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Between Physics and Number Theory

We will describe a new connection between existing topics in Mathematical
Physics and Number Theory.

• In Physics, Solvable Lattice Models are an important example in
Statistical Mechanics.

• The key to their secrets is the Yang-Baxter equation.

• In Number Theory Whittaker functions appear in the Fourier coef-
ficients of automorphic forms. Particularly Metaplectic Whittaker
functions are somewhat mysterious.

• The key to their properties are intertwining integrals which relate
different principal series representations of covers of GL(r,Qp).

We will connect these topics, reviewing two papers:

• Metaplectic Ice (2012) by Brubaker, Bump, Friedberg, Chinta,
Gunnells

• A Yang-Baxter equation for Metaplectic Ice (2016) by Buci-
umas, Brubaker, Bump
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Overview

If H is a quantum group (quasitriangular Hopf algebra) and if U , V are
modules, then there is an isomorphism U ⊗V� V ⊗U making the modules
into a braided category. This isomorphism is described by an R-matrix.

A particular quantum group is H = Uq(gl̂(n)). For z ∈ C it has an n-dimen-
sional module V (z).

If F is a nonarchimedean local field containing the group µ2n of n-th roots
of unity, there is a “metaplectic” n-fold cover of GL(r, F ). It is a central
extension:

0� µ2n� GL(r, F )� GL(r, F )� 0.

The spherical representations are parametrized by a “Langlands parameter”
z = (z1, � , zn). There is a vector space Wz of Whittaker functions and
standard intertwining maps Wz� Ww(z) (w ∈W , the Weyl group).

We will explain that Wz @ V (z1)⊗� ⊗ V (zn) and the intertwining maps are

described by R-matrices. The supersymmetric quantum group Uq(gl̂(n|1))
also plays a role.
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Part I: Quantum Groups
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Statistical Mechanics

In Statistical Mechanics, each state si of a system S with energy Ei has

probability proportional to e−kEi. The exact probability is Z−1 e−kEi where

Z =
∑

si∈S

e−kEi (k=Boltzmann’s constant)

is the partition function. In this setting it is real valued, but:

• In 1952, Lee and Yang showed that sometimes the partition function
may be extended to an analytic function of a complex parameter. Its
zeros lie on the unit circle. This is like a Riemann hypothesis.

• We will represent p-adic Whittaker functions as complex analytic par-
tition functions. The Langlands parameters are in C×.

Solvable Lattice Models

In some cases the partition function may be solved exactly. These examples
are important for studying phase transitions. Unfortunately all known exam-
ples are two-dimensional.
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Solvable Lattice Models

In these examples, the state of a model is described by specifying the values
of parameters associated with the vertices or edges of a planar graph.

• The Ising Model was solved by Onsager in 1944.

• The six-vertex model was solved by Lieb, Sutherland and Baxter in
the 1960’s.

• The six-vertex model is a key example in the history of Quantum
Groups.

• A key principle underlying these examples is the Yang-Baxter
equation. (This is not one equation but a class of equations.)

• The algebraic context for understanding Yang-Baxter equations is
quantum groups.

• Once the theory of quantum groups is in place, many examples of
Yang-Baxter equations present themselves. For us the important ones
are associated with the quantum groups Uq(gl(n)) and Uq(gl(n|1)).
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Two Dimensional Ice

Begin with a grid, usually (but not always) rectangular:

+

+

+

−

−

−

− + − +

+ + + +

Each exterior edge is assigned a fixed spin + or − . The inner edges are
also assigned spins but these will vary.

A state of the system is an assignment of spins to the interior
edges

The allowed configuration of spins around a vertex has six allowed
possibilities
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Six Vertex Model

A state of the model is an assignment of spins to the inner edges. (The
outer edges have preassigned spins. Every vertex is assigned a set of Boltz-
mann weights. These depend on the spins of the four adjacent edges. For
the six-vertex model there are only six nonzero Boltzman weights:

+

+ +

+

a1

−

− −

−

a2

−

+ +

−

b1

+

− −

+

b2

−

− +

+

c1

+

+ −

−

c2

The Boltzmann weight of the state is the product of the weights at the
vertices. The partition function is the sum over the states of the system.
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Baxter

In the field-free case let S be Boltzmann weights for some vertex with a =
a1 = a2 and b = b1 = b2 and c = c1 = c2. Following Lieb and Baxter let

∆S =
a2 + b2− c2

2ab
.

