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Nonvanishing nth order twists of a GL2

form

Theorem (Fearnley-Kisilevsky, David-F-K) Fix

n prime. Let E be an elliptic curve defined over

Q. Suppose Lalg
(
1
2, E

)
6≡ 0 (mod n). Then

Lalg
(
1
2, E ⊗ χ

)
is nonzero for infinitely many

Dirichlet characters of order n.

Proof Arithmetic of modular symbols and Ce-

botarev density theorem.

Arithmetic interpretation Let F be a cyclic

extension of Q of degree n. Then a Galois char-

acter χ of Gal(F/Q) corresponds to a Dirichlet

character of order n. The Birch/Swinnerton-

Dyer conjecture predicts that

L
(
1
2, E ⊗ χ

)
is nonzero

iff

rank of E(F )χ is zero.
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Nonvanishing nth order twists, (cont.)

Theorem(Brubaker, Bucur, C, Frechette, Hoff-

stein) Let K be a number field containing the

nth roots of unity. Let π be a cuspidal, self-dual

automorphic representation of GL2(AK). Sup-

pose L
(
1
2, π

)
6= 0. Then there exist infinitely

many idele class characters χ of K of order n

s.t. L
(
1
2, π ⊗ χ

)
6= 0.

So, BBCFH + Modularity + BSD implies:

Let E/K be a rank zero elliptic curve. Then

there exist infinitely many degree n cyclic ex-

tensions F of K s.t. #E(F ) < ∞.
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Nonvanishing nth order twists, (cont.)

Remarks

(i) n = 2 (Waldspurger, Kohnen-Zagier) re-

lates quadratic twists of L-series of π to

Fourier coefficients of a metaplectic cus-

pidal automorphic representation. Don’t

know how to do this for n > 2!

(ii) Note necessity of assumption L
(
1
2, π

)
6=

0 in both [FK] and [BBCFH]. Theorem

should be true without this assumption. In

fact, “almost all” twists should be nonzero

when n > 2. (See e.g. [DFK] where a ran-

dom matrix model is given for predicting

frequency of vanishing twists.)
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(iii) (Diaconu-Tian) Let p be a prime number,

F a totally real field of odd degree s.t.

[F (µp) : F ] = 2. Let Wδ be the twisted

Fermat curve

Wδ : xp + yp = δ.

Then there exist infinitely many δ ∈ F×/F×p

for which Wδ has no F -rational solutions.

The proof of this result is based on Zhang’s

extension of the Gross-Zagier formula to

totally real fields and on Kolyvagin’s tech-

nique of Euler systems. Then, a double

Dirichlet series is used to show that a cer-

tain family of twisted L-series has nonvan-

ishing central value infinitely often.
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Idea of proof of BBCFH

Consider the double Dirichlet series

Z(s, w;π) =
∑ L

(
s, π ⊗ χ

(n)
d

)
|d|w

G(1, χd)

=
∑ amD(w, m)

|m|s

where D(w, m) is the Gauss sum Dirichlet se-

ries of Kubota, which is essentially the mth

Fourier coefficient of Ẽ(n)(z, W ).

Some properties of Z(s, w;π) :

• Two functional equations:

(s, w) 7→ (1− s, w + 2s− 1)
(s, w) 7→ (w + s− 1

2,1− w).

• Meromorphic continuation to C2.

• simple pole at w = 1
2 + 1

n.
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Idea of proof of BBCFH, (cont.)

Residue of Z(s, w;π) at w = 1
2 + 1

n : is a con-

stant multiple of

L

(
s +

1

2n
, π ⊗ θ(n)

)
.

Therefore∑
|d|<x

L

(
1
2, π ⊗ χ

(n)
d

)
G(1, χd)

∼ ∗L
(

1
2 +

1

2n
, π ⊗ θ(n)

)
x
1
2+1

n + Oε(x
1
2+1

n−ε).

How to show L
(
1
2 + 1

2n, π ⊗ θ(n)
)

nonzero??
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But nonvanishing assumption L
(
1
2, π

)
6= 0 pro-

vides another means of showing infinitely many

nonvanishing central twists. Fix s = 1
2. Then

we have functional equation

Z
(
1
2, w;π

)
7→ Z

(
1
2,1− w;π

)
.

But a nonzero Dirichlet series with such a func-

tional equation must have infinitely many nonzero

coefficients!

Recently an unconditional nonvanishing theo-

rem for n = 3 has been established by [Brubaker-

Friedberg-Hoffstein]. It remains an open prob-

lem to prove such a statement for n ≥ 4.
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Determination of modular forms by twists

of critical values

Theorem (Luo-Ramakrishnan) Let f, g be two

Hecke newforms for a congruence subgroup of

SL2(Z). Suppose there exists a nonzero con-

stant c s.t.

L
(
1
2, f ⊗ χd

)
= cL

(
1
2, g ⊗ χd

)
for all quadratic characters χd. Then f = cg.

