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CHAPTER 1

Origin in Statistical Mechanics

Lattice models were introduced in statistical mechanics in order to study realistic systems.
Statistical mechanics will not be a focus of this book. Indeed, it turns out that solvable lattice
models have important connections with representation theory, for example of quantum
groups regarding the underlying mechanism, and other areas such as representation theory
of p-adic groups, algebraic combinatorics, algebraic geometry, and conformal field theory.
We will review the statistical mechanical origins of the theory, referring to Baxter 1982 for
much more information, before turning away to other subjects. Section 4 will, however, set
up some notation that will be used throughout the book.

1. Thermodynamics

The purpose of this section is to give a quick account of the origins of our subject in
statistical mechanics. Since we will soon migrate away from this subject, readers can skip
to Section 4 without loss of continuity.

Statistical mechanics is a development from thermodynamics. Thermodynamics was an
empirical discovery which started with the theory of gases, motivated by considerations
related to engines and refrigeration.

Thermodynamics can be axiomatized in the form of several laws, most importantly the
second law of thermodynamics which contains a subtle and important concept, entropy. The
laws of Thermodynamics are sometimes stated thus:

(1) Energy is conserved in a closed system.
(2) Entropy is increasing.
(3) If the temperature is decreased to zero, entropy approaches a fixed value, called the

residual entropy .

The concept of entropy is of great importance, and universal in its surprising applicability
to different areas, such as information theory and black holes. It has important philosophical
implications, since it gives a direction to the arrow of time. This is paradoxical since the
laws of physics are invariant under time reversal (CPT symmetry).

We take for granted the concept of energy, and its conservation. In thermodynamics and
statistical mechanics, it is important to take into account both closed systems, that do not
interact with their environment, and systems that do interact. Thus we imagine that energy
can be put into a system, or extracted from it. Work can be described as energy that is
extracted from a system, for example by operating a piston or generating electricity.

Heat is a form of energy that we now understand to be due to the kinetic energy of
molecules in a substance. Carnot, whose investigations of the steam engine led to the con-
cepts of thermodynamics, thought of heat as a fluid like water, that can flow from higher
levels to lower, and in the process can be made to do work. The first law of thermodynamics

1



2 1. ORIGIN IN STATISTICAL MECHANICS

can be expressed in the formula

dU = dQ+ dW,

where U is a variable expressing the total amount of energy in the system, Q is the amount
of heat, and W is a variable expressing work, energy that is put into a system, or extracted
from it.

As Carnot realized, certain processes are reversible. We may imagine a perfectly efficient
engine, with frictionless parts, where energy is put in, in the form of fire or electricity, and
mechanical work is extracted. But other processes, such as friction, are irreversible. In
friction, work is transformed into heat, and this is energy that can never be extracted from
the system. A processes involving friction is irreversible.

Again, if a system consists of two bodies of different temperatures, energy can be ex-
tracted as work by a mechanism such as a dipping bird. But if heat flows from one body to
the other, until they reach the same temperature, the energy still exists, but can no longer
be extracted as work. Thus the cooling of a hot object is an irreversible process.

The second law of thermodynamics regulates such irreversible processes. The second law
postulates that there is a quantity S, called entropy , that can only increase. Irreversible
processes are precisely those that increase the entropy. Conversely, a process is reversible if
it does not increase entropy. If a system is at maximal entropy , the entropy can no longer
increase. An example would be a system in thermal equilibrium, where all parts are at the
same temperature.

Also related to the second law is the notion of free energy . This is the amount of energy
that can be extracted from a system as useful work. Thus the entropy of the system is
maximal if the free energy is zero.

2. Statistical mechanics and the partition function

The physical basis for thermodynamics is statistical mechanics . Thus heat is understood
as being the kinetic energy of atoms and molecules, and the laws of thermodynamics can be
derived from statistical considerations.

We will consider a system with many possible states, which is not strictly subject to the
first law, in that not all states have the same energy. The source of this uncertainty is usually
interaction with the environment. For example, one considers a system that is in contact
with a heat bath at a constant temperature. The system itself is assigned a temperature
that may be constant, or could vary within the medium. The system may also depend on
other parameters, such as pressure or the strength of an applied electromagnetic field.

An important question that is investigated in statistical mechanics is the behavior of a
system at a phase transition point. We may consider the melting or boiling of a substance
as an example. In an idealized form, we may imagine the process as follow. In a “frozen”
state, there are correlations between the local structure of the system at locations that are
separated in distance, but in the “melted” form, there are no such correlations. The phase
transition point or critical temperature is the value where the structure changes from frozen
to melted.

A statistical mechanical system S is an ensemble of states . Each state s has an energy
e(s), and there is a probability measure on S, with high energy states being less probable.
The system may depend on some external parameters, notably the temperature of the system.
The probability of the state s with energy E(s) is proportional to β(s) = e−E(s)/kT , where k
is Boltzmann’s constant . Since the sum of the probabilities must be 1, the actual probability
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is
1

Z
β(s), Z = Z(S, T ) :=

∑
s

β(s).

The quantity β(s) is called the Boltzmann weight of the state, and the quantity Z is called
the partition function. Note that as the temperature increases, energetic states become more
probable.

The partition function is very important in statistical mechanics, since it controls char-
acteristics of the system such as energy and entropy, and how they depend on temperature
and other parameters. For example the mean energy is

⟨E⟩ := 1

Z

∑
s

β(s)E(s) = kT 2 ∂

∂T
log(Z).

The free energy, which we recall is the amount of energy that can be extracted from the
system as work, equals

F = −kT log(Z),

and the entropy is

S = k log(Z) +
1

kT
⟨E⟩.

If the partition function depends on other parameters such as a magnetic field strength,
differentiating with respect to those will yield other values of significance.

The partition function also occurs in other areas of physics, such as quantum field theory.
For us, the partition function will be a main object of study, even though we will soon leave
its origins in statistical mechanics behind.

3. Ice

We may consider ice (frozen H2O), where the larger oxygen atoms have fixed locations
at the vertices of a grid. In its usual form (called Ice Ih) these oxygen atoms are arranged
in a three-dimensional hexagonal lattice. We can envision the oxygen atoms as lying on the
vertices of a three-dimensional hexagonal crystal lattice. Each oxygen atom will have four
neighbors, lying at the vertices of a tetrahedron. We may consider the 4-regular graph Γ
whose vertices are the oxygen atoms and whose edges are the segments joining them to the
four nearby atoms.

Linus Pauling Pauling 1935 computed the entropy and free energy of ice by means of a
three-dimensional lattice model. Let us describe a grid whose vertices are the oxygen atoms
in a crystal. We consider two oxygen atoms adjacent if they share a hydrogen bond. They
then form a graph Γ that is nearly 4-regular in that each oxygen atom, except those at the
boundary of the crystal, have 4 neighbors. (Here we are ignoring a detail about boundary
edges, and we will give a proper discussion of Γ below in Section 4.)

Ice has many possible crystalline structures. Under normal conditions, Ice Ih is the usual
one. This crystal occurs in sheets or layers. The graph is bivalent. Each layer is tesselated
by hexagons, with oxygen atoms at their vertices. Furthermore, each atom has a bond with
one in either the layer above or below, depending on its valence.

Here is the hexagonal Ice Ih lattice, showing the segments joining a sample oxygen atom
(green) to its four neighbors.
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Here is the graph Γ showing two adjacent layers.

While the location of the oxygen atoms is fixed, and forced into a crystalline pattern,
the location of the hydrogen nuclei (protons) is another matter. Due to its position in
the periodic table, oxygen is allowed two covalent bonds. The oxygen atom will therefore
borrow electrons from two hydrogen atoms. This causes the protons to lie on the segments
between two adjacent oxygen atoms, but each proton will be closer to one or the other of the
two oxygen atoms. There are many possible configurations, which are subject to quantum
superposition.
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near

far

We may represent this graphically by making the graph Γ into a directed graph. We
decorate the edges with arrows, each pointing towards the hydrogen atom on the edge.

Then we obtain the following model: we have a 4-regular graph, based on the three-
dimensional hexagonal lattice. A state of the system is a refinement of the graph to a
directed graph, with every vertex having two incoming and two outgoing arrows.

4. A class of lattice models

4.1. Graphs. We have formalized the ice crystal into a system based on a graph, which
is almost but not the same as a graph in the usual combinatorial definition. Let us define a
graph to be a set of vertices and a set of edges with an incidence relation. This means that
some edges are adjacent to or through certain vertices. We will assume that every edge is
through either exactly two vertices, or a single vertex. The edges that are through a single
vertex will be called boundary edges. The edges that connect two vertices are interior edges.
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As an example, let us consider this graph:

(1.1)

a

b

c

d

e

f

g

h

i

r

v

w

Here we have a graph with three vertices, labeled v, w and r. There are nine edges, labeled
a, b, c, d, e, f and g, h, i. The edges a, b, c, d, e, f are boundary edges. For later reference we
have colored the boundary edges. (See Section 6.)

The graph is planar if it can be embedded in the plane. We will consider mainly planar
graphs.

4.2. Spins and edge types. In the class of models we will consider, every edge e will
be assigned a set Σe called its spinset. Elements of Σe will be called spins. We will also
denote by Ve the spinspace which is by definition the free vector space on Σe. A state of the
model is a function that assigns to every edge e an element of Σe.

We will require that the spins of the boundary edges are fixed, and are part of the data
describing the system. On the other hand, the spins of the interior edges are variable. Two
edges e, f may be classified as the same type if the spin sets Σe and Σf are equal.

For example, in the Ice model, every edge has two possible configurations, and we can
take the spinsets Σe = {+,−}. In this example, all edges have the same type.

Two edges on opposite sides of a vertex will (usually) have the same spinset. Thus in a
configuration

ve

f

g

h

we require Σe = Σg and Σf = Σh. Thus e and g have the same edge type, and f, h have the
same edge type. Consequently all edges on a single line through the configuration have the
same edge type.

4.3. States. A state of the model is an assignment of an element of its spinset to every
edge of the model. We will assume that the boundary spins have fixed assignments. Indeed,
this will be part of the data describing the model.

Almost always there will be local constraints at each vertex on the possible configurations
of spins adjacent to a particular vertex. We will call a state in which these constraints are
satisfied at every vertex admissible.

For example in the Ice Ih model that we have described, the spins are directions or
orientations of the edges, which we can represent by arrows, and the constraint is that there
there are two “in” arrows and two “out” arrows. This means that there are

(
4
2

)
= 6 possible

configurations of local spins at the vertex.
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4.4. Local Boltzmann weights. Every vertex v is adjacent to four edges, which we
label e, f, g, h. We assume that there is a given map

βv : Σe × Σf × Σg × Σh −→ C

that assigns to every configuration of spins on these adjacent vertices a value, called the
Boltzmann weight . If (a, b, c, d) ∈ Σe×Σf×Σg×Σh, we may denote the value of βv(a, b, c, d)
as

βv

(
b c
a d

)
or βv

 b
a c

d


depending on the orientation of the vertex:

v

e

f g

h

or
ve

f

g

h

In applications to statistical mechanics or probability this would be a nonnegative real
number, but we will not assume this. The local constraints on the spins at the vertex may
be formulated as the assumption that βv(a, b, c, d) ̸= 0.

4.5. Vertex types. Two vertices v, v′ in the same or different systems are equivalent
if there is a bijection between the edges adjacent to v and the edges adjacent to v′ that
transports the local Boltzmann weights at v to the local Boltzmann weights at v′. A vertex
type is an equivalence class of vertices.

4.6. Partition function. Every admissible configuration s is therefore a state of the
system S, which is the ensemble of all states. In such a state, if v is a vertex and e, f, g, h
are the adjacent edges, the state assigns spins in Σe,Σf ,Σg,Σh, and by abuse of notation we
will denote by βv(s) the Boltzmann weight at v determined by these four spins. Now define

β(s) =
∏
v

βv(s).

The state is admissible if β(s) is nonzero. The partition function is

Z(S) =
∑
s

β(s).

We may sum over all states, or over admissible states.

Remark 1.1. In our pictures, we will often decorate the edges of the graph with a “bubble”
that can contain a symbol. But for narrative flexibility the contents of the bubble will vary
with context. It may be the name of the edge. It may be a symbol denoting an element of
the spinset, for example to specify the boundary conditions. It may also be a vector space,
typically the free vector space on the spinset, or a module of a quantum group. This should
cause no confusion since the meaning of the symbol in the bubble is defined somewhere in
the text.
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5. The six-vertex model

Certain lattice models are called solvable since algebraic methods based on the Yang–
Baxter equation, which will be a major focus of this book, allow the partition function to
be computed exactly. Historically the first example was Onsager’s 1944 study of the 2-
dimensional Ising model. However we will start with an even simpler model, the six-vertex
model , which is also related to ice.

