Function field example of a quadratic double Dirichlet series

Gautam Chinta

Bretton Woods, NH
11 July 2005

The rational function field $\mathbb{F}_{q}(t)$

Notation:

- q is an odd prime power, congruent to 1 mod 4 (for simplicity)
- $\mathbb{F}_{q}[t]=$ polynomial ring in t with coefficients in the finite field \mathbb{F}_{q}. This is a PID. The nonzero prime ideals of $\mathbb{F}_{q}[t]$ are generated by irreducible polynomials.
- $\mathbb{F}_{q}(t)$ quotient field
- Define $\mathbf{N}(f)=|f|=q^{\operatorname{deg} f}$ for $f \in \mathbb{F}_{q}[t]$

The zeta function of $\mathbb{F}_{q}[t]$

- $\zeta(s)$ defined by Euler product or Dirichlet series

$$
\prod_{\substack{P \in \mathbb{F}_{[}[t] \\ \text { irred,monic }}}\left(1-\frac{1}{|P|^{s}}\right)^{-1}=\sum_{\substack{f \in \mathbb{F}_{[}[t] \\ \text { monic,nonzero }}} \frac{1}{|f|^{s}}
$$

- Geometric series: $\zeta(s)=$

$$
\sum_{n=0}^{\infty} \frac{\# \text { of monic polys of deg } n}{q^{n s}}=\frac{1}{1-q^{1-s}}
$$

- Functional equation

$$
\zeta^{*}(s):=\frac{1}{1-q^{-s}} \zeta(s)=q^{2 s-1} \zeta^{*}(1-s)
$$

Quadratic residue symbol

For f an irreducible, monic polynomial in $\mathbb{F}_{q}[t]$, define

$$
\chi_{f}(g)=\left(\frac{f}{g}\right)=g^{(|f|-1) / 2}(\bmod f) .
$$

Thus $\chi_{f}(g)= \pm 1$ for f, g relatively prime.
If f_{1}, f_{2} are two monic polynomials s.t. $f_{1} f_{2}$ is squarefree, we define $\chi_{f_{1} f_{2}}=\chi_{f_{1}} \chi_{f_{2}}$. Thus χ_{f} now makes sense whenever f is monic and squarefree.

Quadratic Reciprocity Let $f, g \in \mathbb{F}_{q}[t]$ be monic, squarefree and relatively prime. Then

$$
\left(\frac{f}{g}\right)=\left(\frac{g}{f}\right)
$$

Quadratic Dirichlet L-series

We define the L-series associated to the quadratic residue symbol χ_{f} by

$$
\begin{aligned}
L\left(s, \chi_{f}\right) & =\prod_{P}\left(1-\frac{\chi_{f}(P)}{|P|^{s}}\right)^{-1} \\
& =\sum_{g \neq 0} \frac{\chi_{f}(g)}{|g|^{s}}
\end{aligned}
$$

Functional equation: Define

$$
L^{*}\left(s, \chi_{f}\right)= \begin{cases}\frac{1}{1-q^{-s}} L\left(s, \chi_{f}\right) & \text { if deg } f \text { even } \\ L\left(s, \chi_{f}\right) & \text { if deg } f \text { odd }\end{cases}
$$

Then, $L^{*}\left(s, \chi_{f}\right)$

$$
= \begin{cases}q^{2 s-1}|f|^{1 / 2-s} L^{*}\left(1-s, \chi_{f}\right) & \text { if deg } f \text { even } \\ q^{2 s-1}|q f|^{1 / 2-s} L^{*}\left(1-s, \chi_{f}\right) & \text { if deg } f \text { odd }\end{cases}
$$

The A_{2} quadratic double Dirichlet Series

We wish to construct a double Dirichlet series of the form

$$
Z(s, w)=\sum_{f \in \mathbb{F}_{q}[t]} \frac{L\left(s, \chi_{f}\right)}{|f|^{w}}=\sum \sum \frac{\left(\frac{f}{g}\right)}{|f|^{w}|g|^{s}}
$$

We want to define the quadratic residue symbols in such a way that

- the definition agrees with our old definition when $f g$ is squarefree
- summing over g (resp. f) produces an L series in s (resp. w) with an Euler product and satisfying the "right" functional equation

It turns out that there is a unique way to do this.

