where f0 is W -invariant. We have

W◦λ(z) =
∑
w

Twz
λ

and each term is a polynomial in q−1 of degree l(w). SoW◦λ(z) is a polynomial
in q−1 of degree l(w0) = |∆+|. It follows that f0 has degree zero, that is, is
independent of q.

Since f0 is independent of q, we may compute it by setting q−1 → 0. The
spherical Whittaker functionW◦λ equals W̃λ,w0 . So by Proposition 12 we have
f0 = ∂w0z

λ.

Let λ be a dominant weight, and as before let χλ(z) be the irreducible
character of Ĝ(C) with highest weight λ.

Theorem 5. (Demazure) Let λ be a dominant weight. Then

∂w0z
λ = χλ(z). (22)

Proof. By Proposition 11

W̃λ,w(z, 1) =
∑
u6w

(−1)l(u)zu(λ+ρ)−ρ.

So we may take w = w0 in (21) and specialize to q = 1 to obtain∏
α∈∆+

(1− z−α)∂w0z
λ =

∑
u∈W

(−1)l(u)zu(λ+ρ)−ρ.

Moving the product to the other side and applying the Weyl character for-
mula we obtain the result.
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7 Fibers of Bott-Samelson resolutions

In this section, we will give some relationships between Whittaker func-
tions and the geometry of Schubert and Bott-Samelson varieties. Let w =
(sh1 , · · · , shk) be a reduced decomposition of w = sh1 · · · shk into a product
of simple reflections. Bott and Samelson gave a smooth projective variety
Zw together with a morphism Zw −→ Xw that is a birational equaivalence.
If Xw is singular, this gives a resolution of its singularities. On the other
hand, we have seen that the Whittaker function W̃w,λ(z) is “roughly” equal
to Dh1 · · ·Dhkz

λ; there are correction terms, and these follow the same com-
binatorics as the fibers of the Bott-Samelson map.

Let G be a complex reductive group, and let B be a Borel subgroup. In
the application to Whittaker functions, G will be the group formerly denoted
Ĝ(C), but we suppress the hat in this section.

Let X = G/B be the flag variety. If w is an element of the Weyl group
W , let Yw be the image of BwB in X. The closure

Xw =
⋃
u6w

Yu

is the closed Schubert cell.
To define the Bott-Samelson variety Zw, let Pi be the parabolic subgroup

generated by B and si. The group Bk acts on Ph1×· · ·×Phk on the right by

(p1, · · · , pk)(b1, · · · , bk) = (p1b1, b
−1
1 p2b2, · · · , bk−1pkbk). (23)

Then Zw is the quotient variety. The multiplication map Ph1×· · ·×Phk −→ G
induces a rational map Zw −→ Xw that is a birational equivalence.

The fibers of the map Zw −→ Xw are constant over each open Bruhat
cell Yu with u 6 w. The fiber over Yw (containing the generic point) consists
of a single point. For other Yu with u 6 w the cohomology of the fiber was
described combinatorially by Deodhar [14]. To explain this description, let us
choose a subword of w representing u. This means that we have a sequence

1 6 j1 < j2 < · · · < jl 6 k (24)

with u = shj1 · · · shjl . This is not assumed to be a reduced decomposition.
There may be more than one such subword, and we will sum over these.

We may alternatively specify a sequence σ1, σ2, · · · , σk, σk+1 of Weyl group
elements such that σk+1 = 1, and each σi equals either σi+1 or shiσi+1, and
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σ1 = u. Such data are equivalent to giving a sequence (24). Indeed, given
such as sequence define σ by downward induction from σk+1 = 1 with σi =
shiσi+1 if i is in the sequence (24), or σi = σi+1 if it is not. Following Deodhar,
we define the defect d(σ) to be the number of i such that shiσi+1 < σi+1. We
also write π(σ) = u, i.e. π(σ) = σ1.

Now let Fu be the fiber of the map Zw −→ Xw over a point in Yu. The
Poincaré polynomial Pw,u(q) is the polynomial of degree equal to the complex
dimension of Fu whose n-th coefficient is the dimension if H2n(Fu).

Proposition 13. To any u,w ∈ W with u 6 w,

Pw,u(q) =
∑

π(σ)=u

qd(σ).