Solvable lattice models are almost exclusively 2-dimensional. This means that the un-
derlying graph is planar. The Ice Ih model that we considered is not solvable as far as we
know, and its graph is not planar.

While Pauling had considered the realistic problem of 3-dimensional Ice and heuristically
computed the number of states, one can also consider 2-dimensional Ice, in which the oxygen
atoms are restricted to a plane, and form a crystal with the oxygen atoms at the vertices of
a square lattice. This was investigated by NagleNagle 1966, after which LiebLieb 1967a,b,c
and Sutherland Sutherland 1967 found exact solutions for the entropy problem. Baxter
introduced the Yang–Baxter equation and applied it to Ice-type models, as well as the more
difficult eight-vertex model. (See Baxter 1982, Chapter 9.)

For 2-dimensional Ice, Lieb found that the residual entropy was kN log(W ) with W =
(4/3)3/2.

The mathematical model of 2-dimensional ice is the famous six-vertex model, which is
the archetype of a large class of important solvable lattice models. It is realistic enough
to have a phase transition, which was of great interest to the early investigators. We will
therefore discuss it at length.

The six-vertex model is nearly identical to the Ih models we have discussed, except that
the underlying crystal is 2-dimensional, based on a square lattice. We will give two versions
of the Boltzmann weights. Recall that the spinset of an edge is a set of possible states. For
the six-vertex model, the spinset has cardinality two. In one version of the six-vertex model,
the spinset of an edge is an orientation. The Boltzmann weights depend on six parameters,
a1, a2, b1, b2, c1 and c2, which may depend on the vertex v, so we may write a1(v), etc. We
label the possible states as follows:

a1(v) a2(v) b1(v) b2(v) c1(v) c2(v)

v v v v v v

On the other hand, it will also be convenient to dispense with the orientation and take
the spinset to be the 2-element set {⊕,⊖}. Then the labeling of the states is as follows:

a1(v) a2(v) b1(v) b2(v) c1(v) c2(v)

+
+

+
+
v −

−
−

−
v +

−
+

−
v −

+
−

+
v −

+
+

−
v +

−
−

+
v

Although the lattice model will be based on a rectangular grid, we will also encounter
vertices that are in a rotated orientation, and we will use the following labels for these.
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a1(v) a2(v) b1(v) b2(v) c1(v) c2(v)

v v v v v v

+

+ +

+
v

−

− −

−
v

+

− +

−
v

−

+ −

+
v

−

+ +

−
v

+

− −

+
v

Similar to the six-vertex model, but more difficult, is the eight-vertex model. This adds
two more admissible configurations:

d1(v) d2(v)

−
−

+

+
v +

+

−
−
v

or

d1(v) d2(v)

−

− +

+

v

+

+ −

−
v

The eight vertex model is more difficult than the six-vertex model, but nevertheless Bax-
ter was able solve it, simultaneously solving a problem in quantum mechanics, the analysis
of the XYZ Hamiltonian. See Baxter 1982, Chapter 10.

6. Boltzmann weights as linear transformations

It will be advantageous later to regard the Boltzmann weights as linear transformations.
We will usually draw the vertices in one of the following orientations:

e

f

g

h

v

inputs

outputs e

f g

h

vinputs outputs

e f

gh
v

inputs

outputs

Note that we have classified some of the edges as inputs and some as outputs. We’ve colored
the input edges blue and the output edges red. We shall adopt the following rule: when two
vertices are connected by an edge, input edges are allowed to connect to output edges, but
inputs cannot be connected to inputs, and outputs cannot be connected to outputs. Thus
when an edge connects two vertices v and w, it is an output edge for v if and only if it is an
input edge for w. We will put the label for a vertex between the two output edges.

Remark 1.2. The division of edges into inputs and outputs extends to boundary edges of
larger graphs. For example in (1.1) we have chosen to consider the boundary edges a, b and
c as inputs, and correspondingly we have colored them blue. The boundary edges d, e and
f are outputs and we have colored them red. On the other hand the interior edges g, h and
i have ambiguous classification. Indeed g is an output edge for the vertex r and an input
edge for s, so we do not consider it either input or output for the overall graph.

As explained in Section 4.2, the edges e and g have the same spinsets, i.e. Σe = Σf , and
similarly Σf = Σh. Let V be the free vector space on the spinset Σe = Σg, and let W be
the free vector space on Σf = Σh. We think of the spins attached to e and f as “inputs”
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and those attached to g and h as outputs. Then we may define a linear transformation
Rv : V ⊗W −→ W ⊗V such that βv(x, y, z, w) is the coefficient of w⊗ z in Rv(x⊗ y), when
x ∈ Σe, y ∈ Σf , z ∈ Σh and w ∈ Σg. We may sometimes abuse notation and denote Rv as
just v when it simplifies the notation.

We will sometimes use Dirac notation, which we now explain. The vector space V comes
with a distinguished basis Σe = Σg, and so the dual V ∗ has the dual basis Σ∗

e. If x ∈ Σe,
let x∗ ∈ V ∗ be the corresponding linear functional. Alternatively, we may denote x as |x⟩
when we want to emphasize that it is in the spinset of an input edge, say Σe, and we will
then denote x∗ as ⟨x|, which we regard as an element of the output edge spinset Σg. If
additionally y ∈ Σf then we write |x⊗ y⟩ instead of |x⟩ ⊗ |y⟩. Then with this notation

β(x, y, z, w) = ⟨w ⊗ z|Rv|x⊗ y⟩, x, w ∈ V, y, z ∈ W.

Now the output edges g and h are (unless boundary edges) also be input edges for other
vertices in the grid, so the notation |w ⊗ v⟩ also has meaning. We will also write:

Rv|x⊗ y⟩ =
∑
w∈Σh
z∈Σg

β(x, y, z, w)|w ⊗ z⟩.

Let us consider six-vertex model. In this case all four edges have the same spinset {⊕,⊖}.
The free vector space V on the spinset {⊕,⊖} may be identified with C2. Let v+ and v− be
the standard basis v+ and v− be the standard basis. We may then use the basis

{v+ ⊗ v+, v− ⊗ v+, v+ ⊗ v−, v− ⊗ v−}
for V ⊗ V , and we find that the six-vertex model vertex v corresponds to the linear trans-
formation

(1.2) Rv =


a1(v)

c1(v) b1(v)
b2(v) c2(v)

a2(v)

 .

In Dirac notation we have:

a1(v) = ⟨v+ ⊗ v+|Rv|v+ ⊗ v+⟩, a2(v) = ⟨v− ⊗ v−|Rv|v− ⊗ v−⟩,
b1(v) = ⟨v− ⊗ v+|Rv|v+ ⊗ v−⟩, b2(v) = ⟨v+ ⊗ v−|Rv|v− ⊗ v+⟩,
c1(v) = ⟨v− ⊗ v+|Rv|v− ⊗ v+⟩, b2(v) = ⟨v+ ⊗ v−|Rv|v+ ⊗ v−⟩.
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Exercises

Exercise 1.1. Check that (1.2) is the right matrix for the linear transformation of the six-vertex model v.
What is the matrix for the eight-vertex model?

Exercise 1.2. Here are two models based on a 3× 3 grid.

+

−

+

−

+

−

+ −

+ −

+ −

Model 1

+ +

+ +

+ +

+ +

+ +

−

−

Model 2

(a) For Model 1, prove that this model has 7 states for the six-vertex model, and 16 states for the eight-vertex
model.

(b) For Model 2, prove that this model has 6 states for the six-vertex model, and 16 states for the eight-vertex
model.

(c) Consider a model based on this 3 × 3 grid with an arbitrary distribution of ⊕ and ⊖ spins on the 12
boundary edges. Prove that the model has 16 states in the eight-vertex model if the number of boundary ⊖
spins is even, and no states if the number of ⊖ spins is odd.



CHAPTER 2

The Yang–Baxter Equation

1. Solvability

Baxter introduced an important method of studying certain vertex models, and he used
it to solve not just the six-vertex model, but the more difficult eight-vertex model, and with
it the XYZ Heisenberg spin chain, a related quantum mechanical problem. This method is
based on the Yang–Baxter equation, so named by Faddeev. The study of the Yang–Baxter
equation leads to interesting mathematics, namely braided categories and quantum groups.
The same technology explains knot invariants such as the Jones polynomial. The six-vertex
model was a key example leading to this mathematics.

We resume the discussion from Section 5 of Chapter 1. We will say that a class of models
is solvable if, when v and w are vertex types that can occur adjacent to each other in the
class, there is another vertex type that we will denote r such that the two following systems
are equivalent.

(2.1)

a

b

c

d

e

f

g

h

i

r

v

w
a

b

c

d

e

f

j

k

l

r

v

w

This means that for every possible assignment of spins to the six boundary edges a, b, c, d,
e, f , the partition functions of the two systems are equivalent. Thus we sum over all possible
assignments of spins to the interior edges, g, h, i on the left-hand side, or j, k, l on the right-
hand side. If this is so, we say the Yang–Baxter equation is satisfied for these vertices v, w, r.

In (2.1), one vertex r is “rotated.” We can rotate the other two vertices, and consider
instead the equality of the two following systems:

(2.2)

g

i

h

r

v

w

a

b

c

f

e

d

k

j

l

w r

v

a

b

c

f

e

d

We will refer to a vertex in a rotated orientation as an R-vertex, and a vertex (such as v and w
in (2.1)) aligned parallel to the coordinate axes as a T-vertex. So the Yang-Baxter equation
in (2.1) contains one R-vertex and two T-vertices. Therefore we refer to this as an RTT

12
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equation. In (2.2), there are three R-vertices, so we will refer to this as an RRR equation.
Mathematically, the RTT and RRR equations are equivalent. But there is a difference in
how the R-vertices and T-vertices are used: typically the T-vertices are assembled into a
grid, and the R-vertices are attached to the grid to obtain information about the partition
function.

One goal of this Chapter is to introduce this subject by showing how, following Bax-
ter Baxter 1982, Yang–Baxter equations can be used to prove global properties of the par-
tition function. An archetypal example that we will discuss is the commutativity of the
row-transfer matrices for a model. We begin by introducing one family of solutions to the
Yang–Baxter equation within the six-vertex model.

1.1. Field-free six-vertex model. The vertex v with Boltzmann weights ai(v), bi(v)
and ci(v) is called field-free if, in the notation of Chapter 1, Section 5 we have a1(v) = a2(v),
b1(v) = b2(v) and c1(v) = c2(v). We will suppress the subscript in the field free case and
write just a(v) = a1(v) = a2(v), etc.

a(v) a(v) b(v) b(v) c(v) c(v)

+
+

+
+
v −

−
−

−
v +

−
+

−
v −

+
−

+
v −

+
+

−
v +

−
−

+
v

Let v be a field-free vertex. If a(v) and b(v) are nonzero, let

(2.3) ∆(v) =
a2(v) + b2(v)− c2(v)

2a(v) b(v)
.

We say that ∆(v) is defined if a(v) and b(v) are nonzero.
The case ∆ = 0 is called free-fermionic, and we will discuss it later (without the field-free

condition). The cases ∆ = ±1 are also special since they are phase transition points (Baxter
1982, Section 8.10). For an interesting and important generalization, see Baxter’s analysis
of the field-free eight-vertex model in Baxter 1982, Section 10.4.

Theorem 2.1 (Baxter). Let v and w be field-free vertices such that ∆(v) and ∆(w) are both
defined. Suppose that ∆(v) = ∆(w). Then there exists a nonzero field-free vertex r such that
the Yang–Baxter equation (2.1). If ∆(r) is defined, then ∆(r) = ∆(v) = ∆(w).

Proof. There are three equations that must be satisfied for the Yang–Baxter equation to
be satisfied. First take (a, b, c, d, e, f) = (+,+,−,+,−,+) in (2.1). The left-hand side of the
Yang–Baxter equation has one admissible state:

+++

+++

−−−

+++

−−−

+++

+++

−−−

+++

r

v

w
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This has Boltzmann weight b(v)c(w)a(r). On the other hand, there are two admissible states
on the right-hand side:

+++

+++

−−−

+++

−−−

+++

+++

−−−

−−−

r

v

w

+++

+++

−−−

+++

−−−

+++

−−−

+++

+++

r

v

w

These have weights c(v)b(w)c(r) and a(v)c(w)b(r). So we obtain the equation

(2.4) b(v)c(w)a(r) = c(v)b(w)c(r) + a(v)c(w)b(r).