The A_{2} quadratic double Dirichlet Series (cont.)

Let

$$
Z(s, w)=\sum_{f} \sum_{g} \frac{\chi_{f_{0}}(\widehat{g}) a(g, f)}{|f|^{w}|g|^{s}}
$$

where

- f_{0} is the squarefree part of f,
- \widehat{g} is the part of g relatively prime to f, and
- the coefficients $a(g, f)$ should be multiplicative and chosen to ensure the proper functional equations.

The weighting coefficients $a(g, f)$

What does this last condition mean? Multiplicativity means

$$
a(g, f)=\prod_{\substack{P^{\alpha}\left\|g \\ P^{\beta}\right\| f}} a\left(P^{\alpha}, P^{\beta}\right) .
$$

Thus

$$
L\left(s, \hat{\chi}_{f}\right):=\sum_{g} \frac{\chi_{f_{0}}(g) a(g, f)}{|g|^{s}}
$$

has the Euler product

$$
\prod_{P}\left(\sum_{k=0}^{\infty} \frac{\chi_{f_{0}}\left(\hat{P}^{k}\right) a\left(P^{k}, f\right)}{|P|^{k s}}\right)=L\left(s, \chi_{f_{0}}\right) \mathcal{Q}_{f}(s),
$$

say, where $\mathcal{Q}_{f}(s)$ is a finite Euler product supported in the primes dividing f to order greater than 1.

Weighting polynomials and functional equations

Functional Equation: We want $L\left(s, \widehat{\chi}_{f}\right)$
$= \begin{cases}q^{2 s-1} \frac{1-q^{-s}}{1-q^{s-1}}|f|^{1 / 2-s} L\left(1-s, \widehat{\chi}_{f}\right) & \text { if deg } f \text { even } \\ q^{2 s-1}|q f|^{1 / 2-s} L\left(1-s, \widehat{\chi}_{f}\right) & \text { if deg } f \text { odd }\end{cases}$

It follows that the weighting polynomials must satisfy the functional equation

$$
\mathcal{Q}_{f}(s)=\left|\frac{f}{f_{0}}\right|^{\frac{1}{2}-s} \mathcal{Q}_{f}(1-s)
$$

Examples Let P be an irreducible polynomial of norm p
(i) $\mathcal{Q}_{1}(s)=\mathcal{Q}_{P}(s)=1$
(ii) $\mathcal{Q}_{P^{2}}(s)=1-\frac{1}{p^{s}}+\frac{p}{p^{2 s}}$
(iii) $\mathcal{Q}_{P^{3}}(s)=1+\frac{p}{p^{2 s}}$
(iv) $\mathcal{Q}_{P^{4}}(s)=1-\frac{1}{p^{s}}+\frac{p}{p^{2 s}}-\frac{p}{p^{3 s}}+\frac{p^{2}}{p^{4 s}}$

A generating function

Reformulate the functional equations of the \mathcal{Q} in terms of the coefficients $a\left(P^{k}, P^{l}\right)$.

Fix an irreducible polynomial P of norm p and let $x=p^{-s}, y=p^{-w}$. Construct the generating series

$$
H(x, y)=\sum_{k, l=0}^{\infty} a\left(P^{k}, P^{l}\right) x^{k} y^{l} .
$$

Summing over one index (say k) while leaving the other fixed, we get the P-part of $L\left(s, \hat{\chi}_{P l}\right)$:

$$
\sum_{k} a\left(P^{k}, P^{l}\right) x^{k}= \begin{cases}\mathcal{Q}_{P^{l}}(x) & \text { if } l \text { odd } \\ \frac{1}{1-x} \mathcal{Q}_{P^{l}}(x) & \text { if } l \text { even }\end{cases}
$$

Recall that the weighting polynomials satisfy

$$
\mathcal{Q}_{P^{2 l+i}}(x)=(x \sqrt{p})^{2 l} \mathcal{Q}_{P^{2 l+i}}\left(\frac{1}{p x}\right)
$$

for $i=0,1$.