Proof. This was stated without proof in Deodhar [14], where it was an ob-
servation of the referee. A proof of an equivalent formula may be found in
Gaussent [15]. Note that Deodhar parses the word representing u from left
to right (so his σ0 = 1 and σi = σi−1 or σi−1shi), while it is more conve-
nient for us to parse it from right to left. This does not affect the Poincaré
polynomial.

We will now relate this to Whittaker functions. Let us adopt a notation
that is suggestive of an analogy between these and Schubert varieties. If
w ∈ W , define the operators Y w := Tw and Xw =

∑
u6w Y u,λ on O(T̂ ) so

that
Ww,λ(z) = Y w(zλ) and W̃w,λ(z) = Xw(zλ).

Finally, as noted in the introduction, for a reduced word w = (sh1 , · · · , shk),
let

Zw = Dh1 · · ·Dhk , with Di = (1− q−1z−αi)∂i.

Our theme is that the relationship between the functions Zw and Xw is the
same as the relationship between the Bott-Samelson and Schubert varieties
Zw and Xw. The idea is that Zw is built up from a point by successive P1

fiberings, and Di corresponds to such an operation. If we accept this analogy,
Zw is analogous to the Bott-Samelson variety Zw.

Moreover Y w and Xw are analogous to the open and closed Schubert
varieties Yw and Xw. The next result shows that we can express Zw in terms
of the Y u with u 6 w by multiplying in a factor corresponding to the fiber of
Zw −→ Xw over the open Schubert cell Yu. This factor is just the Poincaré
polynomial of the fiber.
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Theorem 6. To any w in W with reduced decomposition w,

Zw =
∑
u6w

Pw,u(q
−1)Y u.

Proof. Combining Proposition 3 with Proposition 4, we see that applying
Di to Y y (with y ∈ W ) gives Y y + Y siy if siy > y; or the same thing
multiplied by q−1 if siy < y. Thus applying Dh1 · · ·Dhk to Y 1(zλ) = zλ

(Theorem 1 (i)) and collecting the coefficients of Y u, it is clear that there
will be a contribution for each sequence σ1, · · · , σk, σk+1 such that σk+1 = 1
and σi is either shiσi+1 or σi+1. Moreover, there will be a multiplication by
a power of q−1 each time we encounter a descent. The total power of q−1 is
just Deodhar’s defect d(σ).

There is a variant of this result that we will prove from scratch. If s is
a left ascent of w then we have a partial Bott-Samelson variety Zs,w which
is the quotient (P ×Xw)/B where if s = si then P = Pi and B acts on the
right by (p, x) · b = (pb−1, bx).

The map µ(p, x) = p · x is obviously compatible with the action of B
on P × Xw, hence induces a morphism µ : Zs,w −→ Xsw. It is a birational
equivalence. The fiber over an open Schubert cell Yu (with u 6 sw) is either a
single point or a P1, and we will find a combinatorial criterion to distinguish
these cases. Let T be a maximal torus of G contained in B. Since the fibers
of µ are constant on Schubert cells Yt ⊂ Xsw with t ∈ W , it suffices to study
the fiber µ−1(yt), where yt ∈ Y T

t is the unique T -fixed point in the Schubert
cell Yt. Since the fiber µ−1(yt) is either a single point or has dimension 1, it
is determined by its Euler characteristic χ(µ−1(yt)), and this is what we will
compute.

Lemma 5. Let V be a projective complex algebraic variety with a T action
whose fixed point set V T consists of isolated points. Then χ(V ) = #V T .

Proof. Choosing a regular element λ of Hom(C×, T ), it follows that V has a
C× action with the same fixed point set, that is, V C× = V T . This C× action
defines a Bialynicki-Birula cellular decomposition of V , with cells {Ux}x∈V C×

defined by
Ux = {z ∈ V | lim

ε→0
ε · z = x},

one cell for each x. See Bialynicki-Birula, Carrell and McGovern [3]. Since
the cells are all of even real dimension, the Euler characteristic of V is simply
the number of cells - that is, the number of fixed points.
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Proposition 14. The fiber of µ over Yu is P1 if and only if both u, su 6 w,
and is a point otherwise.

