Function field example of a

quadratic double Dirichlet series
Gautam Chinta

Bretton Woods, NH
11 July 2005



The rational function field F(t)

Notation:

e ¢ IS an odd prime power, congruent to 1
mod 4 (for simplicity)

o F,[t] = polynomial ring in ¢t with coeffi-
cients in the finite field Fy. This is a PID.
The nonzero prime ideals of Fy[t] are gen-
erated by irreducible polynomials.

e F,(t) quotient field

o Define N(f) = |f| = ¢9¢9/ for f € Fy[t]



The zeta function of F[t]

e ((s) defined by Euler product or Dirichlet
series

Ll (1‘|;8>_1: S

PeF[t] FEF,[t]
rred,monac MONIC,NONZETO
e Geometric series: ((s) =
i # of monic polys of deg n 1
n=0 q"® 1 — ql—S

e Functional equation

() = () = (A - )
—dq



Quadratic residue symbol

For f an irreducible, monic polynomial in Fy[¢],
define

(@) = (1) = gW1=D/2( mod 5.
g

Thus x¢(g) = %1 for f, g relatively prime.

If f1, fo are two monic polynomials s.t. f1fo
IS squarefree, we define xr r, = XfXf- 1HUS
X f NOW makes sense whenever f is monic and
squarefree.

Quadratic Reciprocity Let f, g € F4[t] be monic,
squarefree and relatively prime. Then

(5)=(0)



Quadratic Dirichlet L-series

We define the L-series associated to the quadratic
residue symbol X f by

B xr(P)\ !
e = T (1=

P
5 X (9)
g#0 g]*

Functional equation: Define

1 .
y — L (s, if deg f even
Li(s,xp) = { T ox) Tdes /
L(s,xf) if deg f odd

Then, L*(s,xf)

_ [ @M% L (1 — s, xf) T deg f even
25~ 1qf|Y/2=5L*(1 — s,x;) if deg f odd



The A> quadratic double Dirichlet Series

We wish to construct a double Dirichlet series
of the form

L(87Xf)

_ (4)
R TITFTE

Z(s,w) = >

fEF[t]

MoNIC,NONZEeTro

We want to define the quadratic residue sym-
bols in such a way that

e the definition agrees with our old definition
when fg is squarefree

e summing over g (resp. f) produces an L-
series in s (resp. w) with an Euler product
and satisfying the “right ” functional equa-
tion

It turns out that there is a unique way to do
this.



The A> quadratic double Dirichlet Series

(cont.)
Let
_ X fo(g)a(g, f)
Z(s,w) =
(30 =2 2 gl
where

e fo is the squarefree part of f,

e g is the part of g relatively prime to f, and

e the coefficients a(g, f) should be multiplica-
tive and chosen to ensure the proper func-
tional equations.



The weighting coefficients a(g, f)

What does this last condition mean? Multi-
plicativity means

a(g, f) = [[ a(P%, PP).

P%||g
PP\ f
Thus
- X f,(g)a(g, f)
L(s,xp) 1= Y ~40 P
g

has the Euler product

>0 XfO(Pk)a(Pk, f)
I & e

say, where Qf(s) is a finite Euler product sup-
ported in the primes dividing f to order greater
than 1.

) — L(87Xfo)Qf(3)a



Weighting polynomials and functional
equations

Functional Equation: We want L(s,X)

1_qs—1
¢~ qf|Y/?75L(1 - s,X¢) if deg f odd

{ g2s—11=q " p|1/2=s(1 — s,Xf) if deg f even

It follows that the weighting polynomials must
satisfy the functional equation

A—S

Qf(s) — Qf(l—s).

Jo

Examples Let P be an irreducible polynomial
of norm p

(i) Qi(s) =Qp(s) =1
(i) Qpa(s) =1— 5+ %

(1)) Qpa(s) =1+ &

_ 2
(iv) QP4(3) =1- ]% + pgs — pgs + 543




A dgenerating function

Reformulate the functional equations of the O
in terms of the coefficients a(P*, P).

Fix an irreducible polynomial P of norm p and
let x =p °,y = p~ %. Construct the generating

series

@)
H(z,y) = Y. a(P* PHa*y
k,1=0
Summing over one index (say k) while leaving
the other fixed , we get the P-part of L(s, Xp1)

{ lel(w) if | odd

k ply.k _
2 a(P?, Pt = Qpi(x) ifl even

L 1=

Recall that the weighting polynomials satisfy
2] 1

Qpa+i(z) = (/D) Qpoiti <1;>

for + =0, 1.



