
Whittaker Functions

and Quantum Groups
by Daniel Bump

CBA

ABC

CBA

ABC

Supported in part by NSF grant 1001079

1



Whittaker Functions

Let F =R,C,Qp or Fq. Let G=GL(n, F ) or more generally a split reductive group. Let
U be the maximal unipotent subgroup. Let ψ be a nondegenerate character of F . If
G=GL(3) we may use

ψ





1 x y

1 z

1



= ψ0(x+ z)

where ψ0:F� C× is an additive character, e.g. ψ0(x)= e2πix if F =R.

Theorem 1. (Gelfand-Graev, Piatetski-Shapiro, Shalika, Rodier) If (π, V ) is an

irreducible representation of G there admits at most one linear functional Ω: V� C such

that Ω(π(u)v)= ψ(u)Ω(v) for all v ∈V and u∈U.

If v ∈ V then W (g) = Ω(π(g)v) is called a Whittaker function. Usually we are inter-
ested in particular v, e.g. the unique (up to scalar) K-fixed vector where

K =







O(n) if F =R

U(n) if F =C

GL(n,Zp) if F =Qp

.

For this choice, W is called the
spherical Whittaker function.
It may be defined by an integral hence
has a natural normalization.
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The Archimedean Case

If F = R, Kazhdan and Kostant observed that the differential equations satisfied by the
spherical Whittaker function are observables (Hamiltonians) for the Quantum Toda
Lattice. This has led to many developments of which we mention the work of
Gerasimov, Lebedev and Oblezin (GLO).

The Nonarchimedean Case

This talk will mainly be about the nonarchimedean case.

Interpolation

One intriguing aspect of GLO is that they are able to interpolate between the
archimedean and nonarchimedean cases. This is perhaps similar to the case with Mac-
donald polynomials which interpolate between the spherical functions for the archimedean
case (“Zonal functions”) and the nonarchimedean case (“Hall-Littlewood polynomials”).

This Talk

Without further ado we turn to the question of how nonarchimedean Whittaker functions
relate to quantm groups.
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The Weyl Character Formula

Let Ĝ(C) be a complex reductive Lie group, realized as an affine algebraic group. Let T̂
be a maximal split torus, and z ∈ T̂ (C). Let P =X∗(T̂ ) be the weight lattice. Let λ be a

dominant weight and let χλ be the irreducible character of Ĝ(C) with highest weight λ.
By the Weyl character formula

∏

α∈Φ

(1− zα)χλ(z)=
∑

w∈W

(− 1)l(w)zw(λ+ρ)+ρ

(

ρ=
1

2

∑

α∈Φ+

α

)

The Casselman-Shalika Formula

Let F be a nonarchimedean local field and o its ring of integers.

Let G be the split reductive group in duality with Ĝ. This means if T is the maximal

split torus of G then the weight lattice P of Ĝ may be identified with the cocharacter
group X∗(T ) of G, and with T (F )/T (o). If λ ∈ P let tλ be a representative in T (F ). he
Casselman-Shalika formula shows that for the spherical Whittaker function W

W (tλ)=

{

( ∗ )
∏

α∈Φ (1− q−1zα)χλ(z) if λ is dominant,

0 otherwise.

Here q is the residue field size. The unimportant constant ( ∗ ) is a power of q. The
expression is a deformation of the Weyl character formula.
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Example

We will soon enter territory where each Cartan type must be handled individually, and
although results are available for other Cartan types we will restrict ourselves to Type A,
that is, GL(n). Here is the Casselman-Shalika formula for GL(n). (It was proved earlier
by Shintani for this case.)

If G=GL(n) then the Langlands dual Ĝ =GL(n) also. We may identify the weight lattice
P with Zn. If λ=(λ1,
 , λn)∈P then λ is dominant if and only if λ1>λ2>
 >λn.

tλ=







̟λ1



̟λn






, ̟= a generator of the maximal ideal p of o.

The Casselman-Shalika formula asserts

W (tλ)= δ1/2(tλ)
∏

i<j

(1− q−1zizj
−1)sλ(z1,
 , zn)

where

z=





z1



zn



∈ T̂ (C) is the Satake or Langlands parameter.

