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The rational function field Fq(t)

Notation:

• q is an odd prime power, congruent to 1

mod 4 (for simplicity)

• Fq[t] = polynomial ring in t with coeffi-

cients in the finite field Fq. This is a PID.

The nonzero prime ideals of Fq[t] are gen-

erated by irreducible polynomials.

• Fq(t) quotient field

• Define N(f) = |f | = qdeg f for f ∈ Fq[t]
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The zeta function of Fq[t]

• ζ(s) defined by Euler product or Dirichlet

series

∏
P∈Fq[t]

irred,monic

(
1−

1

|P |s

)−1

=
∑

f∈Fq[t]
monic,nonzero

1

|f |s

• Geometric series: ζ(s) =

∞∑
n=0

# of monic polys of deg n

qns
=

1

1− q1−s

• Functional equation

ζ∗(s) :=
1

1− q−s
ζ(s) = q2s−1ζ∗(1− s)
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Quadratic residue symbol

For f an irreducible, monic polynomial in Fq[t],

define

χf(g) =

(
f

g

)
= g(|f |−1)/2( mod f).

Thus χf(g) = ±1 for f, g relatively prime.

If f1, f2 are two monic polynomials s.t. f1f2
is squarefree, we define χf1f2 = χf1χf2. Thus

χf now makes sense whenever f is monic and

squarefree.

Quadratic Reciprocity Let f, g ∈ Fq[t] be monic,

squarefree and relatively prime. Then(
f

g

)
=

(
g

f

)
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Quadratic Dirichlet L-series

We define the L-series associated to the quadratic

residue symbol χf by

L(s, χf) =
∏
P

(
1−

χf(P )

|P |s

)−1

=
∑
g 6=0

χf(g)

|g|s

Functional equation: Define

L∗(s, χf) =

{ 1
1−q−sL(s, χf) if deg f even

L(s, χf) if deg f odd

Then, L∗(s, χf)

=

{
q2s−1|f |1/2−sL∗(1− s, χf) if deg f even

q2s−1|qf |1/2−sL∗(1− s, χf) if deg f odd
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The A2 quadratic double Dirichlet Series

We wish to construct a double Dirichlet series
of the form

Z(s, w) =
∑

f∈Fq[t]
monic,nonzero

L(s, χf)

|f |w
=
∑∑ (

f
g

)
|f |w|g|s

We want to define the quadratic residue sym-
bols in such a way that

• the definition agrees with our old definition
when fg is squarefree

• summing over g (resp. f) produces an L-
series in s (resp. w) with an Euler product
and satisfying the “right ” functional equa-
tion

It turns out that there is a unique way to do
this.
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The A2 quadratic double Dirichlet Series

(cont.)

Let

Z(s, w) =
∑
f

∑
g

χf0(ĝ)a(g, f)

|f |w|g|s

where

• f0 is the squarefree part of f,

• ĝ is the part of g relatively prime to f, and

• the coefficients a(g, f) should be multiplica-

tive and chosen to ensure the proper func-

tional equations.
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The weighting coefficients a(g, f)

What does this last condition mean? Multi-

plicativity means

a(g, f) =
∏

Pα||g
Pβ||f

a(Pα, Pβ).

Thus

L(s, χ̂f) :=
∑
g

χf0(g)a(g, f)

|g|s

has the Euler product

∏
P

 ∞∑
k=0

χf0(P̂
k)a(P k, f)

|P |ks

 = L(s, χf0)Qf(s),

say, where Qf(s) is a finite Euler product sup-

ported in the primes dividing f to order greater

than 1.
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Weighting polynomials and functional
equations

Functional Equation: We want L(s, χ̂f)

=

 q2s−1 1−q−s

1−qs−1|f |1/2−sL(1− s, χ̂f) if deg f even

q2s−1|qf |1/2−sL(1− s, χ̂f) if deg f odd

It follows that the weighting polynomials must
satisfy the functional equation

Qf(s) =

∣∣∣∣∣ ff0
∣∣∣∣∣
1
2−s

Qf(1− s).

Examples Let P be an irreducible polynomial
of norm p

(i) Q1(s) = QP (s) = 1

(ii) QP2(s) = 1− 1
ps + p

p2s

(iii) QP3(s) = 1 + p
p2s

(iv) QP4(s) = 1− 1
ps + p

p2s −
p

p3s + p2

p4s
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A generating function

Reformulate the functional equations of the Q
in terms of the coefficients a(P k, P l).

Fix an irreducible polynomial P of norm p and

let x = p−s, y = p−w. Construct the generating

series

H(x, y) =
∞∑

k,l=0

a(P k, P l)xkyl.