Taking (a, b, c, d, e, f) = (+,+,−,−,+,+) gives

(2.5) c(v)a(w)a(r) = c(v)b(w)b(r) + a(v)c(w)c(r),

and taking (a, b, c, d, e, f) = (+,−,+,−,+,+) gives

(2.6) b(v)a(w)c(r) = c(v)c(w)b(r) + a(v)b(w)c(r).

Taking other combinations of a, b, c, d, e, f give a total of 12 equations altogether, but they
turn out to be these same three equations, repeated. So we need to show that we can
construct the vertex r to satisfy (2.4–2.6).

Since we are assuming that ∆(v) = ∆(w) we have

(a(v)2 + b(v)2 − c(v)2)a(w)b(w) = (a(w)2 + b(w)2 − c(w)2)a(v)b(v).

Since ∆(v) and ∆(w) are defined, both a(w), b(v) ̸= 0 implying

b(v)a(w)b(w)− a(v)b(w)2 + a(v)c(w)2

a(w)
=

a(v)b(v)a(w)− a(v)2b(w) + c(v)2b(w)

b(v)
,

and we define this to be a(r). Then we define

b(r) = b(v)a(w)− a(v)b(w), c(r) = c(v)c(w).

Now it may be checked that the identities (2.4), (2.5), (2.6) are satisfied. For example, to
prove (2.4), the right-hand side equals

c(w)(a(v)b(v)a(w)− a(v)2b(w) + c(v)2b(w))

and using the second expression for a(r) this equals a(r)c(w)b(v). We leave the other two
cases to the reader. We leave the fact that ∆(r) = ∆(v) = ∆(w) to the reader (Exercise 2.1).

□

We will explain later how this Yang–Baxter equation can be applied to study the partition
functions for the field-free two-dimensional ice models, and what some of the applications
are.
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2. Commuting transfer matrices

We will consider systems S built up from graphs Γ as in Chapter 1. Recall that a graph
for us consists of vertices and edges, with an incidence relation between them. Every edge is
adjacent to one or two vertices. An edge that is adjacent to two vertices is called interior ,
and an edge that is adjacent to only one vertex is called a boundary edge. Every edge E is
assigned a spinset ΣE of possible states called spins . The spins of boundary edges are fixed,
and are part of the data defining the system. A state of the system consists of an assignment
of spins to the interior edges.

Also required for the specification of the system S is, for every vertex v ∈ Γ a rule β
that assigns to a state s and a vertex v a weight βv(s). This should only depend on the spins
of the edges adjacent to v. The Boltzmann weight β(s) is the product of the βv(s) over all
vertices, and the partition function is

Z(S) =
∑

states s

β(s).

We wish to discuss the concatenation of two systems. To have an example in mind,
consider a system consisting of a single row of vertices:

b1

c1

v

b2

c2

v

b3

c3

v

b4

c4

v

b5

c5

v

b

c

Every vertex has the same Boltzmann weight βv, so we give every vertex the same label. We
imagine that one edge wraps around the back, so the system is periodic. We will refer to
this as cyclindric boundary conditions .

For simplicity, assume that every vertical edge here has the same spinset Σ. Let V be
the spinspace, which we recall is the free vector space on Σ. Let bi, ci ∈ Σ be the boundary
spins. We may collect the data b = (b1, . . . , bn) ∈ Σn and c = (c1, . . . , cn) ∈ Σn into data
representing the boundary spins on the top and bottom edges. The free vector space on Σn

is naturally isomorphic to ⊗nV , so we may also denote b = b1⊗· · ·⊗bn by abuse of notation.
We have already introduced Dirac notation in Section 6 of Chapter 1. Let us see how it is

applicable here. To quickly review, let W be a frame, by which we mean a vector space with
a distinguished basis Φ. The dual space W ∗ then contains the dual basis Φ∗. If β ∈ Φ, we
sometimes denote β as |β⟩ and the corresponding element of Φ∗ as ⟨β|. Then if T : W −→ W
is a linear transformation, and if β, γ ∈ Φ, we may apply T to |β⟩ to obtain T |β⟩. Then
we may apply the linear functional ⟨γ| to this vector to obtain ⟨γ|T |β⟩. With this notation,
the adjoint operator T ∗ : W ∗ → W ∗ is the map that sends ⟨γ| to ⟨γ|T . Dirac invented this
notation for Hermitian or self-adjoint operators that are prevalent in quantum mechanics,
where it is natural to use the same symbol T to denote an operator and its adjoint.
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Applying this with W = ⊗nV , we may consider the partition function of this one-rowed
system to be the matrix of an operator Tv : W → W and write

Z(S) = ⟨c|Tv|b⟩.

We call Tv the row transfer matrix . Note that thinking of the partition function as an
operator this way treats the top boundary edges as inputs, and the bottom boundary edges
as outputs.

One of Baxter’s great insights was the use of the Yang–Baxter equation to prove that
under certain conditions, row transfer matrices commute. To see how this works, let w be
another vertex type. Consider a system with two layers:

b1

d1

v

w

b2

d2

v

w

b3

d3

v

w

b4

d4

v

w

b5

d5

v

w

d

b

We can express this in terms of the product ⟨d|TwTv|b⟩ of two row transfer matrices. We
may concatenate the two smaller systems:

b1

c1

v

b2

c2

v

b3

c3

v

b4

c4

v

b5

c5

v

b

c

c1

d1

w

c2

d2

w

c3

d3

w

c4

d4

w

c5

d5

w

c

d
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Now the common edges, labeled c in both cases have become interior edges, so by our rules,
we have to sum over the possible states, to obtain:∑

c

⟨d|Tw|c⟩⟨c|Tv|b⟩ = ⟨d|TwTv|b⟩,

consistent with the usual rule for matrix multiplication. This explains the term “row transfer
matrix.”

In preparation for applying the Yang–Baxter equation, let a, b, c ∈ C, and let v = v(a, b, c)
denote the corresponding vertex type for the field-free six-vertex model. Thus the Boltzmann
weights of this vertex type are such that a1(v) = a2(v) = a, b1(v) = b2(v) = b and c1(v) =
c2(v) = c.

Theorem 2.2 (Baxter). Let ∆ ∈ C×, and let a, b, c, a′, b′, c′ be such that

a2 + b2 − c2

2ab
=

(a′)2 + (b′)2 − (c′)2

2a′b′
= ∆.

Let v = v(a, b, c) and w = v(a′, b′, c′) be the two corresponding vertex types. Then the
corresponding row transfer matrices commute:

TwTv = TvTw.

We should think of this in the context of “diagonalizing” the matrix Tv, for it is often
easier to diagonalize a large family of commuting operators than a single operator.

Proof. To prove this, we will make use of the Yang–Baxter equation, with the R-vertex r
from the last section. This is the vertex v(a′′, b′′, c′′) which we draw in a rotated orientation,
thus:

a′′ a′′ b′′ b′′ c′′ c′′

+++

+++ +++

+++ −−−

−−− −−−

−−− +++

−−− +++

−−− −−−

+++ −−−

+++ −−−

+++ +++

−−− +++

−−− −−−

+++

where

a′′ =
ba′b′ − a(b′)2 + a(c′)2

a′
=
aba′ − a2b′ + c2b′

b
,

b′′ = ba′ − ab′, c′′ = cc′.

We recall that also

(a′′)2 + (b′′)2 − (c′′)2

2a′′b′′
= ∆.

Then r is invertible in the following sense. As in Section 6 in Chapter 1, we may encode the
Boltzmann weights of the vertex r by the linear transformation with matrix

r =


a′′

c′′ b′′

b′′ c′′

a′′





18 2. THE YANG–BAXTER EQUATION

with inverse (as usual matrices):
a′′′

c′′′ b′′′

b′′′ c′′′

a′′′

 =


a′′

c′′ b′′

b′′ c′′

a′′


−1

.

It may be computed that

a′′′ =
1

a′′
, b′′′ =

−b′′

(c′′)2 − (b′′)2
, c′′′ =

c′′

(c′′)2 − (b′′)2
.

Then we compute that also

(a′′′)2 + (b′′′)2 − (c′′′)2

2a′′′b′′′
= ∆.

Now we may concatenate the matrices r and r−1, and this is done by matrix multiplica-
tion. In other words, if we compute the partition function of the following system:

a

b c

d

r r−1

we get 1 if a = d and b = c but 0 otherwise. This is because summing over the middle
column (four possibilities) really amounts to just multiplying matrices:

a′′

c′′ b′′

b′′ c′′

a′′




a′′′

c′′′ b′′′

b′′′ c′′′

a′′′

 .

So this concatenation of r and r−1 is equivalent to:

a

b c

d

This is also equivalent to:

a

b c

d

rr−1
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We may insert r and r−1 into our system representing ⟨d|TwTv|b⟩ to obtain:

r−1 r

b1

d1

v

w

b2

d2

v

w

b3

d3

v

w

b4

d4

v

w

b5

d5

v

w

d

b

Now we use the Yang–Baxter equation to see that this system is equivalent to:

r−1 r

b1

d1

b2

d2

b3

d3

b4

d4

b5

d5

v

w

v

w

v

w

v

w

w

v

We may repeat this process several times to obtain this system:

r−1 r

b1

d1

w

v

b2

d2

w

v

b3

d3

w

v

b4

d4

w

v

b5

d5

w

v

d

b

Due to the cylindric boundary conditions, the r and r−1 are again adjacent and may be
discarded. But now the system represents ⟨d|TvTw|b⟩. We have proven that the two row
transfer matrices commute. □

The argument in the last proof, where the R-vertex r moves past two rows of the grid to
interchange two rows, is known as the train argument.

3. Vector Yang–Baxter equation

We will give another notion of the Yang–Baxter equation. Soon we will connect it with
the familiar one that we used in Chapter 1 and earlier in Chapter 2.

Let U, V andW be vector spaces. Suppose that we are given three linear transformations:

r : U ⊗ V −→ V ⊗ U, s : U ⊗W −→ W ⊗ U, t : V ⊗W −→ W ⊗ V.
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We will consider two homomorphisms U⊗V ⊗W −→ W⊗V ⊗U . The first is the composition

U ⊗ V ⊗W V ⊗ U ⊗W V ⊗W ⊗ U W ⊗ V ⊗ U .
R⊗IW IV ⊗S T⊗IU

We may more compactly denote r12 = r⊗IW , s23 = IV ⊗s and t12 = t⊗IU . In this notation,
rij means r applied to the i and j components of a tensor. (The subscript notation is popular
in the Hopf algebra and quantum group literature.) The other homomorphism is

U ⊗ V ⊗W U ⊗W ⊗ V W ⊗ U ⊗ V W ⊗ V ⊗ U .
IU⊗T S⊗IV R⊗IV

We can diagram the homomorphisms graphically as follows.

tr

s

U

V

W

V

U

W

V

W

U

W

V

U

ρ12 s23 t12
U ⊗ V ⊗W V ⊗ U ⊗W V ⊗W ⊗ U W ⊗ V ⊗ U

Alternative
orientation:

U

V

W

U

V

W

U

W

V

r
s

t

and

rt

s

U

V

W

U

W

V

W

U

V

W

V

U

t23 s12 r23
U ⊗ V ⊗W U ⊗W ⊗ V W ⊗ U ⊗ V W ⊗ V ⊗ U

Alternative
orientation:

U

V

W

U

V

W

V

W

U

r
t

s

The equality of these two homomorphisms U ⊗ V ⊗W → W ⊗ V ⊗ U is the vector Yang–
Baxter equation.

Another useful notation for writing the Yang–Baxter equation involves the Yang–Baxter
commutator

Jr, s, tK = (t⊗ IV )(IV ⊗ s)(r ⊗ IV )− (IV ⊗ r)(s⊗ IV )(IV ⊗ t)

in End(V ⊗ V ⊗ V ). The vector Yang–Baxter equation in this notation is Jr, s, tK = 0.
We will now explain how this vector Yang–Baxter equation is related to the Yang–Baxter

equations we have previously described in terms of Boltzmann weights.
By a frame we mean a vector space with a distinguished basis. Thus if Σe is the spinset

of the edge e, and if Ve is the spinspace, then (Ve,Σe) is a frame. Alternatively, if a ∈ Σe we
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will denote by va the corresponding element of Va. If V = Ve we may denote Σe as ΣV to
avoid needing to mention the edge e.

Example 2.3. In the six-vertex model a ∈ Σe = {⊕,⊖}. If U, V,W are six-vertex spinspaces,
each has a basis u+, u− for U , v+, v− for V or w+, w− for W .

Let us start with a vertex r with chosen Boltzmann weights a1(r), a2(r), etc. As in
Section 6 of Chapter 1, we may encode these weights in a linear transformation r : U⊗V −→
V ⊗ U by the following rule. If a, b, c, d ∈ Σ then the Boltzmann weight of the state

a

b c

d

r

is to be the coefficient of vd⊗uc in r(ua⊗vb). We will write this coefficient in Dirac notation
as ⟨vd ⊗ uc|r|ua ⊗ vb⟩, or if we are thinking of it as a Boltzmann weight as

βr

(
b c
a d

)
.