An axiomatic description of the generating function $H(x, y)$

By virtue of the functional equations satisfied by the \mathcal{Q} the generating series $H(x, y)$ will satisfy a certain functional equation. We describe this now, together with the limiting behavior and x, y symmetry of H.
(A1) $H(x, y)=H(y, x)$
(A2) $H(x, 0)=1 /(1-x)$
(A3) The auxiliary functions

$$
\begin{aligned}
H_{0}(x, y) & :=(1-x)[H(x, y)+H(x,-y)], \\
H_{1}(x, y) & :=\frac{1}{y}[H(x, y)-H(x,-y)]
\end{aligned}
$$

are invariant under the transformation

$$
(x, y) \mapsto\left(\frac{1}{p x}, x y \sqrt{p}\right) .
$$

The generating function $H(x, y)$ and functional equations of $Z(s, w)$

There is a unique power series in x, y satisfying $\mathbf{A 1}, \mathbf{A} 2$ and $\mathbf{A 3}$:

$$
H(x, y)=\frac{1-x y}{(1-x)(1-y)\left(1-p x^{2} y^{2}\right)}
$$

With the $a\left(P^{k}, P^{l}\right)$ defined implicitly by the above generating series, the double Dirichlet series $Z(s, w)$ will satisfy functional equations

$$
\begin{array}{r}
(s, w) \mapsto\left(1-s, w+s-\frac{1}{2}\right) \\
(s, w) \mapsto\left(s+w-\frac{1}{2}, 1-w\right)
\end{array}
$$

These two functional equations generate a group G, isomorphic to the dihedral group of order 6.

The region of absolute convergence of the double Dirichlet series contains (essentially) a fundamental domain (or Weyl chamber) for the action of G on $\mathbb{C} \times \mathbb{C}$. Translating this region by the group of functional equations yields the analytic continuation of $Z(s, w)$ to all of \mathbb{C}^{2}.

Application:mean values of L-functions

Analytic properties of a Dirichlet series can often be translated (via contour integration or Tauberian theorems) into information about partial sums of the coefficients of the series.

For example, let $F(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ be a holomorphic function of s for $\operatorname{Re}(s)>\sigma \in \mathbb{R}$. Suppose that $F(s)$ has a pole of order $r+1$ at $s=\sigma$ with leading term c and is otherwise holomorphic for $\operatorname{Re}(s)>\sigma-\epsilon$. Then, under some mild growth restrictions on F,

$$
\sum_{n<X} a_{n} \sim \frac{c}{r!} X(\log X)^{r} .
$$

One application of the theory of multiple Dirichlet series is to deduce mean value properties for special values of L-functions from the analytic properties of a multiple Dirichlet series.

To describe this in this simple example, we first need to compute the poles and residues of $Z(s, w)$.

Poles of $Z(s, w)$

The double Dirichlet series

$$
Z(s, w)=\sum_{f} \frac{L\left(s, \widehat{\chi}_{f}\right)}{|f|^{w}}
$$

has an obvious pole at $s=1$ coming from the pole of the ζ-function when f is a perfect square. Translating by the group G of functional equations gives the complete set of polar divisors of $Z(s, w)$:

$$
s=1, w=1, s+w=3 / 2
$$

(The other translates of $s=1$ by the group G do not produce further poles as they get cancelled out by the poles of the gamma function.)

The residue at $w=1$

We will use the expression

$$
Z(s, w)=\sum_{g} \frac{L\left(w, \chi_{g_{0}}\right) \mathcal{Q}_{g}(w)}{|g|^{s}}
$$

and knowledge of the weighting polynomials to compute the residue of $Z(s, w)$ at $w=1$.

The numerator $L\left(w, \chi_{g_{0}}\right) \mathcal{Q}_{g}(w)$ of the summand has a simple pole at $w=1$ iff g is a perfect square. In this case, the residue of $L\left(w, \chi_{g_{0}}\right) \mathcal{Q}_{g}(w)$ is simply $c \cdot \mathcal{Q}_{g}(1)$, where c is the residue of the zeta function. Now, $\mathcal{Q}_{g}(w)=\prod_{P^{2 \alpha} \| g} \mathcal{Q}_{P^{2 \alpha}}(w)$.
¿From the explicit computation of $H(x, y)$ we find that

$$
\sum_{k=0}^{\infty} \frac{\mathcal{Q}_{P^{2 k}(1)}}{p^{2 k s}}=\frac{1}{1-p^{-2 s}}
$$

and hence $\mathcal{Q}_{P^{2 k}}(1)=1$ for all k, P, which implies

$$
\underset{w=1}{\operatorname{Res}} Z(s, w)=R_{1}(s)=c \zeta(2 s)
$$

The pole of $Z\left(\frac{1}{2}, w\right)$ at $w=1$

To compute mean values of $L\left(\frac{1}{2}, \hat{\chi}_{f}\right)$ we need to understand the polar structure of $Z\left(\frac{1}{2}, w\right)$ as a function of w. The location of the first pole ($w=1$) is immediate from what we have already done. The computation of the order is a little more involved.