Given one row of “ice” with Boltzmann weights S at each vertex:

µ ν

ǫ1 ǫ2 ǫ3 ǫ4

δ1 δ2 δ2 δ2
S S S S













Here δi, εi are fixed.
Toroidal domain: µ is considered an
interior edge after gluing the left and
right edges. So we sum over µ and

the other interior edges.













Let δ = (δ1, δ2, � ) and ε = (ε1, ε2, � ) be the states of the top and bottom
rows. The partition function then is a row transfer matrix ΘS(δ, ε). The
partition function with several rows is a product transfer matrices.

Theorem 1. (Baxter) If ∆S = ∆T then ΘS and ΘT commute.

(This is closely related to solvability of the model.)
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The Yang-Baxter equation

Theorem 2. (Baxter) Let S and T be vertices with field-free Boltzmann

weights. If ∆S = ∆T then there exists a third R with ∆R = ∆S = ∆T such

that the two systems have the same partition function for any spins δ1, δ2, δ3,

ε1, ε2, ε3.

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

S

T

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

T

S

Remember: ∆R =
a2 + b2− c2

2ab
.
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Commutativity of Transfer Matrices

This is used to prove the commutativity of the transfer matrices as follows.
Consider the following system, whose partition function is the product of
transfer matrices
ΘSΘT(φ, δ)=

∑

ε
ΘS(φ, ε)ΘT(ε, δ):

δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2 µ2

µ1 µ1
S S S S

T T T T

Toroidal Boundary Conditions:
µ1, µ2 are interior edges and so we

sum over µ1, µ2.

Insert R and another vertex R−1

that undoes its effect:
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δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2

µ1

µ2

µ1
S S S S

T T T T

R−1 R

Now use YBE repeatedly:

δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2

µ1

µ2

µ1
T T T T

S S S S

R−1 R

Due to toroidal BC now R, R−1 are adjacent again and they cancel. The
transfer matrices have been shown to commute.

12



Braided Categories

A monoidal category (Maclane) has associative operation⊗ .
In symmetric monoidal category (Maclane) we assume:

Coherence: any two ways of going from one permutation of A1 ⊗ A2 ⊗ �

to another give the same result.

A⊗ B ⊗ C C ⊗ A⊗ B

A⊗ C ⊗B

1A ⊗ τB,C τA,C ⊗ 1B

τA⊗B,C Important generalization!

Maclane assumed that
τA,B: A� B and
τB,A: B� A are
inverses. But ...

Joyal and Street proposed eliminating this assumption. This leads to the
important notion of a braided monoidal category.
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In a symmetric monoidal category τA,B: A� B and τB,A
−1 : A� B are the

same. In a braided monoidal category they may be different.

τA,B

A B

B A

τ
−1

B,A

A B

B A

Represent them as braids.

The top row is A⊗B

The bottom row is B ⊗A

Coherence: Any two ways of going from A1 ⊗ A2 ⊗ � to itself gives the
same identity provided the two ways are the same in the Artin braid group.

CBA

ABC

CBA

ABC

These diagrams describe two morphisms A⊗B ⊗C� C ⊗B ⊗A.
The morphisms are the same since the braids are the same.
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Quantum Groups

Hopf algebras are convenient substitutes – essentially generalizations – of the
notion of a group. The category of modules or comodules of a Hopf algebra
is a monoidal category.

The group G has morphisms µ: G×G� G and ∆: G� G×G, namely the
multiplication and diagonal map. These become the multiplication and the
comultiplication in the Hopf algebra.

The modules over a group form a symmetric monoidal category. There
are two types of Hopf algebras with an analogous property.

• In a cocommutative Hopf algebra, the modules form a symmetric
monoidal category.

• In a commutative Hopf algebra, the comodules form a symmetric
monoidal category.

A quantum group is a Hopf algebra whose modules (or comodules) form a
braided monoidal category. The axioms needed for this define a quasi-
triangular Hopf algebra (Drinfeld). These are quantum group.
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The R-matrix

+
+ +

+

a

−

− −

−

a

−

+ +
−

b

+
− −

+

b

−

− +
+

c

+
+ −

−

c

Field-free
Boltzmann
weights

From this point of view, the Boltzmann weights at a field-free vertex R go
into a matrix, an endomorphism of V1 ⊗ V2, where V1 and V2 are two-dimen-
sional vector spaces, each with a basis labeled v+ and v−.