Summing over one index (say k) while leaving

the other fixed , we get the P -part of L(s, χ̂P l) :

∑
k

a(P k, P l)xk =

{
QP l(x) if l odd
1

1−xQP l(x) if l even

Recall that the weighting polynomials satisfy

QP2l+i(x) = (x
√

p)2lQP2l+i

(
1

px

)
for i = 0,1.
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An axiomatic description of the
generating function H(x, y)

By virtue of the functional equations satisfied
by the Q the generating series H(x, y) will sat-
isfy a certain functional equation. We describe
this now, together with the limiting behavior
and x, y symmetry of H.

(A1) H(x, y) = H(y, x)

(A2) H(x,0) = 1/(1− x)

(A3) The auxiliary functions

H0(x, y) := (1− x) [H(x, y) + H(x,−y)] ,

H1(x, y) :=
1

y
[H(x, y)−H(x,−y)]

are invariant under the transformation

(x, y) 7→
(

1
px, xy

√
p
)

.
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The generating function H(x, y) and
functional equations of Z(s, w)

There is a unique power series in x, y satisfying
A1, A2 and A3:

H(x, y) =
1− xy

(1− x)(1− y)(1− px2y2)
.

With the a(P k, P l) defined implicitly by the
above generating series, the double Dirichlet
series Z(s, w) will satisfy functional equations

(s, w) 7→ (1− s, w + s− 1
2)

(s, w) 7→ (s + w − 1
2,1− w)

These two functional equations generate a group
G, isomorphic to the dihedral group of order 6.

The region of absolute convergence of the dou-
ble Dirichlet series contains (essentially) a fun-
damental domain (or Weyl chamber) for the
action of G on C × C. Translating this region
by the group of functional equations yields the
analytic continuation of Z(s, w) to all of C2.
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Application:mean values of L-functions

Analytic properties of a Dirichlet series can of-
ten be translated (via contour integration or
Tauberian theorems) into information about
partial sums of the coefficients of the series.

For example, let F (s) =
∑∞

n=1
an
ns be a holomor-

phic function of s for Re(s) > σ ∈ R. Suppose
that F (s) has a pole of order r + 1 at s = σ
with leading term c and is otherwise holomor-
phic for Re(s) > σ − ε. Then, under some mild
growth restrictions on F,∑

n<X

an ∼
c

r!
X(logX)r.

One application of the theory of multiple Dirich-
let series is to deduce mean value properties for
special values of L-functions from the analytic
properties of a multiple Dirichlet series.

To describe this in this simple example, we
first need to compute the poles and residues
of Z(s, w).
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Poles of Z(s, w)

The double Dirichlet series

Z(s, w) =
∑
f

L(s, χ̂f)

|f |w

has an obvious pole at s = 1 coming from

the pole of the ζ-function when f is a per-

fect square. Translating by the group G of

functional equations gives the complete set of

polar divisors of Z(s, w):

s = 1, w = 1, s + w = 3/2.

(The other translates of s = 1 by the group

G do not produce further poles as they get

cancelled out by the poles of the gamma func-

tion.)
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The residue at w = 1

We will use the expression

Z(s, w) =
∑
g

L(w, χg0)Qg(w)

|g|s

and knowledge of the weighting polynomials to
compute the residue of Z(s, w) at w = 1.

The numerator L(w, χg0)Qg(w) of the summand
has a simple pole at w = 1 iff g is a perfect
square. In this case, the residue of L(w, χg0)Qg(w)
is simply c ·Qg(1), where c is the residue of the
zeta function. Now, Qg(w) =

∏
P2α||gQP2α(w).

¿From the explicit computation of H(x, y) we
find that

∞∑
k=0

QP2k(1)

p2ks
=

1

1− p−2s
,

and hence QP2k(1) = 1 for all k, P, which im-
plies

Res
w=1

Z(s, w) = R1(s) = cζ(2s).
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The pole of Z
(
1
2, w

)
at w = 1

To compute mean values of L
(
1
2, χ̂f

)
we need

to understand the polar structure of Z
(
1
2, w

)
as a function of w. The location of the first

pole (w = 1) is immediate from what we have

already done. The computation of the order is

a little more involved.