Proof. In view of Lemma 5, in order to compute χ(µ−1(yt)), we need to com-
pute the number of fixed points in the set µ−1(yt)

T . This is straightforward
since the fixed point set ZT

s,w equals {(u, t) | u ∈ 〈s〉 , t 6 w} and the map
µT : ZT

s,w −→ XT
sw is multiplication (u, t) 7→ ut. Discussions of these facts

may be found in many places, usually for “standard” Bott-Samelson varieties
rather than these partial ones. See, for example Brion [5].

Now, from these two facts, we compute (µT )−1(yt) for t 6 w. In general,
we have

(µT )−1(yt) = {(u, x) | u ∈ 〈s〉, x 6 w and ux = t}.

Since 〈s〉 has order two, there are at most two points in (µT )−1(yt). One of
them is the point y(1,t), which is the image of the affine point (1, t) in P1.
The other possibility is the y(s,st); but this point is only a point of ZT

s,w if
st 6 w. Thus we conclude that (µT )−1(yt) is in bijection with the elements
z such that t and st are less than or equal to w.

The map µ is an isomorphism over the big cell Ysw. Thus it remains to
study the fibers over the cells Yu with u 6 w.

It now suffices to to show that the fiber over u is a P1 if and only if both
u, su 6 w, and is a point otherwise. Thus we must show that the Euler
characteristic of µ−1(yu) is equal to 2 if and only if both u, su 6 w, and is
equal to one otherwise. By Lemma 5, we must show that the cardinality
of (µT )−1(yu) is equal to 2 if and only if both u, su 6 w, and is equal to
1 otherwise. But, as explained above, (µT )−1(yu) is the one element set
y(1,u) unless both u, su 6 w, in which case (µT )−1(yu) is the 2 element set
{y(1,u), y(s,su)}.

Now let H(w, s) = {u ∈ W |u, su 6 w} and cw,s be as in Theorem 3. We
may write (19) in our suggestive notation as (for sw > w)

DiXw = Xsw + q−1
∑

u∈H(w,s)

cw,s(u)Xu. (25)

As in Proposition 9 the set H(w, s) has the property that if u ∈ H(w, s) and
t 6 u then t ∈ H(w, s).

26



Proposition 15. Let s = si be a left ascent of w. Then

{y ∈ Xsw | µ−1(y) is nontrivial} =
∑

u∈H(w,s)

cw,s(u)Xu. (26)

The notation must be explained. We are thinking of the varieties in (26)
as multisets, and the identity is in the sense of inclusion-exclusion. In other
words, if y ∈ X and we sum the coefficients cw,s(u) over u such that y ∈ Xu,
we will get 1 if µ−1(y) is nontrivial, and 0 otherwise.

Since the fiber of the map Zs,w −→ Xsw over the points in Yu with u ∈
H(w, s) is P1, these points will contribute 1+q−1 to the Poincaré polynomial
of the fiber, while the other points in Xsw will contribute 1. If now Pu(q

−1)
is the Poincaré polynomial of the fiber over y ∈ Xsw, we may rewrite this
identity (26) as∑

u 6 sw

Pu(q
−1)Yu = Xsw + q−1

∑
u∈H(w,s)

cw,s(u)Xu,

and now we recognize this as analogous to (25).

Proof. Let y ∈ X. Let t ∈ W such that y ∈ Yt. Then∑
u ∈ H(w, s)
y ∈ Xu

cw,s(u) =
∑

u ∈ H(w, s)
t 6 u

cw,s(u).

It follows from Möbius inversion (Verma [31] or Deodhar [13]) that given
y ∈ X that this is 1 if t ∈ H(w, s) and 0 otherwise. Thus the statement
follows from Proposition 14.

8 Nonsymmetric Macdonald polynomials

In this section, we explain how the Iwahori Whittaker functions presented
earlier are limits of non-symmetric Macdonald polynomials. To do so, we
use the results and notation of Ion [19], with one exception – for ease of
comparison, we write zλ for an element of the lattice O(T̂ ) rather than eλ.
Recall that in an earlier section, we showed that for any dominant weight λ,
the Iwahori Whittaker function is given by

Wλ,w(z) = Tw(zλ)
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where Tsi = Ti is given by (14) with v = q−1. Conjugating by zρ, viewed as
translation by ρ in O(T̂ ), gives

zρ Ti z−ρ = −si + (1− q−1)
si − 1

1− zαi
.