In a neighborhood of $\left(\frac{1}{2}, 1\right)$ the double Dirichlet series looks like

$$
Z(s, w)=\frac{R_{1}(s)}{w-1}+\frac{R_{2}(s)}{w+s-\frac{3}{2}}+Y(s, w),
$$

where $Y(s, w)$ is holomorphic in a neighborhood of $\left(\frac{1}{2}, 1\right)$.

The pole of $Z\left(\frac{1}{2}, w\right)$ at $w=1$

Using the facts that $R_{1}(s)$ has a simple pole at $s=\frac{1}{2}$ and that $Z\left(\frac{1}{2}, w\right)$ is holomorphic for $w>1$ we deduce that $R_{2}(s)$ must also have a simple pole $s=\frac{1}{2}$ which cancels the pole from R_{1}. Therefore, we have

$$
\begin{aligned}
& Z(s, w)=\frac{A_{1}}{(w-1)\left(s-\frac{1}{2}\right)}+\frac{A_{2}}{w-1} \\
& \quad-\frac{A_{1}}{\left(w+s-\frac{3}{2}\right)\left(s-\frac{1}{2}\right)}+\frac{B_{2}}{w+s-\frac{3}{2}}+Y(s, w)
\end{aligned}
$$

for some constants A_{1}, A_{2}, B_{2}. Setting $s=\frac{1}{2}$ we conclude that

$$
Z\left(\frac{1}{2}, w\right)=\frac{A_{1}}{(w-1)^{2}}+\frac{A_{1}^{\prime}}{w-1}+O(1)
$$

in a neighborhood of $w=1$, where $A_{1}^{\prime}=A_{2}+$ B_{2}.

Mean values of $L\left(\frac{1}{2}, \widehat{\chi}_{f}\right)$

By contour integration, it follows that

$$
\sum_{|f|<x} L\left(\frac{1}{2}, \widehat{\chi}_{f}\right)=A_{1} x \log x+A_{1}^{\prime} x+o(x)
$$

as $x \rightarrow \infty$.

Since A_{1} is nonzero, it follows that $L\left(\frac{1}{2}, \chi_{f}\right)$ is nonzero infinitely often.

Special values (and in particular, nonvanishing special values) of L-functions are often of arithmetic interest.

Computing $Z(s, w)$

As noted earlier, for a function field, the group of functional equations satisfied by the double Dirichlet series $Z(s, w)$ will force it to be a rational function. So what is it? I will describe a method of determining $Z(s, w)$ which works also for the FHL-series (constructed from $n^{\text {th }}$ order Dirichlet L-functions), but I can't seem to get it to work in any other case. I'll continue to work with the quadratic case below.

Goal With $a(g, f)$ defined as above, express

$$
Z(s, w)=\sum_{f} \sum_{g} \frac{\chi_{f_{0}}(\hat{g}) a(g, f)}{|f|^{w}|g|^{s}}
$$

as a rational function of $x=q^{-s}, y=q^{-w}$.

Computing $Z(s, w)$, (cont.)

Recall: if $f=f_{0} f_{1}^{2}$ with f_{0} squarefree,

$$
L\left(s, \hat{\chi}_{f}\right)=\sum_{\substack{g \in \mathbb{F}_{q}[t] \\ \text { monic }}} \frac{a(g, f) \chi_{f_{0}}(\hat{g})}{|g|^{s}}=L\left(s, \chi_{f_{0}}\right) \mathcal{Q}_{f}(s) .
$$

Because of the functional equation $L\left(s, \hat{\chi}_{f}\right)$ satisfies, it is either

- if f is not a perfect square, a polynomial of degree $n-1$ in q^{-s}, or
- if f is a perfect square, then

$$
L\left(s, \tilde{\chi}_{f}\right)=\mathcal{Q}_{f}(s) \zeta(s)
$$

where $\mathcal{Q}_{f}(s)$ is a polynomial in q^{-s} of degree n with $\mathcal{Q}_{f}(1)=1$.