The character χλ(z)= sλ(z1,
 , zn) is a Schur polynomial.
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Tokuyama’s deformation of the WCF

The Weyl character formula has a deformation (Tokuyama, 1988) that may be exactly
matched with the Casselman-Shalika formula. It produces, with t a parameter

∏

α∈Φ+

(1− tzα)χλ(z).

Tokuyama expressed this as a sum over strict Gelfand-Tsetlin patterns with shape λ + ρ.
There are different ways of expressing his result.

• As a sum over the Kashiwara crystal Bλ+ρ.

• As the partition function of a solvable lattice model.

At first glance it seems a stretch to lay too much significance on this as a formula for the
spherical Whittaker function. However, we affirm that this is important on the following
evidence: the identity of Tokuyama’s formula with the Casselman-Shalika formula may be
extended to a formula for the far more subtle Whittaker functions on metaplectic groups.
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Tokuyama’s Formula: Crystal Version

Tokuyama’s formula may be expressed as a sum over Kashiwara’s crystal with highest
weight λ+ ρ:

∏

α∈Φ+

(1− tzα)χλ(z)=
∑

v∈Bλ+ρ

G(v)zwt(v)−w0ρ.
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1 1
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0
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0
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0
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0 2
5
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0

The data defining G(v)
are the lengths of segments
in a path through the crystal
from v to the highest weight
vector.

For the marked vertex
the segments have lengths
2,2,0.

These are the lengths of
the paths in the red-blue-red
directions ...
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Tokuyama’s Formula: Crystal Version

Tokuyama’s formula may be expressed as a sum over Kashiwara’s crystal with highest
weight λ+ ρ:

∏

α∈Φ+

(1− tzα)χλ(z)=
∑

v∈Bλ+ρ

G(v)zwt(v)−w0ρ.
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0
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G(v)=














g(bi) sometimes
h(bi) ditto

q−bi

0

where bi runs through the
path lengths (0,2,2 for the
marked v) and:

g(b)=− t1−b

h(b)= (t−1− 1)t1−b

In this case:
G(v)= 1 · g(2) ·h(2).

Change g and h to Gauss sums
to get metaplectic Whittakers.
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Tokuyama’s Formula: Six Vertex Model

There is another way of writing Tokuyama’s formula that was first found by Hamel and
King. This represents

∏

α∈Φ+

(1− tzα)χλ(z)

as the partition function of a statistical mechanical system. This uses the six-vertex
model, an example that was studied extensively prior to the discovery of quantum
groups. Begin with a grid, usually (but not always) rectangular:

+

+

+

−

−

−

− + − +

+ + + +

Each exterior edge is assigned a fixed spin + or − . The inner edges are also assigned
spins but these will vary.

9



Six Vertex Model

A state of the model is an assignment of spins to the inner edges. (The outer edges have
preassigned spins. Every vertex is assigned a set of Boltzmann weights. These depend
on the spins of the four adjacent edges. For the six-vertex model there are only six
nonzero Boltzman weights:

+

+ +

+

a1

−

− −

−

a2

−

+ +

−

b1

+

− −

+

b2

−

+ −

+

c1

−

+ −

+

c2

The Boltzmann weight of the state is the product of the weights at the vertices. The
partition function is the sum over the states of the system.
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The Partition Function
The Boltzmann weights are called field-free if a1= a2, b1= b2 and c1= c2. They are called
free-fermionic if a1a2+ b1b2− c1c2=0.

Theorem 2. (Lieb, Sutherland, Baxter, Korepin-Izergin) If every vertex has the

same field-free Boltzmann weights then the partition function can be evaluated.

• Kuperberg used this to prove the ASM conjecture.

One method of proof is Baxter’s and uses the Yang-Baxter equation. After
Onsager’s work on Ising model this gave a second example of a solvable lattice model.

Theorem 3. (Hamel and King’s reformulation of Tokuyama) For certain free-

fermionic Boltzmann weights the partition function can be evaluated and equals
∏

α∈Φ+

(1− tzα)χλ(z).

• The set of states injects into the Bλ+ρ crystal using Gelfand-Tsetlin patterns.

• Hamel and King gave a novel proof using jeu de taquin.

• Brubaker, Bump and Friedberg used instead the Yang-Baxter equation.

• The version of the Yang-Baxter equation they use was first found by Korepin.