So

r|ua ⊗ vb⟩ := r(ua ⊗ vb) =
∑
c,d

βr

(
b c
a d

)
|vd ⊗ uc⟩.

Lemma 2.4. The partition functions of the systems

(2.7)

tr

s

a

b

c

f

e

d

rt

s

a

b

c

f

e

d

equal ⟨wf ⊗ ve ⊗ ud|t12s23r12|ua ⊗ vb ⊗ wc⟩ and
⟨wf ⊗ ve ⊗ ud|r13s23r12|ua ⊗ vb ⊗ wc⟩.

Proof. We’ve labeled the interior edges for reference in the following calculation.

t12s23r12|ua ⊗ vb ⊗ wc⟩ =
∑
g,h

βr

(
b g
a h

)
t12s23|vh ⊗ ug ⊗ wc⟩

=
∑
g,h

∑
i,d

βr

(
b g
a h

)
βs

(
c d
g i

)
t12|vh ⊗ wi ⊗ ud⟩

=
∑
g,h

∑
d,i

∑
e,f

βr

(
b g
a h

)
βs

(
c d
g i

)
βt

(
i e
h f

)
|wf ⊗ ve ⊗ ud⟩.

Therefore

⟨wf ⊗ ve ⊗ ud|t12s23r12|ua ⊗ vb ⊗ wc⟩ =
∑
g,h,i

βr
(
b g
a h

)
βs
(
c d
g i

)
βt
(
i e
h f

)
.
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The right hand side is the partition function of the left-side of the Yang–Baxter equation
system. As usual, the boundary spins a, b, c, d, e, f are fixed, and the spins of the interior
edges g, h, i or j, k, l are summed over in the partition function. We leave the reader to check
the other side. □

Therefore:

Theorem 2.5. Let r, s, t be vertex types, and let U , V , W be as above, and define homomor-
phisms r : U ⊗V −→ V ⊗U as above. A necessary condition that for all choices of boundary
spins the partition functions of the systems (2.7) agree is that Jr, s, tK = 0 is satisfied.

One may also reorient the edges and work instead with the systems:

(2.8)

a

b

c

d

e

f

r

s

t
a

b

c

d

e

f

r

t

s

or

(2.9)

a

b c

d

ef

s

t

r

a

b c

d

ef

r

t

s

Lemma 2.6. The two Yang-Baxter equations in (2.8) and (2.9) are equivalent, to each other
and to the system in Theorem 2.5.

Proof. Note that the left-hand system in (2.8) can be deformed into the left-hand system
in (2.7) or to the right-hand system of (2.9). Similarly the right-hand system in (2.8) can be
deformed into the right-hand system in (2.7) or the left-hand system of (2.9). Both systems
are equivalent to Jr, s, tK = 0. □
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4. Parametrized Yang–Baxter equations

Let Γ be a group, and let V be a vector space. Let R : Γ −→ GL(V ⊗ V ) be a map such
that for every γ, δ ∈ Γ, we have a vector Yang–Baxter equation:

V ⊗ V ⊗ V

V ⊗ V ⊗ V V ⊗ V ⊗ V

V ⊗ V ⊗ V V ⊗ V ⊗ V

V ⊗ V ⊗ V

R12(γ) R23(δ)

R23(γδ) R12(γδ)

R12(δ) R23(γ)

Then we say that we have a parametrized Yang–Baxter equation with parameter group Γ.
In terms of the Yang–Baxter commutator

JR(γ), R(γδ), R(δ)K = 0.

We also require that R(1γ) is a scalar matrix, that is, a constant multiple of the identity
matrix, and that furthermore for every γ ∈ Γ that R(γ)R(γ−1) is a scalar matrix.

Usually the space V has a fixed basis Σ serving as the spinset of edges in the models
where the Boltzmann weights come from the parametrized system. Then as in Section 3 we
get vector Yang-Baxter equations in which R(γ) encodes the Boltzmann weights for a vertex
type. By Theorem 2.5, for all a, b, c, d, e, f the two following partition functions are equal:

(2.10)

R(δ)R(γ)

R(γδ)

a

b

c

f

e

d

R(γ)R(δ)

R(γδ)

a

b

c

f

e

d

We could alternatively orient the edges as follows:

(2.11)

a

b

c

d

e

f

R(γ)

R(γδ)

R(δ)
a

b

c

d

e

f

R(γ)

R(δ)

R(γδ)
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or equivalently (by Lemma 2.6):

(2.12)

a

b c

d

ef

R(γδ)

R(δ)

R(γ)

a

b c

d

ef

R(γ)

R(δ)

R(γδ)

In all cases, the procedure in Section 3 produces a vector Yang–Baxter equation, with V
being the free vector space on the spinset Σ.

Proposition 2.7. The three parametrized Yang-Baxter equations in (2.10), (2.11) and (2.9)
are equivalent.

Proof. This is a special case of Lemma 2.6. □

Example 2.8. We will show in the next Chapter that the field-free Yang–Baxter equation
of Section 1.1 gives an example of a parametrized Yang–Baxter equation.

Example 2.9. Here is a parametrized Yang–Baxter equation in the six-vertex model with
parameter group C×. If z ∈ C×, let R(z) be the vertex with Boltzmann weights:

a1 a2 b1 b2 c1 c2
1− q2z 1− q2z q(1− z) q(1− z) 1− q2 z(1− q2)

Then (Exercise 2.3.)

JR(z), R(zw), R(w)K = 0

Note that this parametrized Yang–Baxter equation is almost field-free since a1 = a2 and
b1 = b2, although c1 and c2 differ. This example can be deduced from Example 2.8 by
methods explained in Chapter 5.

Example 2.10. Here is another parametrized Yang–Baxter equation in the six-vertex model
with parameter group C×. If z ∈ C×, let R(z) be the vertex with Boltzmann weights

a1 a2 b1 b2 c1 c2
z − q2 1− q2z q(1− z) q(1− z) 1− q2 z(1− q2)

Then (Exercise 2.3.)

JR(z), R(zw), R(w)K = 0.

This example is very similar to Example 2.9 since only the a1 weights differ. Yet the
similarity is misleading, for unlike Example 2.9 this Yang–Baxter equation is not related
to the field-free Yang–Baxter equation, or to Example 2.9 by any simple transformation.
This example is free-fermionic, which means that the Boltzmann weights satisfy the identity
a1a2 + b1b2 − c1c2 = 0.
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4.1. Homogeneous parametrized Yang-Baxter Equations. As a variant of the
parametrized Yang-Baxter equation, we will also consider systems in which the edge types
are parametrized by a complex parameter z, and where edges with parameters z1 and z2
meet there is an R-matrix R(z1, z2) ∈ End(V ⊗ V ). We require that the R-matrix will be
linear in both variables and given three parameters z1, z2 and z3 there is a Yang-Baxter
equation

(2.13) JR(z1, z2), R(z1, z3), R(z2, z3)K = 0.

This means the following two systems are equivalent:

z2,z3z1,z2

z1,z3

a

b

c

f

e

d z1

z2

z3

z3

z2

z1

z2,z3 z1,z2

z1,z3

a

b

c

f

e

d z1

z2

z3

z3

z2

z1

Furthermore, we ask that R(z, z) is a scalar linear transformation. This means that there
exists a constant c such that R(z, z) = czIV⊗V . We also require that R(z, w)R(w, z) is a
scalar linear transformation. If these conditions are satisfied, we call this a homogenous
parametrized Yang-Baxter equation.

Example 2.11. Take the Boltzmann weights from Example 2.9, and take z = z2/z1, w =
z3/z2 so zw = z3/z1. We may adjust the R-matrix R(z1, z2) by multiplying by z1, which does
not affect the validity of the Yang-Baxter equation, since then both sides are multiplied by
the same value z21z2. Thus we obtain (2.13) with the following R-matrix:

a1 a2 b1 b2 c1 c2
z1 − q2z2 z1 − q2z2 q(z1 − z2) q(z1 − z2) z1(1− q2) z2(1− q2)

Example 2.12. Similarly Example 2.10 gives another homogeneous parametrized Yang-
Baxter equation with the following weights:

a1 a2 b1 b2 c1 c2
z2 − q2z1 z1 − q2z2 q(z1 − z2) q(z1 − z2) z1(1− q2) z2(1− q2)

5. Solvability for parametrized systems

In this section we define solvability and then specialize to the case where the Boltzmann
weights come from a parametrized Yang–Baxter equation. In this special case, we will prove
the equivalence of row and column solvability, and classify the solvable models with some
very simple data.

We consider a grid with n rows and N columns. For every vertex, we assume that there
is given a set of Boltzmann weights so that we have a lattice model.

Definition 2.13. The model is row-solvable if we can use the train argument to interchange
rows. That is, let R1, . . . , Rn be the rows. If 1 ⩽ a, b ⩽ n we may consider the two rowed
grid consisting of Ra on top of Rb. Then there is assumed to be an R-matrix that we may
attach and run the train argument, interchanging the rows.
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Remark 2.14. Note that in this definition the rows Ra and Rb are not assumed to be
adjacent. Since the train argument moves the rows around, this is needed if the train
argument is to be used more than once.

Column solvability is defined the same way with requiring R-matrices to interchange
columns (not necessarily adjacent). If a system is both row and column solvable we will call
it solvable.

We now specialize to the case where all the Boltzmann weights are assumed to come
from a parametrized Yang–Baxter equation R : G −→ End(V ⊗ V ) for some group G. We
will assume the map R is injective, so if R(γ) = R(δ) then γ = δ.

Let γij ∈ G be the element describing the Boltzmann weights in the i-th row and j-th
column. As usual, we number the columns in decreasing order.

Theorem 2.15. In this situation, row solvability is equivalent to column solvability.

Proof. One may reduce to the case of a 2 × 2 grid, and we will explain that case. With
only two rows, we attach the R-matrix, called R(ρ).

a

b

c d

e

f

gh

R(γ12) R(γ11)

R(γ22) R(γ21)

R(ρ)

We remind the reader that we label columns in descending order, so γ11 is in the upper
left. Remembering the parametrized Yang–Baxter equation, in G we must have γ12 = ργ22,
so ρ = γ12γ

−1
22 . Now using the Yang–Baxter equation, this equals the following partition

function:

a

b

c d

e

f

gh

R(γ12) R(γ11)

R(γ22) R(γ21)

R(ρ)

To use the Yang–Baxter equation again, we need R(ρ)R(γ21) = R(γ11), and so ρ = γ11γ
−1
21 .

Combining this with our previous formula for ρ we obtain the condition for row-solvability
which is that γ12γ

−1
22 = γ11γ

−1
21 . We prefer to take inverses here and write this condition

(2.14) γ22γ
−1
12 = γ21γ

−1
11 .
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Now let us similarly derive a condition for column solvability. We have to attach the vertical
R-matrix R(τ) for some τ ∈ G.

a

b

c d

e

f

gh

R(γ12) R(γ11)

R(γ22) R(γ21)

R(τ)

By Proposition 2.7 we may use (2.9) here and obtain γ12 = γ11τ , so τ = γ−1
11 γ12. But at

the next stage of the train argument, we need τ = γ−1
21 γ22, and so we obtain

(2.15) γ−1
11 γ12 = γ−1

21 γ22.

This is the condition for column solvability. But (2.14) is equivalent to (2.15) and so row
solvability is equivalent to column solvability. □

Since row solvability and column solvability are equivalent for the class of models we are
now considering, we will simply call such models solvable.

Corollary 2.16. A necessary and sufficient condition for solvability is that when 1 ⩽ a, b ⩽ n
and 1 ⩽ c, d ⩽ N then

(2.16) γbdγ
−1
ad = γbcγ

−1
ac .

Proof. This generalizes (2.14). One may apply the argument to the two row grid consisting
of the a and b rows for row solvability as in Definition 2.13. Column solvability is treated
the same way. The fact that the row and column solvability criteria are equivalent is similar
to the proof of (2.16). □

Now we can classify the solutions to 2.16 to construct solvable models with a parametrized
Yang–Baxter equation. In fact, the following result is a complete classification. See Chapter 4
Section 6 for an illustration of this result.

Theorem 2.17. Let {ϕ(a) | 1 ⩽ a ⩽ n} and {ψ(b) | 1 ⩽ b ⩽ N} be arbitrary sequences in
the parameter group G. Define

(2.17) γab = ϕ(a)ψ(b).

Then (2.16) is satisfied, so these Boltzmann weights define a solvable lattice model. Con-
versely, if (2.16) is satisfied, then functions ϕ and ψ may be found such that the Boltzman
weights are given by (2.17).