ε4

ε1 ε3

ε2

R
ε3⊗ε4
ε1⊗ε2

We interpret the vertex as a linear transformation

R(vε1
⊗ vε2

) =
∑

Rε1⊗ε2

ε3⊗ε4(vε3
⊗ vε4

)

If τ : V1⊗V2� V2⊗V1 is τ (x⊗ y)= y ⊗x

Then τR: V1⊗V2� V2⊗V1 is a candidate
for a morphism in a braided monoidal category
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Braid Picture

Given R,S,T with ∆R = ∆S = ∆T , rotate Yang-Baxter equation picture:

WVU

UVW

R

S

T

U V W

W V U

T

S

R

So associating with R, S, T two dimensional vector spaces and interpreting
τR: U ⊗ V � V ⊗ U as a morphism in a suitable category, the Yang-
Baxter equation means the category is braided.

Tannakian Program:

〈text|Yang−Baxter equation〉 ⇒ 〈text|Braided category〉 ⇒

Quantum Group

In the Baxter case, the relevant quantum group is Uq(sl̂2).
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Parametrized Yang-Baxter equations

WVU

UVW

R

S

T

U V W

W V U

T

S

R

If we unravel the definitions, the Yang-Baxter equation means that

R12S13T23= T23S13R12

where R12 is the endomorphism R ⊗ IW acting on the first and third compo-
nents of U ⊗ V ⊗ W and trivially on W , etc. A parametrized YBE gives
an R-matrix R(γ) for every element γ of a group Γ such that

R12(γ)R13(γδ)R23(δ) = R23(δ)R13(γδ)R12(γ).

The Baxter YBE discussed gives a parametrized equation with Γ =C×.
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Affine quantum groups

Where do parametrized Yang Baxter equations come from?

Given a Lie group G with Lie algebra g we can try to build a deformation of
the universal enveloping algebra U(g). This is Uq(g), invented by Drinfeld
and Jimbo after the example g = sl2 was found by Kulish, Reshetikhin and
Sklyanin.

The quantum group Uq(g) will have modules corresponding to the irre-
ducible representations of G.

The untwisted affine Lie algebra ĝ was constructed first by physicists,
then appeared as a special case of the Kac-Moody Lie algebras. It is a cen-
tral extension

0� C · c� ĝ� g⊗C[t, t−1]� 0.

Given a G-module V , Uq(ĝ) will have one copy of V for every z ∈ C
×.

The corresponding Yang-Baxter equation will be a parametrized one.

For the Baxter example, g = sl2 and z corresponds to (a, b, c). The param-

eter q is chosen so ∆ =
1

2
(q + q−1).
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Part II: Tokuyama’s formula
and the Casselman-Shalika formula
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Whittaker models

Let F be a nonarchimedean local field, G a reductive algebraic group like

GL(r). Langlands associated another algebraic group Ĝ (the connected L-
group) such that very roughly (some) representations of G(F ) are related

to the conjugacy classes of Ĝ(C). Let T and T̂ be maximal tori in G and Ĝ.

• If z ∈ T̂ (C) there is a representation πz of G(F ) called a spherical
principal series. It is infinite-dimensional.

• If z and z
′ are conjugate then there exists a Weyl group element such

that w(z) = z
′. Correspondingly there is an intertwining operator

Aw: πz →πw(z) which is usually an isomorphism.

The representation πz may (usually) be realized on a space Wz of functions
on the group called the Whittaker model. The representation π is infinite-
dimensional. But let K be a (special) maximal compact subgroup. Then the
space of K-fixed vectors is (usually) one-dimensional. Correspondingly there
is a unique K-fixed vector in the Whittaker model.
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The Weight Lattice

Let G and Ĝ be a reductive group and its dual, with dual maximal tori T

and T̂ . Then there is a lattice Λ, the weight lattice which may be identi-

fied with either the group X∗(T̂ ) of characters of T̂ , or the group T (F )/T (o)

where o is the ring of integers in the local field F . There is a cone Λ+ in Λ
consisting of dominant weights.