• Brubaker, Bump, Chinta, Friedberg and Gunnells gave a variant that produces
metaplectic Whittaker functions.
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Ice

Consider the following Boltzmann weights:

R(z): +

+ +

+

a1

−

− −

−

a2

−

+ +

−

b1

+

− −

+

b2

−

+ −

+

c1

−

+ −

+

c2

1 z t z z(t+1) 1

This is in the free-fermionic regime: a1a2+ b1b2= c1c2. Consider a system:

+

+

+

−

−

−

− + − +

+ + + +

R(z1) R(z1) R(z1) R(z1)

R(z2) R(z2) R(z2) R(z2)

R(z3) R(z3) R(z3) R(z3)

The boundary conditions: + on
left and bottom edges, − on right
and signs on top edge are determined
by the partition λ by some rule. Use
R(zi) in i-th row: zi eigenvalues of z.

Tokuyama, Hamel-King and
Brubaker-Bump-Friedberg proved
the partition function equals
∏

α∈Φ+

(1− tzα)χλ(z).
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Baxter
In the field-free case let S be Boltzmann weights for some vertex with a= a1 = a2 and b=
b1= b2 and c= c1= c2. Following Lieb and Baxter let

∆S=
a2+ b2− c2

2ac
.

Given one row of “ice” with Boltzmann weights S at each vertex:

µ µ

ǫ1 ǫ2 ǫ3 ǫ4

δ1 δ2 δ2 δ2
S S S S

Toroidal boundary conditions:
Equal spins at left and right edges,

so sum over µ=+ and − . Effectively
µ is an interior edge. Non-toroidal BC

can be handled by a variant of this method.

Let δ = (δ1, δ2,
 ) and ε= (ε1, ε2,
 ) be the states of the top and bottom rows. The parti-
tion function then is a row transfer matrix ΘS(δ, ε). The partition function with sev-
eral rows is the product of the row transfer matrices.

Theorem 4. (Baxter) If ∆S=∆T then ΘS and ΘT commute.

Though we will not explain this point, the commutativity of transfer matrices yields,
among other things, the solvability of the model. The proof uses the Yang-Baxter equa-
tion and the ideas here are key for us.
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The Yang-Baxter equation

Theorem 5. (Baxter) Let S and T be vertices with field-free Boltzmann weights. If

∆S = ∆T then there exists a third R with ∆R = ∆S = ∆T such that the two systems have

the same partition function for any spins δ1, δ2, δ3, ε1, ε2, ε3.

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

S

T

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

T

S
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Commutativity of Transfer Matrices

This is used to prove the commutativity of the transfer matrices as follows. Consider the
following system, whose partition function is the product of transfer matrices
ΘSΘT(φ, δ)=

∑

ε
ΘS(φ, ε)ΘT(ε, δ):

δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2 µ2

µ1 µ1

S S S S

T T T T

Toroidal Boundary Conditions:
µ1, µ2 are interior edges and so we

sum over µ1, µ2.

Insert R and another vertex R−1

that undoes its effect:
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δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2

µ1

µ2

µ1
S S S S

T T T T

R−1 R

Now use YBE repeatedly:

δ1 δ2 δ3 δ4

φ1 φ2 φ3 φ4

µ2

µ1

µ2

µ1
T T T T

S S S S

R−1 R

Due to toroidal BC now R,R−1 are adjacent again and they cancel. The transfer matrices
have been shown to commute.
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Algebraic Formulation
The investigation of the Yang-Baxter equation by mathematical physicists in Russia and
Japan (descended from Faddeev and Sato) in the 1980s led in an algebraic direction cul-
minating in the discovery of quantum groups (quasitriangular or co-quasitriangular Hopf
algebras) by Drinfeld and Jimbo. Now we understand things as follows. The Yang-Baxter
equation, which we considered previously as the identity of the partition functions of

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

S

T

ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

R

T

S

can be interpreted as follows. Let V be a two-dimensional free vector space on the spins
+ and − . Then R, S and T may be interpreted as elements of End(V ⊗ V ) and the
Yang-Baxter equation is an identity in End(V ⊗V ⊗V ). It is written

R12S13T23=T23S13R12

where if A ∈ End(V ⊗ V ) then Aij is A ⊗ I with A acting on the i, j components of a
tensor in V ⊗V ⊗V and I acting on the third component.
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ǫ3

ǫ2

ǫ1

δ1

δ2

δ3

µ

ν

ρR

S

T

Remember that we sum
over interior edge spins.
Let us label these µ, ν , ρ
for the purpose of the
following discussion.