In a neighborhood of
(
1
2,1

)
the double Dirichlet

series looks like

Z(s, w) =
R1(s)

w − 1
+

R2(s)

w + s− 3
2

+ Y (s, w),

where Y (s, w) is holomorphic in a neighbor-

hood of
(
1
2,1

)
.
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The pole of Z
(
1
2, w

)
at w = 1

Using the facts that R1(s) has a simple pole

at s = 1
2 and that Z

(
1
2, w

)
is holomorphic for

w > 1 we deduce that R2(s) must also have a

simple pole s = 1
2 which cancels the pole from

R1. Therefore, we have

Z(s, w) =
A1

(w − 1)(s− 1
2)

+
A2

w − 1

−
A1

(w + s− 3
2)(s−

1
2)

+
B2

w + s− 3
2

+ Y (s, w)

for some constants A1, A2, B2. Setting s = 1
2

we conclude that

Z
(
1
2, w

)
=

A1

(w − 1)2
+

A′1
w − 1

+ O(1)

in a neighborhood of w = 1, where A
′
1 = A2 +

B2.
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Mean values of L
(
1
2, χ̂f

)
By contour integration, it follows that∑

|f |<x

L
(
1
2, χ̂f

)
= A1x logx + A′1x + o(x)

as x →∞.

Since A1 is nonzero, it follows that L
(
1
2, χf

)
is

nonzero infinitely often.

Special values (and in particular, nonvanish-

ing special values) of L-functions are often of

arithmetic interest.
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Computing Z(s, w)

As noted earlier, for a function field, the group

of functional equations satisfied by the double

Dirichlet series Z(s, w) will force it to be a ra-

tional function. So what is it? I will describe

a method of determining Z(s, w) which works

also for the FHL-series (constructed from nth

order Dirichlet L-functions), but I can’t seem

to get it to work in any other case. I’ll continue

to work with the quadratic case below.

Goal With a(g, f) defined as above, express

Z(s, w) =
∑
f

∑
g

χf0(ĝ)a(g, f)

|f |w|g|s

as a rational function of x = q−s, y = q−w.

18



Computing Z(s, w), (cont.)

Recall: if f = f0f2
1 with f0 squarefree,

L(s, χ̂f) =
∑

g∈Fq[t]
monic

a(g, f)χf0(ĝ)

|g|s
= L(s, χf0)Qf(s).

Because of the functional equation L(s, χ̂f) sat-

isfies, it is either

• if f is not a perfect square, a polynomial

of degree n− 1 in q−s, or

• if f is a perfect square, then

L(s, χ̂f) = Qf(s)ζ(s)

where Qf(s) is a polynomial in q−s of de-

gree n with Qf(1) = 1.
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Convolutions of rational fucntions

Let R1(x, y) and R2(x, y) be two rational func-

tions, regular at the origin

R1(x, y) =
∑

j,k≥0

b1(j, k)x
jyk

R2(x, y) =
∑

j,k≥0

b2(j, k)x
jyk.

Then we let let R1?R2 denote the power series

defined by

(R1 ? R2)(x, y) =
∑

j,k≥0

b1(j, k)b2(j, k)x
jyk.

Then (R1?R2)(x, y) is again a rational function

of x and y. Indeed, write (R1 ? R2)(x, y) =∫ ∫
R1(z1, z2)R2

(
x

z1
,

y

z2

)
dz1
z1

dz2
z2

and evaluate the integral by partial fractions.
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Computing Z(s, w), (cont.)

By the remarks about the degree of L(s, χ̂f),

we know ∑
deg g=m

a(g, f) = 0

if deg f ≤ m, unless f is a perfect square. We

write

Z(s, w) = Z0(s, w) + Z0(w, s)− Z1(s, w)

where

Z0(s, w) =
∑

m≥n≥0

1

qnsqmw

∑
deg f=n
deg g=m

a(g, f)

and

Z1(s, w) =
∑
n≥0

1

qnsqnw

∑
deg f=n
deg g=n

a(g, f)
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Computing Z(s, w), (cont.)

The nice thing now is that in evaluating Z0 we

only have to worry about when f is a perfect

square. In this case, the character is χf(g) is

not present, and we have a stronger multiplica-

tivity statement which translates into an Euler

product for a closely related series.

More precisely, let

Y0(s, w) =
∑

f,g monic
f a perfect square

a(g, f)

|f |w|g|s
.

Then Y0 has an Euler product, and using our

knowledge of a(P k, P l) we may compute

Y0(s, w) =
1− q1−s−2w

(1− q1−2w)(1− q1−s)(1− q2−2s−2w)
.
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Computing Z(s, w), (concl.)

The rest is easy: Since Z0 = Y0 ? K, for

K(x, y) =
∑

m≥n≥0

xnym =
1

(1− x)(1− xy)
,

we may compute

Z0(s, w) =
1

(1− q1−w)(1− q3−2s−2w)
.

By a similar argument, we find

Z1(s, w) =
1

(1− q3−2s−2w)
.

Putting everything together, we arrive at

Z(s, w) =
1− q2−s−w

(1− q1−s)(1− q1−w)(1− q3−2s−2w)

or after setting x = q−s, y = q−w,

Z(s, w) =
1− q2xy

(1− qx)(1− qy)(1− q3x2y2)
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