• If λ∈Λ let z	 z
λ (z ∈ T̂ ) be λ regarded as a character of T̂ .

• Let ̟λ∈T (F ) correspond.

Example. If G = GL(r) then Ĝ = GL(r) also. T and T̂ are the diagonal
tori. The weight lattice Λ@ Zr and if λ = (λ1,� , λr) then

z =





z1 �

zr



, ̟λ =







̟λ1 �
̟λr






,

z
λ = z1

λ1� zr
λr,

̟ ∈ o a prime element.
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The Weyl Character Formula

Let Ĝ(C) be a reductive Lie group. Irreducible characters χλ are
parametrized by dominant weights λ. The Weyl character formula is

∏

α∈Φ

(1− z
α)χλ(z) =

∑

w∈W

(− 1)l(w)
z

w(λ+ρ)+ρ ρ = 1

2

∑

α∈Φ+

α

The Casselman-Shalika Formula

Let F be a nonarchimedean local field and o its ring of integers. Let Ĝ be

the Langlands dual of the split reductive group G. Let T and T̂ be dual

maximal tori of G, Ĝ. The weight lattice Λ of Ĝ is in bijection with T (F )/
T (o). Let λ ∈ Λ be a dominant weight an tλ be a representative in T (F ).
The Casselman-Shalika formula shows that for the spherical Whit-
taker function W

W (tλ) =

{

( ∗ )
∏

α∈Φ (1− q−1
z

α)χλ(z) if λ is dominant,

0 otherwise.

Here q is the residue field size. The unimportant constant ( ∗ ) is a power of
q. The expression is a deformation of the Weyl character formula.
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The Weyl character formula

The Weyl character formula can be thought of as a formula for

∏

α∈Φ+

(1− z
α)χλ(z).

λ = dominant weight of some

Lie group Ĝ

Φ+ = positive roots
χλ = character of an irreducible

representation with highest
weight λ

Tokuyama’s deformation of the WCF

The Weyl character formula has a deformation (Tokuyama, 1988). This
was stated for GL(r) but other Cartan types may be done similarly. It is a
formula for:

∏

α∈Φ+

(1− vz
α)χλ(z).

Tokuyama expressed this as a sum over strict Gelfand-Tsetlin patterns with
shape λ + ρ.
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Tokuyama’s Formula: Crystal Version

There are two ways of expressing Tokuyama’s formula.
∏

α∈Φ+

(1− vz
α)χλ(z).

• As a sum over the Kashiwara crystal based Bλ+ρ.

• As a partition function.

We will not discuss the first way, except to mention that it was a milestone
towards the discovery of the connection between Whittaker functions and
quantum groups.

Crystal bases are combinatorial analogs of representations of Lie groups.
In Kashiwara’s development, they come from the theory of quantum groups.
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Tokuyama’s Formula: Six Vertex Model

There is another way of writing Tokuyama’s formula that was first found by
Hamel and King.

In this view, Tokuyama’s formula represents

Z(S) =
∏

α∈Φ+

(1− vz
α)χλ(z)

as the partition function of a six-vertex model system Z(S). We may use
the following Boltzmann weights. We will label this vertex T (zi)

T (zi) +
+ +

+

a1

−

− −

−

a2

−

+ +
−

b1

+
− −

+

b2

−

− +
+

c1

+
+ −

−

c2

1 zi − v zi (1− v)zi 1

Here if z1, � , zr are the eigenvalues of z ∈ GL(r, C), we take an ice model
with r rows, and the above weights at each vertex in the r-th row. (The
boundary conditions depend on λ.)

These weights are free-fermionic meaning a1a2 + b1b2 = c1c2.
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The R-matrix

The Yang-Baxter equation was introduced into this setting by Brubaker,
Bump and Friedberg. Here is the R-matrix (also free-fermionic):

Rz1,z2

+

+ +

+ −

− −

− +

− +

− −

+ −

+ −

+ +

− +

− −

+

z2− vz1 z1− vz2 v(z1− z2) z1− z2 (1− v)z1 (1− v)z2

• Yang-Baxter equation: the following partition functions are equal.

• It can be used to prove Tokuyama’s theorem.

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

Rz1,z2

T (z1)

T (z2)

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

Rz1,z2

T (z2)

T (z1)
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Another Yang-Baxter equation

We can make a Yang-Baxter equation involving only the Rz1,z2
.