An axiomatic description of the
generating function H(x,vy)

By virtue of the functional equations satisfied
by the O the generating series H(x,y) will sat-
isfy a certain functional equation. We describe
this now, together with the limiting behavior
and x,y symmetry of H.

(Al) H(z,y) = H(y,z)
(A2) H(z,0) =1/(1 —x)

(A3) The auxiliary functions

HO(m7y) = g_l o 33) [H(m7y) —I_ H(m7 _y)] )
Hl(may) = ; [H(m7y) T H(x7 _y)]

are invariant under the transformation
1
(2, y) — (5. 2yv/P) -
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The generating function H(z,y) and
functional equations of Z(s,w)

There is a unique power series in x,y satisfying
Al, A2 and A3:

1l —xy
(1-2)(1-y)(1 —pz2y?)
With the a(PF, P!) defined implicitly by the
above generating series, the double Dirichlet
series Z(s,w) will satisfy functional equations

(s,w) = (1—s,w+s—3)
(s,w)|—>(s—|—w—%,l—w)

T hese two functional equations generate a group
G, isomorphic to the dihedral group of order 6.

H(z,y) =

The region of absolute convergence of the dou-
ble Dirichlet series contains (essentially) a fun-
damental domain (or Weyl chamber) for the
action of G on C x C. Translating this region
by the group of functional equations yields the
analytic continuation of Z(s,w) to all of C2.
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Application:mean values of L-functions

Analytic properties of a Dirichlet series can of-
ten be translated (via contour integration or
Tauberian theorems) into information about
partial sums of the coefficients of the series.

n=1

phic function of s for Re(s) > o € R. Suppose
that F'(s) has a pole of order r 4+ 1 at s = o
with leading term ¢ and is otherwise holomor-
phic for Re(s) > o — e. Then, under some mild
growth restrictions on F;

> ap~ %X(Iog X)".
n<X r:

For example, let F(s) = Y. % be a holomor-

One application of the theory of multiple Dirich-
let series is to deduce mean value properties for
special values of L-functions from the analytic
properties of a multiple Dirichlet series.

To describe this in this simple example, we
first need to compute the poles and residues
of Z(s,w).

12



Poles of Z(s,w)

The double Dirichlet series

L(s,x
= 1f]
has an obvious pole at s = 1 coming from

the pole of the (-function when f is a per-
fect square. Translating by the group G of
functional equations gives the complete set of
polar divisors of Z(s,w):

s=1lw=1s+w=3/2.

(The other translates of s = 1 by the group
G do not produce further poles as they get
cancelled out by the poles of the gamma func-
tion.)

13



The residue at w =1

We will use the expression

Z(s,w) = Z L(w, X|90|?SQg(w)
g g

and knowledge of the weighting polynomials to
compute the residue of Z(s,w) at w = 1.

The numerator L(w, xg,) Qg(w) of the summand
has a simple pole at w = 1 iff g is a perfect
square. In this case, the residue of L(w, xgy)Qg(w)
is simply c- Qg4(1), where c is the residue of the

zeta function. Now, Qg(w) = HpgaHg Q poa(w).

;From the explicit computation of H(x,y) we
find that
0 Qka:(l) . 1

2.

k=0 P
and hence ngk(l) = 1 for all k, P, which im-
plies

2ks 1 — p—23’

5§§ Z(s,w) = R1(s) = c((2s).
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The pole of Z (%,w) at w=1

To compute mean values of L (%,fq) we need

to understand the polar structure of Z(%,w)
as a function of w. The location of the first
pole (w = 1) is immediate from what we have
already done. The computation of the order is
a little more involved.

In a neighborhood of (%, 1) the double Dirichlet
series looks like

R1(s) Ro(s)
o +w—|—s—%+y(8’w)’

Z(s,w) =

where Y (s,w) is holomorphic in a neighbor-
hood of (%, 1).