Theorem is more general than stated: applies

to any critical values, also to other families of

twists, ...
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Theorem of Luo and Ramakrishnan

• An application to a question of Kohnen: let
g1, g2 be two newforms in the Kohnen sub-
space S+

k+1
2

with Fourier coefficients b1(n), b2(n)

respectively. Suppose

b21(|D|) = b22(|D|)
for almost all fundamental discriminants with
(−1)kD > 0. Then g1 = ±g2, i.e. you can’t
just switch some of the signs of the coef-
ficients and get another eigenform. Proof
uses Waldspurger’s formula relating the square
of bj(|D|) to a suitable multiple of a twisted
central value.

• Similar theorem holds for central deriva-
tives in the case of negative root number
[L-R]. By the theorem of Gross-Zagier, this
allows one to determine an elliptic curve by
heights of Heegner points.

9



Extensions of Luo-Ramakrishnan

• Ji Li, in his recent thesis, extends [LR]

to π1, π2 cuspidal automorphic representa-

tions of GL2(AK), for K an arbitrary num-

ber field.

• (C, Diaconu) extends [LR] to symmetric

squares of cusp forms on GL2(AQ).

All of these theorems are proved by considering

twisted averages of twists of central L-values.

The result of J. Li should also extend to cover

the case of determining π by twisted central

derivatives. Over a number field, the averag-

ing method employed by [LR] (originating in

the work of Iwaniec and Murty-Murty) will not

work.
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Proof of Chinta-Diaconu

By contrast with J. Li’s result, the result of

[CD] is valid only over Q. It relies on GL3 aver-

aging techniques of Bump-Friedberg-Hoffstein

and Diaconu-Goldfeld-Hoffstein. It would be

interesting to see if the methods of Soundarara-

jan will work here.

Idea: for r prime, consider the twisted averages∑
0<d<x

L
(
1
2, π1 ⊗ χd

)
χr(d)Pd

(
1
2, π1

)
∼

ar(π1)x logx

∑
0<d<x

L
(
1
2, π2 ⊗ χd

)
χr(d)Pd

(
1
2, π2

)
∼

ar(π2)x logx

It follows that ar(π1) = ar(π2) provided we

can remove the weights Pd

(
1
2, πi

)
from the sum-

mation.
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Proof of Chinta-Diaconu (cont.)

In sieving to to remove the weights, we require

• Lindelöf on average:
∑
|d|<x

|L
(
1
2, π ⊗ χd

)
| <<ε

x5/4+ε

• Work of Kim and Kim-Shahidi establishing
the automorphy of the symmetric fourth
power of a GL2 form

Of course,∑
|d|<x

|L
(
1
2, π ⊗ χd

)
| <<ε x1+ε

is expected. Our proof of the bound above is
valid only over Q, as we appeal to a character
sum estimate of Heath-Brown. It would be of
great interest to see what types of bounds can
be proved over an arbitrary number field.
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Mean values of quadratic zeta functions

Recall result of Jutilla, Takhtadzjan- Vinogradov:∑
0<±d<X

L(1/2, χd) ∼ c1X logX+c2x+O(x1−ε).

Multiplying the LHS by ζ(s), the sum will range

over Dedekind zeta functions of quadratic ex-

tensions of Q, ordered by conductor.

The quadratic multiple Dirichlet series associ-

ated to A5 will give an analogous mean value

result for zeta functions of biquadratic exten-

sions.
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Dynkin diagrams and multiple Dirichlet

series

Given a simply-laced Dynkin diagram, vertices
v1, · · · , vr. Construct a multiple Dirichlet series
which is roughly of the form:

∞∑
n1,n2,...,nr=1

[∏
j > i, vj adjacent to vi

(
ni
nj

)]
n

s1
1 · · ·nsr

r
.

Functional equations:

σi : si 7→ 1− si, sj 7→ sj + si − 1/2,

if vj is adjacent to vi. The other sk are left
unchanged.

We have the Coxeter relations

σ2
i = 1, (σiσj)

ε(i,j) = 1,

where ε(i, j) = 3 if vi and vj are adjacent nodes
in the Dynkin diagram, and ε(i, j) = 2 if they
are not.
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The region of absolute convergence of the heuris-

tic multiple Dirichlet series contains a Weyl

chamber. Translating this region by the group

of functional equations will yield the analytic

continuation of Z to Cr.

The multiple Dirichlet series constructed in this

manner are conjectured to coincide with the

Whittaker coefficients of Eisenstein series on

the metaplectic double cover of the split simply

connected semisimple group associated with

this Dynkin diagram. (Bump-Hoffstein verified

for A2.)

See Brubaker-Bump-Chinta-Friedberg-Hoffstein
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Biquadratic zeta functions

This heuristic can be precisely realized for A5.

The associated multiple Dirichlet series is roughly

of the form Z(s1, s2, s3, s4, s5) =

∑
d2,d4

L(s1, χd2
)L(s3, χd2d4

)L(s5, χd4
)

d
s2
2 d

s4
4

.

Specialize to s1, s3, s5 = 1/2, analytically con-

tinue, and contour integration:

Theorem(C)∑
d1,d2>0
d1d2<x

odd

a(d1, d2)L2(
1
2, χd1

)L2(
1
2, χd2

)L2(
1
2, χd1d2

)

∼
ζ2(

3
2)ζ2(2)3

48
X log4 X,

as X →∞.
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