Proof. Given ϕ and ψ with γab as in (2.17) then

γbdγ
−1
ad = (ϕ(b)ψ(d))(ϕ(a)ψ(d))−1 = ϕ(b)ϕ(a)−1,
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which is independent of d, hence equals γbcγ
−1
ac , proving (2.16).

To prove the converse, assume (2.16) and take a = 1, c = 1 to write

γbd = γb1γ
−1
11 γ1d = ϕ(b)ψ(d)

where ϕ(b) = γb1 and ψ(d) = γ−1
11 γ1d. This proves (2.17). □

Exercises

The next two exercises are related to Theorem 2.1.

Exercise 2.1.

(i) In the proof of Theorem 2.1, we checked that the advertized r satisfies (2.4) but we did not check (2.5)
and (2.6). Check these facts.

(ii) We also did not check that if ∆(r) is defined, then ∆(r) = ∆(v) = ∆(w). Prove this fact.

(iii) Assume that ∆(v) = ∆(w) and that c(v) and c(w) are nonzero. Prove that r is unique up to constant
multiple.

Exercise 2.2. Suppose that v and w are field-free vertices such that c(v) and c(w) are nonzero. If there
exists a nonzero vertex r such that the Yang–Baxter equation (2.1) is satisfied, then ∆(v) = ∆(w). Hint:
use the three equations (2.4), (2.5) and (2.6).

Exercise 2.3.

(i) Prove the parametrized Yang–Baxter equation in Example 2.9.

(ii) Prove the parametrized Yang–Baxter equation in Example 2.10.

Exercise 2.4. Let R(z) be the R-matrix in either Example 2.11 or Example 2.12. Show that R(z)R(1/z)
is the scalar (q2 − z)(q2 − 1/z),

The goal of the next problem is to prove the relationship between two different forms of the Yang–Baxter
equation.

Exercise 2.5. Let r ∈ End(V ⊗ V ). We have already introduced the notation rij ∈ End(V ⊗ V ⊗ V ) where
(i, j) is one of (1, 2), (2, 3) or (1, 3). But to recapitulate, this means that r is applied to the i-th and j-th
component of V ⊗ V ⊗ V , so r12 = r ⊗ IV and r23 = IV ⊗ r; and if we expand r as a sum

∑
r′i ⊗ r′′i with r′i

and r′′i ∈ End(V ), then r13 =
∑

r′i ⊗ IV ⊗ r′′i . The same notation applies also map (for example)

r ∈ Hom(U ⊗ V, V ⊗ U) to r12 ∈ Hom(U ⊗ V ⊗W,V ⊗ U ⊗W ).

Let furthermore
s ∈ Hom(U ⊗W,W ⊗ U), t ∈ Hom(V ⊗W,W ⊗ V ).

The first form of the Yang–Baxter equation is the identity Jr, s, tK = 0 in Hom(U ⊗ V ⊗ W,W ⊗ V ⊗ U).
This can be written

(2.18) t12s23r12 = r23s12t23.

The other form of the Yang–Baxter equation is, for R ∈ End(U ⊗ V ), S ∈ End(U ⊗W ), T ∈ End(V ⊗W )
the identity

(2.19) T12S13R12 = R12S13T12

in End(U ⊗ V ⊗W ). Let τ : U ⊗ V → V ⊗ U be the flip map τ(u⊗ v) = v ⊗ u. Now let R ∈ End(U ⊗ V )
and define r ∈ Hom(U ⊗ V, V ⊗ U) by r = τ ◦ R. Similarly, let s = τ ◦ S and t = τ ◦ T . Then prove that
the identity (2.18) is equivalent to (2.19).



CHAPTER 3

The Six-Vertex Model

We introduced the six-vertex model in Chapter 1, Section 5. In this chapter, we will
study this model further. There are actually two representation theoretic aspects to our
study. The first is a global one having to do with the theory in the large, such as information
about the partition function, or about states of the system. In this chapter we show that
the states of the six-vertex model can be parametrized by Gelfand–Tsetlin patterns, which
have meaning in terms of the representation theory of GL(n,C). The local aspect consists of
the properties of Boltzmann weights and the Yang–Baxter equation. We started our study
of the Yang–Baxter equation for the six-vertex model in Chapter 2, and here we continue
that study.

We remind the reader of the basic setup from Chapter 1, Sections 5 and 6. The spinset
for every edge in the six-vertex model is the fixed set {⊕,⊖}. Let V be C2 with basis v+,
v−, corresponding to ⊕ and ⊖. If v is a vertex with Boltzmann weights a1(v), a2(v), b1(v),
b2(v), c1(v), c2(v), labeled as in Section 1.5, then as explained in Section 1.6, v may be
associated with the linear transformation (1.1.2), which is an endomorphism of V ⊗ V .

1. Paths

In many models we may visualize states in terms of paths (or lines) through the lattice.
For the six-vertex model, we interpret a ⊖ (resp. ⊕) state as the presence (resp. absence) of
a particle. We visualize the particles as moving from top to bottom, and from left to right.

a1 a2 b1 b2 c1 c2

+

+

+

+

−
−

−
−

+

−
+

−
−

+

−
+

−
+

+

−
+

−
−

+

We have drawn the particles in red, then visualized the paths they must take. In the case
of a2 we have elected not to allow the paths to cross, though in other schemes they might
cross.

The classification of the boundary edges is inputs or outputs (Remark 1.2 in Chapter 1)
works well for the six-vertex model. If we call the top and left boundary edges inputs, and
the right and bottom edges outputs, then every path connects an input to an output. Here
is an example of a state of the six-vertex model with the paths drawn in red. In this example
they start at the top boundary and finish on the right edge. Depending on the boundary

29
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conditions some paths might start at the left boundary, or finish at the bottom.

+ + + + + + + + + +
+ −

+ −

+ −

+ −

+ −

0123456789

1

2

3

4

5

− + + − + + − − + −

+ − + − + + + − − +

+ + − + + − + + − +

+ + + + + − + − + +

+ + + + + + − + + +

− + + + + + − − +

+ − + − − + + − −

+ + − − − − − + −

+ + + + + − + − −

+ + + + + + − − −

In Chapter 2 we considered cylindric boundary conditions, wrapping the grid around into
a cylinder. We might also consider toroidal boundary conditions, additionally wrapping the
top to bottom so that there are no boundary edges.

Now, however, we want to do no wrapping, envisioning a rectangular grid with boundary
edges on the left, right, top and bottom. Now let N be the number of columns and n be the
number of rows of a rectangular grid. Let us assume that N > n.

To specify the system, we must specify the boundary spins. These are constrained by
the following fact.

Lemma 3.1. The number of ⊖ on the top and left must equal the number of ⊖ on the right
and bottom, or else the system has no admissible states.

Proof. Every path must start at the top or left and finish on the right or bottom. This gives
a bijection between the ⊖ spins on the top or left and those on the right or bottom. □

If the grid is square, we may put ⊕ on the left and bottom boundary edges, and ⊖ on
the top and right boundary edges.

(3.1)

−−− −−− −−− −−−

−−−

−−−

−−−

−−−

+++ +++ +++ +++
+++

+++

+++

+++

We refer to this specification as domain-wall boundary conditions . The assumption that the
grid is square is needed here, since otherwise Lemma 3.1 shows that the system has no states.

In this text we will often have more columns than rows. Thus assuming N > n, we may
(as with the domain-wall boundary conditions) put ⊕ on the left and bottom boundary, and
⊖ on the right boundary. But Lemma 3.1 shows that we must then have exactly n spins of
⊖ on the top, and the rest must be ⊕. We will call this arrangement extended wall boundary



2. GELFAND–TSETLIN PATTERNS AND STATES 31

conditions. It looks like this:

(3.2)

−−− −−− −−− −−−

−−−

−−−

−−−

−−−

+++ +++ +++ +++ +++ +++ +++ +++
+++

+++

+++

+++
+++ +++ +++ +++

01234567

1

2

3

4

Observe that we have labeled the rows and columns. The columns are numbered starting at
0 in order from right to left.

We will also encounter skew wall boundary conditions which have ⊕ spins on the left
boundary, ⊖ spins on the right boundary, but generalizing the extended wall conditions
allow ⊖ spins on the bottom edge.

(3.3)

−−− −−− −−− −−− −−−

−−−

−−−

−−−

−−−

−−−+++ +++ +++ +++ +++ +++ +++
+++

+++

+++

+++
+++ +++ +++

01234567
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3

4

2. Gelfand–Tsetlin patterns and states

Let λ = (λ1, λ2, . . . , λn) be a sequence of nonnegative integers. We say λ is a partition if
it is weakly decreasing:

λ1 ⩾ λ2 ⩾ · · · ⩾ λn ⩾ 0.

We identify two partitions if they differ only by some trailing zeros. Thus (3, 2) and (3, 2, 0, 0)
are equal as partitions. The length of the partition is the number of nonzero parts. Thus a
partition of length ⩽ n may be identified with an element of Λ := Zn. We say λ is a partition
of k, and write λ ⊢ k or k = |λ| if

∑
λi = k. The partition is strict if

λ1 > λ2 > · · · > λn ⩾ 0.

A strict partition is the same as a partition into unequal parts.
More generally, let λ = (λ1, . . . , λn) ∈ Λ be any sequence of integers such that λ1 ⩾ · · · ⩾

λn. Then we call λ a dominant weight of length n. Thus a dominant weight λ is a partition
of length ⩽ n if and only if λn ⩾ 0 (so all entries are nonnegative).

The reason for this terminology comes from Lie theory. Let G = GL(n,C), and let T be
the subgroup of diagonal matrices. The weight lattice of G is the group X∗(T ) of rational
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characters of T . By definition, a rational character is an algebraic homomorphism from T
into the multiplicative group. Such a character has the form

t 7→ tλ := tλ11 · · · tλnn , t =

t1 . . .
tn

 ,

for some λ ∈ Λ. Thus X∗(T ) may be identified with Λ. The weight λ is dominant if and
only if λ1 ⩾ · · · ⩾ λn. We will refer to Λ as the GL(n) weight lattice.

Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn−1) be partitions or dominant weights of lengths
⩽ n and n− 1, respectively. We say that λ and µ interleave if

(3.4) λ1 ⩾ µ1 ⩾ λ2 ⩾ µ2 ⩾ · · · ⩾ µn−1 ⩾ λn.

We make the same definition if λ and µ are dominant weights, so that their entries are
allowed to be negative.

Gelfand–Tsetlin patterns are triangular arrays of integers satisfying certain inequalities.
Specifically, a Gelfand–Tsetlin pattern of size n is an array

A =


a1,1 a1,2 a1,3 · · · a1,n

a2,1 a2,2 · · · a2,n−1

. . . . . .

an,1


such that the rows are weakly decreasing (so they are dominant weights) that interleave. A
Gelfand–Tsetlin pattern is strict if every row is a strict partition. If λ = (λ1, · · · , λn), let
GTPn(λ) be the set of Gelfand-Tsetlin patterns of size n with top row λ, so a1,i = λi.

For example, there are 8 Gelfand—Tsetlin patterns with top row (2, 1, 0). These are:2 1 0
1 0
0

 ,

2 1 0
1 0
1


2 1 0

1 1
1

,
2 1 0

2 0
0


2 1 0

2 0
1

 ,

2 1 0
2 0
2


2 1 0

2 1
1

 ,

2 1 0
2 1
2

 .

These patterns are all strict, except the third one, which we have marked in red.

2.1. States and strict Gelfand–Tsetlin patterns. We will now show that states of
a model with extended wall boundary conditions are in bijection with strict Gelfand–Tsetlin
patterns of size n, where n is the number of rows of the model. The Gelfand–Tsetlin pattern
of a state s can be read off from the locations of the ⊖ spins on the vertical edges. Let us
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illustrate this with the following example:

(3.5)
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Note that we have colored every vertical edge that has a ⊖ spin. The column numbers of
these vertical edges can be arranged in an array, thus:

(3.6)


7 4 3 0

6 3 1
3 2

3


This is a Gelfand–Tsetlin pattern by the following result.

Proposition 3.2. Let s be a state of the six-vertex model with extended wall boundary
conditions and n rows. Above the i-th row, there are exactly n+ 1− i vertical edges with ⊖
spins. Putting the column numbers of these into the i-th row of an array produces a strict
Gelfand–Tsetlin pattern GTP(s). Conversely, given a strict Gelfand–Tsetlin pattern with
n rows, provided N − 1 is larger than every entry of the pattern, there is a unique state s
corresponding to the pattern in this way.