15



The pole of Z (%,w) at w=1

Using the facts that Ri(s) has a simple pole
at s = % and that Z(%,w) is holomorphic for
w > 1 we deduce that R>(s) must also have a
simple pole s = % which cancels the pole from
R1. Therefore, we have

A A
1 —+ 2
— + + Y (s, w)
(w—l—s—%)(s—%) w—l—s—%
for some constants A, As, Bo. Setting s = %
we conclude that

Z(s,w) =

1 oy A Al
Z(j,UJ> = (w_1)2‘|‘w_1+0(1)

in @ neighborhood of w = 1, where All = A> +
Bo.
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Mean values of L (%,gf)

By contour integration, it follows that

> L (%,)Zf) = Ajzlogz + Ajz + o(x)
|fl<z
as r — oo.

Since A is nonzero, it follows that L (%,Xf) is
nonzero infinitely often.

Special values (and in particular, nonvanish-
ing special values) of L-functions are often of
arithmetic interest.

17



Computing Z(s,w)

As noted earlier, for a function field, the group
of functional equations satisfied by the double
Dirichlet series Z(s,w) will force it to be a ra-
tional function. So what is it? I will describe
a method of determining Z(s,w) which works
also for the FHL-series (constructed from nth
order Dirichlet L-functions), but I can’t seem
to get it to work in any other case. I'll continue
to work with the quadratic case below.

Goal With a(g, f) defined as above, express

) — X ,(9)a(g, f)
o) =2 2 gl

as a rational function of xt =q %,y = ¢~ %.
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Computing Z(s,w), (cont.)

Recall: if f = fof? with fo squarefree,

S a(g, f)xf,(9)

L(s,Xf) = = L(s,x5,)2s(s).

S
g€lFq[t] |g|
monic

Because of the functional equation L(s, X r) sat-
isfies, it is either

e if f is not a perfect square, a polynomial
of degree n— 1 in q %, or

e if f is a perfect square, then

L(s,Xf) = Qf(s)¢(s)

where Q((s) is a polynomial in ¢—*% of de-
gree n with Q,(1) = 1.
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Convolutions of rational fucntions

Let R1(z,y) and Ro(x,y) be two rational func-
tions, regular at the origin

Ri(z,y) = > b1(4, k)aly”
J,k>0

Ro(z,y) = > ba(4, k)zlyF.
J,k>0

Then we let let Rq{*xR> denote the power series
defined by

(R1x Ro)(z,9) = Y b1(J, k)ba(, k)l y*.
J,k>0

Then (R1*R>)(x,y) is again a rational function
of z and y. Indeed, write (R1 x Ro)(x,y) =

x Yy \ dz1dzo
//Rl(zlaZQ)R2< , )
21 <2 21 <2

and evaluate the integral by partial fractions.

20



Computing Z(s,w), (cont.)

By the remarks about the degree of L(s,X¢),
we Know

> alg, f)=0
deg g=m
if deg f < m, unless f is a perfect square. We
write

Z(s,w) = Zg(s,w) + Zg(w,s) — Z1(s,w)

where
1
Zo(sw)= S ———— 3 a(g, f)
mZnZOq 9 deg f=n
deg g=m
and
1
Zisw) =3 —— 3 alg, f)
nZOq 9 deg f=n
deg g=n
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Computing Z(s,w), (cont.)

The nice thing now is that in evaluating Zp we
only have to worry about when f is a perfect
square. In this case, the character is x((g) is
not present, and we have a stronger multiplica-
tivity statement which translates into an Euler
product for a closely related series.

More precisely, let

Yo(s,w) = Z a(g, f)

f’g monic |f|U)|g|S
f a perfect square

Then Yy has an Euler product, and using our
knowledge of a(P*, P) we may compute

1 — q1—8—2w

(1 _ q1—2w)(1 _ ql—s)(l _ q2—23—2w)'

Yo(s,w) =

22



Computing Z(s,w), (concl.)

The rest is easy: Since Zg = Yp x K, for

1
K(z,y) = "ty = ,
()= 2 =

we may compute

1
(1 _ ql—w)(l _ q3—23—2w)'
By a similar argument, we find

1
(]_ _ q3—25—2fw) |

Zo(s,w) =

Z1(s,w) =

Putting everything together, we arrive at
1 — q2—8—w
(1 _ ql—s)(l _ ql—w)(l _ q3—25—2w)

or after setting x = ¢ %,y = ¢ ¥,

Z(s,w) =

1 — qzxy
(1 —qz)(1—qy)(1 — ¢g322y?)

Z(s,w) =

23