R

U

U∗V

V ∗

R-Matrices

We imagine the spins ε1, ε2 and µ, ν as specifying vectors each in a two-dimensional vector
space. It will help us later if we two vector spaces U and V with ε1 ∈ U , ε2 ∈ V , µ ∈ U ∗

and ν ∈V ∗. The four spins together specify a vector in U ⊗V ⊗U∗⊗V ∗=End(U ⊗V ).

This endomorphism of U ⊗V is called an R-matrix.
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Braid Picture
Deform the picture above.

WVU

UVW

R

S

T

U V W

W V U

T

S

R

We interpret R as being an endomorphism of U ⊗ V , where U and V are vector spaces.
Similarly S ∈ End(U ⊗ W ) and T ∈ End(V ⊗ W ). The Yang-Baxter equation is still
written R12S13T23=T23S13R12. It is not important whether U =V =W .

Since R and the cancelling R−1 are distinct, we draw the vertex as an over-and-under
crossing. This will help us keep track of things and also introduces the Artin braid group.

R R−1
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Monoidal Categories

A monoidal or tensor category is a category with an associative composition law ⊗
with natural isomorphisms A ⊗ (B ⊗ C)� (A ⊗ B) ⊗ C. It is assumed that there is a
unit I with natural isomorphisms A⊗ I� A and I ⊗A� A.

Coherence: Any two ways of getting from one parenthesization of A1 ⊗ A2 ⊗ 
 to
another give the same result. (Maclane)

A⊗ (B ⊗ (C ⊗D))

(A⊗ B)⊗ (C ⊗D)

((A⊗ B)⊗ C)⊗D

A⊗ ((B ⊗ C)⊗D) (A⊗ (B ⊗ C))⊗D
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Symmetric vs Braided Monoidal Categories

A symmetric monoidal category (Maclane) adds natural isomorphisms τA,B: A ⊗
B� B ⊗A.

Coherence: any two ways of going from one permutation of A1 ⊗ A2 ⊗ 
 to another
give the same result.

A⊗ B ⊗ C C ⊗ A⊗ B

A⊗ C ⊗B

1A ⊗ τB,C τA,C ⊗ 1B

τA⊗B,C Important generalization!

Maclane assumed that
τA,B:A� B and

τB,A:B� A are
inverses. But ...

Joyal and Street proposed omitting this assumption. This leads to the important notion
of a braided monoidal category.

21



Coherence in a Braided Monoidal Category

In a symmetric monoidal category τA,B: A� B and τB,A
−1 : A� B are the same but in a

braided monoidal category they may not be. We may distinguish them by using crossings:

τA,B

A B

B A

τ−1

B,A

A B

B A

The top row is A⊗B

The bottom row is B ⊗A

Coherence: Any two ways of going from A1 ⊗ A2 ⊗ 
 to itself gives the same identity
provided the two ways are the same in the Artin braid group. For example:

CBA

ABC

CBA

ABC

These diagrams describe two morphisms A⊗B ⊗C� C ⊗B ⊗A.
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Quantum Groups

Hopf algebras are convenient substitutes – essentially generalizations – of the notion of a
group. The category of modules or comodules of a Hopf algebra is a monoidal category.
(A module over H has a multiplication H ⊗ V � V so dually a comodule has a
comultiplication V� H ⊗V .)

The group G has morphisms µ: G × G� G and ∆:G� G × G, namely the multiplica-
tion and diagonal map. These become the multiplication and the comultiplication in the
Hopf algebra.

The modules over a group form a symmetric monoidal category. There are two types of
Hopf algebras with an analogous property.

• In a cocommutative Hopf algebra, the modules form a symmetric monoidal
category.

• In a commutative Hopf algebra, the comodules form a symmetric monoidal
category.

Roughly a quantum group is a Hopf algebra whose modules or comodules form a
braided monoidal category.
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Groups as Hopf Algebras.