• The following partition functions are equal.

ε1

ε2

ε3

ε6

ε5

ε4

Rz2,z3 Rz1,z2

Rz1,z3

ε1

ε2

ε3

ε6

ε5

ε4

Rz1,z2

Rz1,z3

Rz2,z3

• This is a parametrized YBE with parameter group C
×.

• So we expect the corresponding quantum group to be affine.

• It turns out to be Uv(gl̂(1|1)). Here gl̂(1|1) is a Lie superalgebra.
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Digression: the Free-Fermionic Quantum Group

It was shown by Korepin and by Brubaker-Bump-Friedberg that all
free-fermionic Boltzmann weights (a1a2 + b1b2 = c1c2) can be assembled into a
parametrized YBE with nonabelian parameter group GL(2)×GL(1).

Thus the weights Rz1,z2
and T (z1), T (z2) all fit into a single YBE.

This does not generalize to the metaplectic case that we consider next.

The corresponding quantum group appears to be new. It has been studied
by Buciumas.
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Part II: Metaplectic Ice
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The Metaplectic Group

If F contains the group µ2n of n-th roots of unity, there is a “metaplectic” n-
fold cover of GL(r, F ). It is a central extension:

0� µ2n� GL(r, F )� GL(r, F )� 0.

This fact may be generalized to general reductive groups. Whittaker
models are no longer unique.

Metaplectic Ice: the Question

• In 2012, Brubaker, Bump, Chinta, Friedberg and Gunnells

showed that Whittaker functions on GL(r, F ) could be represented as
partition functions of generalized six-vertex models.

• They were not able to find the R-matrix for reasons that are now
finally understood.
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The partition function

+

+ +

+
a+1 a

−

− −

−
0 0

+

−

+

−

a+1 a

−

+

−

+

0 −1

−

+

+

−

0 −1

+

−

−

+

1 0

1 zi g(a) zi (1− v)zi 1

• We decorate each horizontal edges spin with an integer modulo n.

• The − spins must be decorated with 0.

• v = q−1 where q is the cardinality of the residue field.

• Here g(a) is a Gauss sum.

• g(a)g(− a)= v if a
 0 mod n, while g(0) =− v.

• As before, λ is built into the boundary conditions.

• The partition function equals a metaplectic Whittaker function evalu-

ated at ̟λ.

• The decorated edges span (Z/2Z)-graded super vector space with n

even-graded basis vectors and 1 odd-graded vector.
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Metaplectic Ice: the Answer

In very recent work of Brubaker, Buciumas and Bump:

+

+ +

+

a

a a

a

+

+ +

+

b

a b

a

+

+ +

+

b

a a

b

−

− −

−

0

0 0

0

z2
n − vz1

n g(a− b)(z1
n − z2

n) (1− v)z1
cz2

n−c z1
n − vz2

n

+

− +

−

a

0 a

0

−

+ −

+

0

a 0

a

−

+ +

−

0

a a

0

+

− −

+

a

0 0

a

v(z1
n − z2

n) z1
n − z2

n (1− v)z1
az2

n−a (1− v)z1
n−az2

a

• c≡ a− b. The representatives a and c are chosen between 0 and n.

• This R-matrix gives the Yang-Baxter equation for metaplectic ice.
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Supersymmetric partition function

• The quantumgroup isUv(gl̂(n|1))with v = q−1

• A procedure introduces Gauss sums into the R-matrix.

• The Uv(gl̂(n|m)) R-matrix was discovered by Perk and Schultz. It
was not related to Uv(gl̂(n|m)) until later. It appears in the theory of
superconductivity.

Intertwining integrals

The Whittaker model is no longer one-dimensional. Let Wz be the finite-
dimensional space of spherical Whittaker functions. We recall that the stan-
dard intertwining integrals Aw:Wz� Ww(z) for Weyl group elements w.

Theorem 3. (Brubaker, Buciumas, Bump) The quantum group

Uv(gl̂(n)) has one n-dimensional module V (z) for each z ∈ C×. We have an

isomorphism Wz @ V (z1) ⊗ � ⊗ V (zn) that realizes the standard intertwining

integrals as Uv(gl̂(n))-module homomorphisms.

Lie superalgebra is not involved in this statement. It is very plausible that
an identical statement is true for general Cartan types.

34