Convolutions of rational fucntions

Let $R_{1}(x, y)$ and $R_{2}(x, y)$ be two rational functions, regular at the origin

$$
\begin{aligned}
& R_{1}(x, y)=\sum_{j, k \geq 0} b_{1}(j, k) x^{j} y^{k} \\
& R_{2}(x, y)=\sum_{j, k \geq 0} b_{2}(j, k) x^{j} y^{k} .
\end{aligned}
$$

Then we let let $R_{1} \star R_{2}$ denote the power series defined by

$$
\left(R_{1} \star R_{2}\right)(x, y)=\sum_{j, k \geq 0} b_{1}(j, k) b_{2}(j, k) x^{j} y^{k}
$$

Then $\left(R_{1} \star R_{2}\right)(x, y)$ is again a rational function of x and y. Indeed, write $\left(R_{1} \star R_{2}\right)(x, y)=$

$$
\iint R_{1}\left(z_{1}, z_{2}\right) R_{2}\left(\frac{x}{z_{1}}, \frac{y}{z_{2}}\right) \frac{d z_{1}}{z_{1}} \frac{d z_{2}}{z_{2}}
$$

and evaluate the integral by partial fractions.

Computing $Z(s, w)$, (cont.)

By the remarks about the degree of $L\left(s, \hat{\chi}_{f}\right)$, we know

$$
\sum_{\operatorname{deg} g=m} a(g, f)=0
$$

if deg $f \leq m$, unless f is a perfect square. We write

$$
Z(s, w)=Z_{0}(s, w)+Z_{0}(w, s)-Z_{1}(s, w)
$$

where

$$
Z_{0}(s, w)=\sum_{m \geq n \geq 0} \frac{1}{q^{n s} q^{m w}} \sum_{\substack{\text { deg } f=n \\ \operatorname{deg} g=m}} a(g, f)
$$

and

$$
Z_{1}(s, w)=\sum_{n \geq 0} \frac{1}{q^{n s} q^{n w}} \sum_{\begin{array}{c}
d e g \\
\operatorname{deg} \\
g=n \\
g=n
\end{array}} a(g, f)
$$

Computing $Z(s, w)$, (cont.)

The nice thing now is that in evaluating Z_{0} we only have to worry about when f is a perfect square. In this case, the character is $\chi_{f}(g)$ is not present, and we have a stronger multiplicativity statement which translates into an Euler product for a closely related series.

More precisely, let

$$
Y_{0}(s, w)=\sum_{\substack{f, g \text { monic } \\ f \text { a perfect square }}} \frac{a(g, f)}{|f|^{w}|g|^{\mid}} .
$$

Then Y_{0} has an Euler product, and using our knowledge of $a\left(P^{k}, P^{l}\right)$ we may compute

$$
Y_{0}(s, w)=\frac{1-q^{1-s-2 w}}{\left(1-q^{1-2 w}\right)\left(1-q^{1-s}\right)\left(1-q^{2-2 s-2 w}\right)} .
$$

Computing $Z(s, w)$, (concl.)

The rest is easy: Since $Z_{0}=Y_{0} \star K$, for

$$
K(x, y)=\sum_{m \geq n \geq 0} x^{n} y^{m}=\frac{1}{(1-x)(1-x y)}
$$

we may compute

$$
Z_{0}(s, w)=\frac{1}{\left(1-q^{1-w}\right)\left(1-q^{3-2 s-2 w}\right)}
$$

By a similar argument, we find

$$
Z_{1}(s, w)=\frac{1}{\left(1-q^{3-2 s-2 w}\right)}
$$

Putting everything together, we arrive at

$$
Z(s, w)=\frac{1-q^{2-s-w}}{\left(1-q^{1-s}\right)\left(1-q^{1-w}\right)\left(1-q^{3-2 s-2 w}\right)}
$$

or after setting $x=q^{-s}, y=q^{-w}$,

$$
Z(s, w)=\frac{1-q^{2} x y}{(1-q x)(1-q y)\left(1-q^{3} x^{2} y^{2}\right)}
$$