If G is a Lie group, its enveloping algebra U(g) is the convolution ring of distributions at
the identity. Modules of G correspond to modules of U(g). They form a symmetric
monoidal category.

Dually, consider the coordinate ring O(G) of an affine algebraic group. Since the
functor X → O(X) from affine schemes to commutative rings is contravariant, the multi-
plication in G corresponds to the comultiplication in O(G). The comodules of O(G)
correspond to modules of G and they form a symmetric monoidal category.

Quantum Groups

If g is a complex Lie algebra, Drinfeld and Jimbo defined a quantized enveloping algebra
Uq(g). The modules form a braided monoidal category.

The group O(G) may also be deformed. The comodules form a braided monoidal cat-
egory.

24



Parametrized Yang-Baxter Equation

Let us assume that we have a collection of possible vertices, R, S, T ,
 each representing
a set of Boltzmann weights. We call them R-matrices. Assume for every pair S and T
of vertices that there exists a vertex ST such that the Yang-Baxter equation is true in the
sense that the following two partition functions are equal:

U V W

W V U

T

ST

S

WVU

UVW

S

ST

T

It is to be imagined that U , V , W are all copies of the same vector space which will even-
tually become modules in some category. We may think of (S, T ) � ST as a kind
of “multiplication” on the set Γ of R-matrices.

• Given S, T the condition on ST is overdetermine so ST (if it exists) is
undoubtedly unique up to scalar multiple.

• The composition tends to be associative. If U = V = W = 
 this may give a
group or monoid structure on a subset of P(End(V ⊗V ))
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Associativity of composition of R-matrices

Consider the following setup.

S

RS ST

R(ST )

T R

U V W X

X W V U

We’ll prove these are equal.

R

RS

R(ST )

T

ST

S

U V W X

X W V U
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Here goes:

S

RS ST

R(ST )

T R

U V W X

X W V U

Use YBE on the right hand side.

S

RS

R

R(ST )

ST

T

U V W X

X W V U
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S

RS

R

R(ST )

ST

T

U V W X

X W V U

YBE on the upper left side.

R

RS

S R(ST )

ST

T

U V W X

X W V U
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R

RS

S R(ST )

ST

T

U V W X

X W V U

Next on the lower left.

R

RS

R(ST )

T

ST

S

U V W X

X W V U

Done.
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Similarly ...

S

ST

T

R(ST )

RS

R

U V W X

X W V U

R T

R(ST )

ST RS

S

U V W X

X W V U

These two partition functions are also equal. (Similar proof.)
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Comparison

We’ve exhibited two endomorphisms of U ⊗ W ⊗ X (represented as greenies below)
such that for either endomorphism the two partition functions are equal:

?

S

ST

R

U V W X

X W V U

?

R

ST

S

U V W X

X W V U

This is an overdetermined system of equations on the endomorphism of U ⊗W ⊗X .
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Overdetermined system should have only one solution

... so the two different endomorphisms are equal. Thus

RS

R(ST )

T

U W X

X W U

equals

T

R(ST )

RS

U W X

X W U

That means that R(ST ) has the property characterizing (RS)T so

R(ST ) = (RS)T .
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Parametrized Yang-Baxter Equation

Fix a vector space.

Suppose ST ∈End(V ⊗V ) is defined (as above) for all S and T in some collection of endo-
morphisms of V ⊗V . This means R=ST satisfies R12S13T23=T23S13R12, or in pictures

V V V

V V V

T

ST

S

VVV

VVV

S

ST

T

Beginning with Baxter’s field-free example, one often draws R, S, T from a collection of
matrices parametrized by a group Γ. More generally Γ can be a monoid.
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Make a Category

We may think of having one copy Vγ of a fixed vector space for every γ ∈ Γ and the equa-
tion becomes

R12(ξ/η)R13(ξ/ζ)R23(η/ζ)=R23(η/ζ)R13(ξ/ζ)R12(ξ/η)

where now R(ξ.η)∈End(Vξ ⊗Vη).

VζVηVξ

VξVηVζ

R(ξ/η)

R(ξ/ζ)

R(η/ζ)

VζVηVξ

VξVηVζ

R(η/ζ)

R(ξ/η)

R(ξ/ζ)

We might adjoin kernels and cokernels (Karoubi completion) to get an abelian category
out of the Vγ and hope it’s a braided monoidal category.