Proof. First let us show that there are exactly n+ 1− i vertical edges with ⊖ spins above
the i-th row. If i = 1, then by Lemma 3.1, the number of ⊖ spins on the top boundary
is exactly n, as required. Now we argue by induction. Assuming there are n + 1 − i edges
above the i-th row with ⊖ spins, there are that many paths downward paths to the i-th row;
one exits to the right, so n− i paths must exit downward. This means that there are n− i
vertical edges carrying ⊖ spins above the i+ 1-st row.

It must be shown that the rows interleave. Let ai,1, . . . , ai,n+1−i be the columns of the ⊖
spins above the i-th row. We must show that

ai,j ⩾ ai+1,j ⩾ ai,j+1.

The path through the ai,j edge (meaning the edge in column j above the i-th row) is also
through the ai+1,j edge; since the paths move down and to the right, ai,j ⩾ ai+1,j. To prove
that ai+1,j ⩾ ai,j+1, note that if this were not true, the path through the ai,j edge would
move horizontally on the i-th row past the ai,j+1 column. But then it would collide with the
path coming downwards through the ai,j+1 edge. So this cannot happen.

We have proved that the array GTP(s) is a Gelfand–Tsetlin pattern. It is obvious that
it is strict.

Conversely, let us suppose that we are given a Gelfand–Tsetlin pattern T of size n. We
consider a grid with n rows and N columns, where N − 1 is greater than the entries in T .
Thus N − 1 is the largest column number in the grid. We may construct a state by putting
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⊖ on the vertical edges. The spins on the horizontal edges are then determined by the
condition that every vertex is adjacent to an even number of ⊖ edges. We leave the reader
to convince themselves that this procedure always produces a legal state. □

Definition 3.3. We have already described extended wall boundary conditions on an N ×n
grid, but we have not specified precisely the spins on the top boundary. Given a strict
partition λ = (λ1, . . . , λn) with λ1 ⩽ N , let us put ⊖ spins on the top boundary vertical
edges in the λi columns for 1 ⩽ i ⩽ n, and ⊕ spins in the remaining columns. As before we
put ⊕ spins on the left and bottom boundary edges and ⊖ spins on the right boundary edges.
We will call these boundary conditions the extended wall boundary conditions of weight λ.

Corollary 3.4. Let s be a state of the extended wall boundary conditions of weight λ on an
n×N grid. Then λ is the top row of GTP(s).

Proof. This is clear, since λ describes the location of the ⊖ spins above the first row, but
these are the top vertical boundary edges. □

Example 3.5. The extended wall boundary conditions on a 4×8 grid of weight λ = (7, 4, 3, 0)
are illustrated in (3.2), with a typical state in (3.5). Then GTP(s) is given by (3.6) and
indeed, the top row of this Gelfand–Tsetlin pattern is λ.

2.2. Gelfand–Tsetlin patterns and tableaux. Gelfand–Tsetlin patterns of size n
with top row λ are also in bijection with another important class of mathematical objects,
semistandard Young tableaux (SSYT) in the alphabet {1, 2, . . . , n}.

To define these, recall that the Young diagram YD(λ) of a partition λ is a collection of
boxes with λ1 in the first row, λ2 in the second row, etc. A semistandard Young tableau T
(SSYT) of shape λ in the alphabet {1, 2, . . . , n} is a filling of YD(λ) with integers 1, . . . , n
such that the rows are weakly increasing, and the columns are strictly increasing. The weight
wt(T ) is (µ1, . . . , µn) where µi is the number of i’s in T . We denote the set of all semistandard
Young tableaux of shape λ in the alphabet {1, 2, . . . , n} by SSYTn(λ).

Example 3.6. Let λ = (5, 2, 2) and n = 5. Then

T = 1 1 2 2 5

2 2

3 5

is a SSYT of shape λ. Its weight is (2, 4, 1, 0, 2).

If YD(µ) ⊆ YD(λ), we call λ/µ a skew partition. A skew partition λ/µ is a horizontal
strip if each column of YD(λ/µ) := YD(λ)\YD(µ) contains at most one cell. The condition
that λ/µ is a horizontal strip is equivalent to saying that λ and µ interleave.

We may now explain the bijection between the sets SSYTn(λ) and GTPn(λ). We may
view a SSYT T as a sequence of partitions

∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(n) = λ

such that λ(i)/λ(i−1) is a horizontal strip for 1 ⩽ i ⩽ n. Namely, λ(i)/λ(i−1) contains the
letters i in T . Generalizing the notion of a semistandard Young tableau, we may also
consider a filling of a skew diagram YD from the alphabet {1, 2, . . . , n} with the rows weakly
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increasing and the columns strictly increasing. We will denote the set of such skew diagrams
SSYTn(λ/µ). If λ = (5, 3, 1) and µ = (2), here is a skew tableau of shape λ/µ in SSYT3(λ/µ):

2 2 3

1 1 3

2

.

Example 3.7. The tableau T of Example 3.6 is associated to the sequence of partitions

∅ ⊆ (2) ⊆ (4, 2) ⊆ (4, 2, 1) ⊆ (4, 2, 1) ⊆ (5, 2, 2).

Now let A be a Gelfand–Tsetlin pattern of size n. Call the rows of A from top to
bottom λ(n), λ(n−1), . . . , λ(1). Since λ(i) and λ(i−1) interleave, λ(i)/λ(i−1) forms a horizontal
strip. Hence

∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(n) = λ

defines a SSYT.

Example 3.8. For T in Example 3.6, the Gelfand–Tsetlin pattern is
5 2 2 0 0

4 2 1 0
4 2 1

4 2
2

 .

The shape of T is the partition (5, 2, 2), which we have to pad with zeros since the size n = 5
of the Gelfand–Tsetlin pattern is to be the size of the alphabet of T .

3. Parametrized field-free Yang–Baxter equation

There are two main kinds of parametrized Yang–Baxter equations in the six-vertex model.
As we will explain in later chapters, these correspond to two different quantum groups,

Uq(ĝl2) and the supersymmetric Uq(ĝl(1|1)). They are:

• The field-free six-vertex model, and variants. These are related to Uq(ĝl2) and will
be treated in this section.

• The free-fermionic six-vertex model, and variants. These are related to Uq(ĝl(1|1))
and will be treated in the next section.

Let ∆ ∈ C be fixed. Let q be found such that 1
2
(q + q−1) = ∆. We will use the notation

R(a, b, c) for the vertex with Boltzmann weights a, b, c, as before. Let G∆ be the set of
(a, b, c) with a, b ̸= 0 such that

a2 + b2 − c2

2ab
= ∆,

together with two additional elements (±∆, 0,∆). Eventually we will give G∆ the structure
of a group.

In Chapter 1 we showed that if (a1, b1, c1) and (a2, b2, c2) are in G∆, then there exists
a third (a0, b0, c0) ∈ G∆ such that if (in the notation of Chapter 1) R = v(a0, b0, c0), S =
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v(a1, b1, c1) and T = v(a2, b2, c2), then we have a Yang–Baxter equation:

(3.7)

a

b

c

d

e

f

R

S

T
a

b

c

d

e

f

R

S

T

We note that the Yang–Baxter equation is homogeneous in the sense that if any one of
(ai, bi, ci) is multiplied by a nonzero constant then the validity of the equation is unchanged.
So while R is usually determined by S and T , it is only determined up to a constant multiple.

Now we want to start with R and T and compute S. This will give us our first example
of a parametrized Yang–Baxter equation. We begin by noting that G∆ can be parametrized
as follows.

Lemma 3.9. Let x ∈ C× and let

(3.8) (a, b, c) =
(
1
2
(xq − (xq)−1), 1

2
(x− x−1), 1

2
(q − q−1)

)
.

Then (a, b, c) ∈ G∆.

Proof. This is a straightforward calculation. □

Theorem 3.10. The mapping

R∆ : C× −→ {field-free Boltzmann weights (a, b, c)}
is a parametrized Yang–Baxter equation with parameter group C×. Here the Boltzmann
weights (a, b, c) of R∆(x) are given by (3.8).

Proof. Let R, S and T be field-free vertices with Boltzmann weights R∆(x), R∆(xy) and
R∆(y), respectively. The Boltzmann weights are

β∆(R) =

(
1

2
((xq)− (xq)−1),

1

2
(x− x−1),

1

2
(q − q−1)

)
:= (a, b, c),

β∆(S) =

(
1

2
(xyq − (xyq)−1),

1

2
(xy − (xy)−1),

1

2
(q − q−1)

)
:= (a′, b′, c′),

β∆(T ) =

(
1

2
(yq − (yq)−1),

1

2
(y − y−1),

1

2
(q − q−1)

)
:= (a′′, b′′, c′′).

Checking the parametrized Yang–Baxter equation is now a matter of computation. There
are 12 cases of boundary Boltzmann weights that give nontrivial identities, but actually
these are redundant and there are only 3 distinct identities. They are:

cc′b′′ + ba′c′′ − ab′c′′ = 0,
ac′a′′ − bc′b′′ − ca′c′′ = 0,
cb′a′′ − ca′b′′ − bc′c′′ = 0.

These are easily checked. □
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Remark 3.11. There are three special cases. If ∆ = 0, then we are in the free-fermionic
case. The parametrized Yang–Baxter equation in Theorem 3.10 can be embedded in a much
larger one with parameter group GL(2,C)× GL(2,C), so in this case Theorem 3.10 is true
but it is not the whole story.

Remark 3.12. On the other hand, if ∆ = ±1 then q = ∆ = ±1 is the unique solution to
∆ = 1

2
(q + q−1). We see from (3.8) that c = 0 and a = ±b, so these are very degenerate

systems. The values ∆ = ±1 are phase transition points. See Baxter Baxter 1982, Chapter 8.

Remark 3.13. Another interesting case is q = e2πi/6. Then we can take x = q = −(xq)−1,
and all three Boltzmann weights a, b, c are equal. This fact was exploited by Kuperberg
1996 in proving the Alternating Sign Matrix Conjecture.

4. The free-fermionic six-vertex model

Another case where there is solvability is the free-fermionic case. Here the relevant Yang–
Baxter equation was found (partly) by Korepin around 1981. See Korepin, Bogoliubov, and
Izergin 1993a, page 126 with references to earlier literature. Later Brubaker, Bump and
Friedberg Brubaker, Bump, and Friedberg 2011a rediscovered this in a slightly more general
form and gave applications. They were not aware of Korepin’s work until it was called to
their attention (by Reshetikhin), but by that time Brubaker, Bump, and Friedberg 2011a
was already in print, so Korepin was unfortunately not acknowledged in Brubaker, Bump,
and Friedberg 2011a.

We call the six-vertex model vertex v free-fermionic if

a1(v)a2(v) + b1(v)b2(v) = c1(v)c2(v).

We are dropping the field-free condition.
It turns out that all free-fermionic weights fit into a parametrized Yang–Baxter equation

with parameter group Γ = GL(2,C) × GL(1,C). This parametrized Yang–Baxter equa-
tion was discovered by Korepin (see Korepin, Bogoliubov, and Izergin 1993b page 126, and
rediscovered by Brubaker, Bump and Friedberg Brubaker, Bump, and Friedberg 2011a). Let

ρ : GL(2,C)×GL(1,C) −→ {free-fermionic vertices}

be the map that sends the element

γ =

((
a1 b2
−b1 a2

)
, c1

)
to the vertex with Boltzmann weights a1, a2, b1, b2, c1, c2, where c2 = (a1a2 + b1b2)/c1.

Theorem 3.14. The map ρ is a parametrized Yang–Baxter equation with parameter group
GL(2,C)×GL(1,C).
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The parametrized Yang–Baxter equation can be either of the two forms. We may ask
that for all a, b, c, d, e, f the two following partition functions are equal:

ρ(δ)ρ(γ)

ρ(γδ)

a

b

c

f

e

d

ρ(γ)ρ(δ)

ρ(γδ)

a

b

c

f

e

d

Alternatively:

a

b

c

d

e

f

ρ(γ)
ρ(γδ)

ρ(δ)
a

b

c

d

e

f

ρ(γ)

ρ(δ)

ρ(γδ)

Proof. Let r = ρ(γ), t = ρ(δ) and s = ρ(γδ), where the product γδ is just matrix multipli-
cation. Thus

(3.9) γ =

((
a1(r) b2(r)
−b1(r) a2(r)

)
, c1(r)

)
, δ =

((
a1(t) b2(t)
−b1(t) a2(t)

)
, c1(t)

)
.

Multiplying γ and δ and remembering that s = ρ(γδ), the s Boltzmann weights are:

(3.10) c1(s) = c1(r)c1(t), c2(s) = c2(r)c2(t).