In Ion’s notation the “basic representation” of Cherednik, a faithful repre-
sentation of the double affine Hecke algebra on O(T̂ ), has Ti acting according
to Section 2.2 of [19] (see p. 3491) by

Ti · zλ = t
1/2
i zsi(λ) + (t

1/2
i − t

−1/2
i )

zλ − zsi(λ)

1− z−αi

or in our operator notation, letting T̄i := t
1/2
i Ti:

T̄i = tisi + (ti − 1)
1− si

1− z−αi
.

Recalling that

Ti
−1

= Ti − (ti − 1),

then the action of T̄−1
i in the module is given by

T̄−1
i = si + (1− ti)

1− si
1− zαi

,

so that by setting ti = q−1 for all i > 0 and for any w ∈ W ,

T̄−1
i = −zρ Ti z−ρ, and T̄−1

w−1 = (−1)`(w)zρ Tw z−ρ. (27)

with Ti as in (14).
Ion’s main result in [19] (Theorem 4.8) states that the “dual standard ba-

sis” {T̄−1

w−1
λ

ωλ̃ · 1}λ∈P is the family {Ẽλ(0, t)}λ∈P , a normalized version of the

non-symmetric Macdonald polynomial. Here wλ is an affine Weyl group ele-
ment corresponding to λ and ωλ̃ is an operator corresponding to a minuscule
weight associated to λ. Thus, given the relation (27), it is natural to suspect
that Iwahori Whittaker functions Wλ,w(z) are related to the polynomials
Ẽλ(0, t). However, the action of the Hecke algebra from the Whittaker func-

tional is naturally given in terms of the Bernstein presentation for H̃ = HnP ,
so we are not able to use Ion’s result directly.
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Instead, we make use of the relation (see the proof of Theorem 4.8 in
[19]):

Ẽλ(q, t) = χ(w0)−1Tw0w0(Ẽλ(q
−1, t−1)). (28)

Here χ is the map that sends each generator Ti to t
1/2
i . This identity can

be used to relate special values of Eλ(0, t) and Eλ(∞, t−1), and then take
advantage of the properties of Eλ(∞, t).

Then Ẽλ is related to Eλ by Definition 3.10 of [19], which uses the char-
acter:

ξ(w) = t`(w)/2 to define Ẽλ(q, t) := ξ(w◦λ)
−1Eλ(q, t),

where w◦λ is the minimal length element for which λ is taken to an antidom-
inant weight. (Note that having identified all ti = t, then ξ = χ.) Thus (28)
makes sense as stated for the unnormalized Eλ(q, t) as well.

Theorem 7. The Whittaker function Wλ,w(z) with q−1 = t is equal to

(−t)`(w)z−ρw0Ew0w(λ+ρ)(0, t
−1).

Proof. According to (27), Wλ,w(z) is equal to (−1)`(w)z−ρ T̄−1
w−1z

λ+ρ, so it
suffices to show

t−`(w)T̄−1
w−1z

λ+ρ = w0Ew0w(λ+ρ)(0, t
−1). (29)

To connect with non-symmetric Macdonald polynomials Eλ(∞, t), note that
the right-hand side of (29) may be rewritten

w0Ew0w(λ+ρ)(0, t
−1) = χ(w0)w0T

(t−1)
w0

w0Ew0w(λ+ρ)(∞, t), (30)

using (28) with t 7→ t−1 where T
(t−1)
w0 denotes the operator with t replaced by

t−1. An easy verification on simple reflections shows that w0T
(t−1)
w0 w0 = T−1

w0
.

So we may write the above right-hand side of (30) as

χ(w0)T−1
w0
Ew0w(λ+ρ)(∞, t).

Since λ + ρ is strictly dominant, Theorem 3.1 of [19], equation (20) applies
and the above further simplifies to

χ(w)−1T−1
w0
Tw0wEλ+ρ(∞, t).

Further by Proposition 3.6 of [19], to any µ dominant, Eµ(∞, t) = zµ, so the
above equals

χ(w)−1T−1
w0
Tw0wz

λ+ρ.
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By the length increasing relation on the Ti, we have Tw0wTw−1 = Tw0 . Sub-
stituting in Tw0T

−1
w−1 for Tw0w in the expression above, we get

χ(w)−1T−1
w0
Tw0T

−1
w−1z

λ+ρ = χ(w)−1T−1
w−1z

λ+ρ = t−`(w)T
−1

w−1zλ+ρ,

and (29) follows.
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