We might then hope it’s the category of modules over a QTHA (we’ll explain later)
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Example: parametrized YBE: Baxter

First, in Baxter’s field free case, we recall that

∆=
a2+ b2− c2

2ab
or

a2+ b2− c1c2
2ab

• It is OK to allow c1� c2 as long as a1= a2 and b1= b2.

Find q such that ∆=
1

2
(q+ q−1). The parameter group Γ will be C×. Solve:

a= z − q2, b= q(z − 1), c1=(1− q2), c2= z(1− q2).

The R-matrix is (for suitable basis

R(z)=









a

b c2
c1 b

a









=











q2− z

q(1− z) z(q2− 1)

(q2− 1) q(1− z)

q2− z











in End(Vξ ⊗Vη) where z= ξ/η.

Or the parameter monoid Γ can be C: if z=0 this gives us a solution










q2

q

q2 q

q2
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Example: parametrized YBE: Eight-vertex model

Baxter realized that the eight vertex model led to parametrized YBE with parameter
group an elliptic curve. In the field free case the R-matrices look like:









a d

b c

c b

d a









.

Example: parametrized YBE: Free-Fermionic Case

The set of Boltzmann weights with a1a2 + b1b2 = c1c2 forms a parametrized YBE with
R-matrices









a1
b1 c2
c1 b2

a2









.

Thus if ∆= 0 we can drop the field free hypothesis. The subset of this monoid with
c1c2� 0 forms a group parametrized YBE with nonabelian parameter group

Γ=GL2×GL1.
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Quasitriangular Hopf algebras
Drinfeld defined the notion of a quasitriangular Hopf algebra (QTHA). If H is a
QTHA then its category of modules forms a braided monoidal category.

The exact definition is not important for our discussion and we omit it.

Similarly there are dual QTHA’s with the property that its comodules form a braided
monoidal category.

Triangular = Symmetric

If the QTHA or dual QTHA is triangular the category of modules is a symmetric
monoidal category meaning the commutativity constraint θA,B: A ⊗ B� B ⊗ A satis-

fies θA,B = θB,A
−1 . This is less interesting. For example, the applications of quantum

groups to knot theory depend on being able to distinguish

τA,B

A B

B A

τ−1

B,A

A B

B A
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Tannakian problem

Saavedra-Rivano proved given a symmetric monoidal category satisfying certain
axioms (rigidity, fiber functor) there exists a commutative Hopf algebra having the
category as comodule category.

Given a suitable braided monoidal category, can we find a QTHA (or dual QTHA)
having an equivalent category of modules (or comodules)? (Joyal and Street, Majid.)

More modestly, given a solution to YBE or parametrized YBE, construct a QTHA (or
dual QTHA) having that vector space or family of vector spaces as a module (or
comodule).

Two main methods:

• Drinfeld double glues two dual Hopf algebra to make a QTHA.

• Faddeev, Reshetikhin and Takhtajan (FRT). This method first produces a
dual QTHA, and a QTHA may be obtained by duality.

• FRT method was extended to parametrized case by Cotta-Ramusino, Lambe
and Rinaldi.

• Buciumas reconsiders the FRT method in the parametrized case more functori-
ally with an eye on the Free-Fermionic YBE.
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Duality (classical case, i.e. q=1)

Let G be an affine algebraic group over C. Its coordinate ring O(G) is a Hopf algebra: the
comultiplication corresponds to the multiplication in G.

Let g be its Lie algebra. The universal enveloping algebra U (g) is a Hopf algebra: the mul-
tiplication in g corresponds to convolution. That is, U(g) may be identified with the con-
volution ring of distributions on G concentrated at the identity.

Applying a distribution to a function gives a dual pairing U(g)×O(G)� C. We have

〈∆ξ, f1⊗ f2〉= 〈ξ, f1f2〉, 〈ξ ⊗ η,∆f 〉= 〈ξη, f 〉

where ∆ is comultiplication. If V is a module of g then V ∗ is a comodule of G.

• The modules/comodules form a symmetric monoidal category.

Deformation

Let q be a parameter. Let Uq(g) be the quantized enveloping algebra and Oq(G)
the “quantum” G. Both are Hopf algebras, in duality. Uq(g) is a QTHA and Oq(G) is a
dual QTHA. The above case is q=1.