(3.11) a1(s) = a1(r)a1(t)− b2(r)b1(t), a2(s) = −b1(r)b2(t) + a2(r)a2(t),

(3.12) b1(s) = b1(r)a1(t) + a2(r)b1(t), b2(s) = a1(r)b2(t) + b2(r)a2(t).

Taking (a, b, c, d, e, f) = (⊕,⊖,⊕,⊕,⊖,⊕) gives one equation which we may write

b1(r)a1(s)b2(t) + c2(r)c1(s)c2(t) = c1(r)c2(s)c1(t) + b1(r)a1(s)b2(t),

which is addressed by assuming (3.10). This also addresses the equation from (a, b, c, d, e, f) =
(⊖,⊕,⊖,⊖,⊕,⊖). Substituting the values of ci(S) from (3.10) throughout, there remain 12
equations, but each is divisible by one or more of c1(r), c2(r), c1(t) or c2(t), and dividing by
these, each equation is repeated and there are only six equations to be satisfied. For example,
taking (a, b, c, d, e, f) = (⊕,⊕,⊖,⊖,⊕,⊕) and using the values (3.10) gives an equation that
is divisible by both c2(r) and c2(t), and dividing by these gives a1(r)a1(t) = b2(r)b1(t)+a1(s),
which is addressed by (3.11). After imposing (3.11) there are only four nonredundant equa-
tions, These simplify a little by using the free-fermionic condition in the form

c2(r) = (a1(r)a2(r) + b1(r)b1(r))/c1(r),
c2(t) = (a1(t)a2(t) + b1(t)b1(t))/c1(t),
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and then substituting (3.12), all equations are satisfied. It may be checked that the vertex
s is also free-fermionic. □

5. A general six-vertex Yang–Baxter equation

This section can be skipped on first reading. But this section provides a satisfactory
answer to when, given six-vertex matrices r and t, there exists a solution s to the Yang–
Baxter equation Jr, s, tK = 0. Ultimately (Bump and Naprienko 2025) this leads to a groupoid
parametrized Yang–Baxter equation that accounts for almost all solutions (r, s, t). It is
natural to ask whether this is a special case of a more general phenomenon.

The results in this section are based on Bump and Naprienko 2025; Naprienko 2022,
and also Brubaker, Bump, and Friedberg 2011a. They are closely related to the results in
the last two sections. The main result of Bump and Naprienko 2025 gives a parametrized
Yang–Baxter equation in which the parameter object is not a group, but a groupoid . We
will not explain that result here, however, but we will do some of the groundwork.

Let S be the space of six-vertex vertices r with c1(r) and c2(r) both nonzero. Furthermore,
let S• be the subpace where a1(r), a2(r), b1(r), b2(r) and c1(r), c2(r) are all nonzero.

Roughly, we would like to classify all solutions to Jr, s, tK = 0 with r, s, t ∈ S. This,
however is a more delicate problem than we will consider, so in this section we will just
consider the case where r, t ∈ S• but s is in S. Let us define

(3.13) N(r) = a1(r)a2(r) + b1(r)b2(r)− c1(r)c2(r)

and, generalizing Baxter’s ∆ from (2.3) in the field free case:

(3.14) ∆1(r) =
N(r)

a1(r)b1(r)
, ∆2(r) =

N(r)

a2(r)b2(r)
.

We are omitting the 2 in the denominator of (2.3). Perhaps we should include it for consis-
tency but it would play no role. Note that N is defined on all of S, but ∆1 and ∆2 are only
defined on S•. We also define, for r ∈ S• another element r∗ ∈ S by

(3.15) a1(r
∗) =

c1(r)c2(r)− b1(r)b2(r)

a1(r)
, a2(r

∗) =
c1(r)c2(r)− b1(r)b2(r)

a2(r)
,

b1(r
∗) = −b1(r), b2(r

∗) = −b2(r), c1(r
∗) = c2(r), c2(r

∗) = c1(r).

The map r → r∗ has order 2 in a weak sense. Indeed, there is no guarantee that a1(r
∗) or

a2(r
∗) is nonzero, but if it is, then both are nonzero and r∗ ∈ S•. In this case (r∗)∗ = r.

Lemma 3.15. Suppose r ∈ S•. Then

(3.16) N(r∗) =
b1(r)b2(r)− c1(r)c2(r)

a1(r)a2(r)
N(r),

and if furthermore r∗ ∈ S•, then

(3.17) ∆1(r
∗) =

N(r)

a2(r)b1(r)
, ∆2(r

∗) =
N(r)

a1(r)b2(r)
.

Proof. We leave the verification to the reader. □
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Remark 3.16. With r ∈ S•, the vertex r∗ might not be in S•, and a1(r
∗) and a2(r

∗) could
be zero. Hence ∆1(r

∗) and ∆2(r
∗) cannot be defined by (3.14). Indeed, if a1(r

∗) or a2(r
∗)

vanishes, then by (3.15) we have b1(r)b2(r) − c1(r)c2(r) = 0, and by (3.16) we therefore
have N(r∗) = 0. So both the numerator and the denominator in (3.14) for ∆i(r

∗) vanish.
However the numerator and denominator of (3.17) are still nonzero. Therefore ∆i(r

∗) can
still be defined by (3.17), and so ∆i(r

∗) still make sense if only r ∈ S•.

It will be useful to package ∆1 and ∆2 as a single function, so we define ∆ : S• → C2 by
∆(r) = (∆1(r),∆2(r)).

Theorem 3.17. Let r and t be in S•. Then a necessary and sufficient condition for there to
exist s ∈ S such that Jr, s, tK = 0 is that ∆(r) = ∆(t∗), where ∆(t∗) is defined even if t∗ /∈ S•

by Remark 3.16. If this is true, then s is determined up to a constant multiple, and can be
chosen so that

(3.18) c1(s) = c1(r)c1(t), c2(s) = c1(r)c2(t).

If s ∈ S• then ∆(s) = ∆(t) and ∆(s∗) = ∆(r∗).

Proof. Let us assume that s exists with Jr, s, tK = 0. We make use of the Yang–Baxter
equation in the form (2.7). Different choices a, b, c, d, e, f ∈ {⊕,⊖} of give 14 different
equations.

Taking b = e = ⊖ and a = c = d = f = ⊕ gives the equation c2(r)c1(s)c2(t) =
c1(r)c2(s)c1(t). The term b1(r)a1(s)b2(t) also appears, but it is on both sides of the equation
and can be cancelled. The same identity also comes from the choice b = e = ⊕ and
a = c = d = f = ⊖. Since by assumption the ci(r), ci(t) and ci(s) are all to be nonzero, we
can multiply s by a constant to put it in the normalization (3.18).

Thus we may substitute the values in (3.18) of c1(s) and c2(s). Then the number of
equations is reduced to 12, but actually there are only 6 for the following reason. We find
that each of the 12 equations is divisible by one of c1(r), c2(r), c2(t) or c2(t), and dividing
out by these, the equations are now duplicated. To give one example, taking

(a, b, c, d, e, f) = (⊕,⊕,⊖,⊕,⊖,⊕)

gives the equation −c1(r)c2(s)b1(t) − b1(r)a1(s)c2(t) + a1(r)b1(s)c2(t) = 0 but substitut-
ing (3.18) the equation is divisible by −c2(t) and we obtain c1(r)c2(r)b1(t) + b1(r)a1(s) −
a1(r)b1(s) = 0. But we can obtain the same identity by taking (⊕,⊖,⊕,⊕,⊕,⊖) and divid-
ing by c1(t). The six equations are:

a1(r)a1(t)− b2(r)b1(t) = a1(s),
a2(r)a2(t)− b1(r)b2(t) = a2(s),

c1(r)c2(r)b1(t) + b1(r)a1(s)− a1(r)b1(s) = 0,
c1(r)c2(r)b2(t) + b2(r)a2(s)− a2(r)b2(s) = 0,
b2(r)c1(t)c2(t)− b2(s)a1(t) + a1(s)b2(t) = 0,
b1(r)c1(t)c2(t)− b1(s)a2(t) + a2(s)b1(t) = 0.

We may substitute the values for a1(s) and a2(s) from the first two equations, and then there
are only four equations. Only one term in each depends on s and these may be rearranged
as follows:

b1(s) =
a1(r)b1(r)a1(t)− b1(r)b2(r)b1(t) + c1(r)c2(r)b1(t)

a1(r)
,



EXERCISES 41

b1(s) =
a1(r)a1(t)b2(t)− b2(r)b1(t)b2(t) + b2(r)c1(t)c2(t)

a1(t)
,

b2(s) =
a2(r)b2(r)a2(t)− b1(r)b2(r)b2(t) + c1(r)c2(r)b2(t)

a2(r)
,

b2(s) =
a2(r)a2(t)b1(t)− b1(r)b1(t)b2(t) + b1(r)c1(t)c2(t)

a2(t)
.

So there is a solution if and only if the two expressions for b1(s) are equal, and the two
expressions for b2(s) are equal. Equating the two expressions for b1(s) gives and rearranging
gives N(t)a1(r)b1(r) = N(r)a2(t)b1(t) which is equivalent to ∆1(r) = ∆1(t

∗). Similarly the
equality of the two expressions for b2(s) is equivalent to ∆2(r) = ∆2(t

∗). This proves that
the existence of a solution s to Jr, s, tK = 0 is equivalent to ∆(r) = ∆(t∗).

We leave it to the reader to show that if a solution s exists then ∆(s) = ∆(t) and
∆(s∗) = ∆(t∗). □

Remark 3.18. Generalizing the notion of a group, a groupoid is a set with a partially
defined composition law and an “inverse map.” Bump and Naprienko 2025 prove that there
exists a groupoid G with composition law ⋆ and a map π : G −→ S such that if g, h ∈ G
and g ⋆ h is defined, then Jπ(g), π(gh), π(h)K = 0, and in some sense accounts for essentially
all solutions to Jr, s, tK = 0 in six-vertex matrices r, s, t. This groupoid contains the group
parametrized Yang–Baxter equations in Theorems 3.10 and 3.14 as subgroups. It is natural
to ask whether this is a special case of a more general phenomenon.

Exercises

Exercise 3.1. We saw in Section 2 that states of the six-vertex model with extended wall boundary condi-
tions are parametrized by Gelfand–Tsetlin patterns; there we saw that extended wall boundary conditions
for an n × N grid require specification of the boundary spins on the top row of vertical boundary edges,
and these may be encoded in a partition λ. For skew wall boundary conditions, we allow ⊖ spins on the
bottom row of boundary edges, so we have must have another partition µ to describe the bottom boundary
conditions.

(i) Show (using paths) that in order for the system to have states, YD(µ) ⊆ YD(λ), and |λ| − |µ| = n, so
λ/µ is a skew partition of size n.

(ii) Assuming that the system has states as in (i), give a bijection between states of the skew wall system
and SSYTN−1(λ/µ).

Exercise 3.2 (Naprienko). This exercise generalizes Examples 2.9 and 2.10 of Chapter 2. Let q1, q2 and β
be fixed nonzero constants.

(i) Given z1, z2, w ∈ C×, define a six-vertex matrix R = Rcf
q1,q2,β

(z1, z2, w) by:

a1(R) a2(R) b1(R)
q1z1 − q2z2 q1z1 − q2z2 q1(z1 − z2)β

b2(R) c1(R) c2(R)
q1(z1 − z2)β

−1 z1(q1 − q2)w z2(q1 − q2)w
−1

Let V = C2 as usual in the six-vertex model. Prove that Rcf
q1,q2,β

: (C×)3 −→ GL(V ⊗ V ) is a parametrized
Yang–Baxter equation. This means

JRcf
q1,q2,β(z1, z2, w), R

cf
q1,q2,β(z1z

′
1, z2z

′
2, ww

′), Rcf
q1,q2,β(z

′
1, z

′
2, w

′)K = 0.
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(ii) Given z1, z2, w ∈ C×, define a six-vertex matrix R = Rff
q1,q2,β

(z1, z2, w) by:

a1(R) a2(R) b1(R)
q1z1 − q2z2 q1z2 − q2z1 q1(z1 − z2)β

b2(R) c1(R) c2(R)
q1(z1 − z2)β

−1 z1(q1 − q2)w z2(q1 − q2)w
−1

Prove that
JRff

q1,q2,β(z1, z2, w), R
ff
q1,q2,β(z1z

′
1, z2z

′
2, ww

′), Rff
q1,q2,β(z

′
1, z

′
2, w

′)K = 0.

(iii) Compute ∆1(R) and ∆2(R) if R = Rcf
q1,q2,β

and if R = Rff
q1,q2,β

.

Exercise 3.3. The proof of Theorem 3.17 is incomplete. Finish it by showing that ∆(s) = ∆(r) and
∆(s∗) = ∆(r∗).