• The modules/comodules form a braided monoidal category.
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Faddeev, Reshetikhin and Takhtajan (FRT)

Problem: beginning with a solution of (unparametrized) YBE R ∈ End(V ⊗ V ) where V
is a vector space, produce a bialgebra with V as a comodule. Then τR should be a
comodule endomorphism. (τ(x ⊗ y) = y ⊗ x.) Categorically, it corresponds to the commu-
tativity constraint.

Solution: Let T be a matrix of noncommuting variables equal in number to dim(V )2.
These variables are subject to the condition

RT1T2=T2T1R (T1=T ⊗ I , T2= I ⊗T ). (1)

Then AR is the algebra generated by these variables.

Perspective 1: For FRT, the motivation is from inverse scattering theory. Here T plays
the role of the Lax operator which satisfy the Fundamental Commutation Relation (1).

Perspective 2: Assuming that V is a comodule for an algebra A, the comultiplication
V � A ⊗ V may be expressed as vi �

∑

j
tij ⊗ vj. Now consider the algebraic conse-

quences of the requirement that τR: V ⊗ V � V ⊗ V is a coalgebra homomorphism,
where τ(x⊗ y)= (y⊗x). This requirement leads to the identity (1).

Cotta-Ramusino, Lambe, Rinaldi, Bucimuas:

This works in the parametrized case with one set of variables T (z) for each z ∈Γ.
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Dual Affinization

If g is a complex semisimple Lie algebra let ĝ be the derived Lie algebra of the Kac-
Moody affinization. It is

0� C · c� ĝ� g⊗C[t, t−1]� 0.

Dual to the enlargement Uq(g) to Uq(ĝ):

Special case: Γ=C×. Suppose we already have a Hopf algebra A with V as a comodule.

The O(Γ)=C[t, t−1] is a Laurent polynomial ring. This is a Hopf algebra.

AΓ
′ =Hom(O(Γ), A)

is a Hopf algebra.

Proposition 6. AΓ
′ has a comodule Vz for every z ∈Γ.

Proof. If z ∈ Γ, then comultiplication ∆z: V� AΓ
′ ⊗ V may be defined making V an AΓ

′

comodule Vz. If ∆: V � A ⊗ V is the comultiplication, ∆v =
∑

ai ⊗ vi then ∆zv =
∑

φi⊗ vi where φi∈AΓ sends f ∈O(Γ) to f(z)ai. �

Suppose Γ = C× inside the multiplicative monoid C. (Call this algebraic monoid Γ̂.)
The algebra A can be obtained by taking the R-matrix at 0, which satisfies

R12R13R23=R23R13R12

then applying the FRT construction.
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Triangularity

In order for a braided monoidal category to be symmetric we need the commutativity con-

straint θA,B:A⊗B� B ⊗A satisfy θB,A= θA,B
−1 . Given a parametrized YBE

R: Γ� End(V ⊗V )

We have one copy Vz for each z ∈Γ and θVz,Vw
= τR(z, w−1). This means we need

τR(z)τR(z−1)= I.

In the Baxter case we may check that this is true, after adjusting R(z) by a scalar:

R(z)=









a

b c2
c1 b

a









=

(

1

zq−1− q

)











qz− q−1

z − 1 z(q− q−1)

q− q−1 z− 1

qz− q−1











in End(Vξ ⊗ Vη) where z = ξ/η. Hence this Yang-Baxter equation is triangular and the
resulting monoidal category is symmetric.
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Limiting Case is not triangular

The parameter group in this example can be enlarged to the multiplicative monoid C

which contains two idempotents, z = 1 (the unit) and z = 0. Taking z = 0 gives R = R(0)
satisfying

R12R13R23=R23R13R12

and the FRT construction gives GLq(2) which is quasitriangular but not triangular
since τRτR= I is not true.

What about the Free-Fermionic Case?

A Hopf algebra exists with two-dimensional comodules in bijection with the parameter
group Γ=GL(2)×GL(1).

• Is it Hom(O(Γ), SL −1
√ (2)) with dual QTHA structure?

• Is it dual to some enlargement of U −1
√ (sl2)?

• What about limiting cases?

• What about the eight vertex model?

• What about the metaplectic case?
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