Exercise 3.4. In Theorem 3.17, there is no guarantee that s ∈ S•, because a1(s), a2(s), b1(s) and b2(s)
could vanish. But assume that N(r) and N(t) are nonzero. Then prove that a1(s) = 0 if and only if
a2(s) = 0, and that b1(s) = 0 if and only if b2(s) = 0.

Exercise 3.5. In the notation of Theorem 3.17, let s, t ∈ S•. Prove that a necessary and sufficient condition
for there to be r ∈ S such that Jr, s, tK = 0 is that ∆(s) = ∆(t).

Exercise 3.6. If r ∈ S• define ∆0(r) = ∆1(r)∆2(r). If r, s, t ∈ S• satisfy Jr, s, tK = 0, prove that ∆0(r) =
∆0(s) = ∆0(t).

Exercise 3.7. Suppose that r, s, t ∈ S•, and also assume that r∗, s∗, t∗ ∈ S•. If Jr, s, tK = 0, prove that
Jr∗, t, sK = 0 and Js, r, t∗K = 0. Deduce that Jt, r∗, s∗K = Js∗, t∗, rK = Jt∗, s∗, r∗K = 0.

Hint: Regard r as an endomorphism of V ⊗ V with matrix (1.1.2). From the fact that r, r∗ are both in S•,
deduce that r is invertible, and that r∗ is a constant multiple of r−1. Then prove that Jr−1, t, sK = 0.



CHAPTER 4

Tokuyama Models

1. Schur polynomials

Schur polynomials are symmetric polynomials which are very important in representation
theory and combinatorics. Some useful references are Bump 2013; Bump and Schilling
2017; Macdonald 1995; Stanley 1999. They have direct generalizations that are discussed
in Macdonald 1992 and later publications by numerous authors; see Naprienko 2024 for more
references to that literature. The free-fermionic six vertex model is a useful framework for
Schur polynomials and their generalizations. See ABPWDomino; Brubaker, Bump, and
Friedberg 2011a; Hamel and King 2007; Naprienko 2024 for treatments from this point of
view. This Chapter is based in part on Brubaker, Bump, and Friedberg 2011a.

Let λ = (λ1, . . . , λr) be a partition of length r ⩽ n. If r < n we pad λ with 0’s so that
λ = (λ1, . . . , λr, 0, . . . , 0) has exactly n parts. (This is customary in dealing with partitions.)
We will give two definitions of the Schur polynomial sλ. It will not be obvious that the two
definitions are equivalent. We will use a lattice model to prove this.

Let z = (z1, . . . , zn) be indeterminates.

1.1. First definition: determinants. Define

(4.1) sλ(z1, . . . , zn) =
det(zλi+n−ij )

det(zn−ij )
.

For example, if n = 3,

sλ(z1, z2, z3) =

∣∣∣∣∣∣
zλ1+2
1 zλ1+2

2 zλ1+2
3

zλ2+1
1 zλ2+1

2 zλ2+1
3

zλ31 zλ32 zλ32

∣∣∣∣∣∣∣∣∣∣∣∣
z21 z22 z23
z1 z2 z3
1 1 1

∣∣∣∣∣∣
.

This definition first appeared in Cauchy Cauchy 1815, who defined Schur functions prior to
Schur. The denominator is the Vandermonde determinant:

det(zn−ij ) =
∏
i<j

(zi − zj).

It will be useful to introduce the vector ρ = (n − 1, n − 2, . . . , 0) so that the exponents are

(λ+ ρ)i = λi + ρi and write the numerator as det(z
(λ+ρ)i
j ).

Lemma 4.1. The function sλ is a symmetric polynomial. It is homogeneous of degree
|λ| =

∑
λi.

43
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Proof. The polynomial ring C[z1, . . . , zn] is a unique factorization domain. Let us note
that the numerator is divisible by every factor zi − zj with i < j of the Vandermonde
denominator. Indeed, the numerator vanishes when zi = zj since two columns of the de-

terminant det(zλi+n−ij ) are then equal. Thus the numerator is divisible by each factor and
therefore by their product since they are coprime. Therefore sλ is a polynomial. It is sym-
metric since interchanging zi and zj multiplies the numerator and the denominator by −1.
The homogeneity is also clear since the numerator and denominator are both homogeneous
polynomials. □

The partition λ may be thought of as a dominant weight for the Lie group GL(n,C).
The definition (4.1) is essentially the Weyl character formula, which we now recall.

Let G be an arbitrary complex reductive Lie group, which we will soon specialize to
GL(n,C). Let T be a maximal torus. The group Λ = X∗(T ) of rational characters is the
weight lattice. Then Λ contains a root system Φ; let {α1, . . . , αr} be the simple positive roots
and si the corresponding simple reflection in the Weyl group W . By a Weyl vector ρ ∈ Λ
we mean a ρ ∈ Λ such that si(ρ) = ρ− αi for every positive root.

If λ ∈ Λ and z ∈ T , we will denote by zλ the application of λ to z. If λ is dominant, it
is the highest weight of an irreducible representation, whose character we will denote by χλ.
The Weyl character formula asserts that

(4.2) χλ(z) =

∑
w∈W (−1)ℓ(w)zw(λ+ρ)∑
w∈W (−1)ℓ(w)zw(ρ)

.

Here ℓ is the length function on the Weyl group W .
Now suppose that G = GL(n,C) and T is the diagonal torus, which we identify with

(C×)n in the obvious way. Then Λ may be identified with Zn so that zλ =
∏

i z
λi
i . The

Weyl group W is the symmetric group Sn. For the Weyl vector we may take ρ = (n− 1, n−
2, . . . , 0). A partition λ is a dominant weight. The numerator and denominator in (4.2) can
be compared with the numerator and denominator determinants in (4.1), and we see that
χλ(z) is the Schur polynomial sλ(z).

1.2. Second definition: tableaux. Recall from Chapter 3 that SSYTn(λ) is the set of
semistandard Young Tableaux (SSYT) of shape λ with entries in the alphabet {1, 2, . . . , n}.

The second definition of the Schur function is due to D.E. Littlewood (1938), given by
the formula:

(4.3) sλ(z1, . . . , zn) =
∑

T∈SSYTn(λ)

zwt(T ),

where the weight wt(T ) of the tableau T is defined in Section 2 of Chapter 2.
It is not obvious from the second definition that the Schur polynomial is symmetric,

though that property does follow immediately from the first definition. On the other hand,
it is obvious from this second definition that the coefficients in the Schur polynomial are
nonnegative, a fact is not immediately apparent from the first definition. We will use a
lattice model to show that (4.3) is symmetric and equivalent to the first definition.
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2. Tokuyama models

There is a formula due to Tokuyama Tokuyama 1988 for the Schur function, or more
precisely for

(4.4)

{∏
i<j

(zi − qzj)

}
sλ(z1, . . . , zn)

as a sum over strict Gelfand–Tsetlin patterns. If q = 1, the product is the Vandermonde
determinant in the denominator of the first definition, and Tokuyama’s formula reduces to
the first definition of the Schur polynomial. On the other hand, if q = 0, Tokuyama’s formula
reduces to the combinatorial definition. The special case q = −1 has an interpretation in
terms of Hall–Littlewood polynomials Tokuyama 1988, Section 3.3.

Tokuyama’s original formula can be reformulated as expressing (4.4) as the partition
function of a solvable lattice model. This was done by Hamel and King Hamel and King
2007. However they did not use the Yang–Baxter equation. The Yang–Baxter equation
was then applied to this problem by Brubaker, Bump and Friedberg Brubaker, Bump, and
Friedberg 2011a.

We take the following weights, labeled by a complex number z:

(4.5)

a1 a2 b1 b2 c1 c2

+
+
+

+
z −

−
−

−
z +

−
+

−
z −

+
−

+
z −

+
+

−
z +

−
−

+
z

1 z −q z z(1− q) 1

We also take the following R-matrix, labeled by two complex numbers z, w:

(4.6)

a1 a2 b1 b2 c1 c2

+

+ +

+
z, w

−

− −

−
z, w

+

− +

−
z, w

−

+ −

+
z, w

−

+ +

−
z, w

+

− −

+
z, w

w − qz z − qw q(z − w) z − w (1− q)z (1− q)w

Note that this is similar to the R-matrix in Example 2.12 of Chapter 2, though the T-matrix
(4.5) is different. The R-matrix can be changed into that of Example 2.12 by the methods
of Chapter 5, replacing q by q2.

Theorem 4.2. The Yang–Baxter equation is satisfied in that the following two systems are
equivalent for all choices of a, b, c, d, e, f ∈ {⊕,⊖}:

a

b

c

d

e

f

z, w

z

w
a

b

c

d

e

f

z, w

z

w
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Proof. This RTT equation is a special case of the free-fermionic Yang–Baxter equation in
Theorem 3.14 in Chapter 3 with parameter group GL(2,C)× C×. To check this, we take r
to be the vertex labeled z, w with the Boltzmann weights divided by (1 − q)w, which does
not affect the validity of the Yang–Baxter equation. We take t to be the matrix labeled w.
Then γ and δ as in equation (3.9) of Chapter 3 are the following elements of GL(2,C)×C×:


w − qz

(1− q)w

z − w

(1− q)w

−q(z − w)

(1− q)w

z − qw

(1− q)w

 ,
z

w

 ,

((
1 w
q w

)
, w(1− q)

)
.

Multiplying these gives ((
1 z
q z

)
, z(1− q)

)
,

and the statement follows. □

Now let us explain the models we want to use, called “Gamma Ice” in Brubaker, Bump,
and Friedberg 2011a. We will use the extended wall boundary conditions with n rows, and
N > λ1 columns. We will use the weights (4.5) with the parameter z = zi in the i-th row.
Thus we have defined a system that we will denote Sλ(z; q). Let Zλ(z1, . . . , zn; q) = Zλ(z; q)
be the corresponding partition function.

Theorem 4.3. The partition function

Zλ(z; q) =
∏
i<j

(zi − qzj)Sλ(z)

where Sλ(z) = Sλ(z1, . . . , zn) is a symmetric polynomial that is independent of q.

We will give part of the proof in the next section using the train argument and the Yang–
Baxter equation. We will then show that it implies the equivalence of the two definitions of
the Schur function.

Remark 4.4. The symmetric polynomial Sλ will turn out to be the Schur polynomial sλ.
Eventually we will prove, by specializing the parameter q to 0 and 1 and carefully analyzing
the partition function that Sλ satisfies both definitions of the Schur polynomial. To avoid
confusion, we will not use the notation sλ until these facts are proved in Theorems 4.12
and 4.18.

3. Proof of Theorem 4.3

Proposition 4.5. The quotient

(4.7) Sλ(z; q) =
Zλ(z; q)∏

i<j(zi − qzj)

is symmetric, that is, invariant under permutations of the zi.

Proof. We multiply (4.7) by: ∏
1⩽i,j⩽n
i ̸=j

(zi − qzj) .
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This is a symmetric polynomial of degree n(n − 1). It consists of the 1
2
n(n − 1) factors in

the denominator of (4.7) and 1
2
n(n− 1) other factors, hence it is enough to show that

Zλ(z; q)
∏
i<j

(zj − qzi)

is symmetric. Let 1 ⩽ k < n and let sk be the “simple reflection” in the symmetric group
which interchanges k and k + 1. These generate the symmetric group, so it is sufficient to
show that the last expression is invariant under sk.

We can pull one factor out and write this as

Zλ(z; q)(zk+1 − qzk)

 ∏
i<j

(i,j)̸=(k,k+1)

(zj − qzi).


The permutation sk just permutes the 1

2
n(n − 1) − 1 factors in brackets. So we may drop

these to see that it is sufficient to show that

(4.8) Zλ(z; q)(zk+1 − qzk) = Zλ(skz; q)(zk − qzk+1).

To see this, let us consider the following system. We attach the R-matrix with coordinates
zk, zk+1 to the left at the k, k + 1 rows:

(4.9)

· · ·

· · ·

+

+

−

−

...

...

...

...

...

...

zk,zk+1

zk

zk+1

zk

zk+1

zk

zk+1

We note that from the Boltzmann weights if the “input” spins are ⊕,⊕ there is only one
possibility for the output spins, which must also be ⊕,⊕:

+

+

?

?

spins marked ? can only = ⊕ .

The Boltzmann weight of the R-matrix is zk+1− qzk, and so the partition function of the
system (4.9) is the left-hand side of (4.8). Using the train argument, this equals the partition
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function of

· · ·

· · ·

+

+

−

−

...

...

...

...

...

...

zk,zk+1

zk+1

zk

zk+1

zk

zk+1

zk

and by the same reasoning, this equals the right-hand side of (4.8). This proves (4.8) and
the symmetry of Sλ(z; q) is established. □

Proposition 4.6. Sλ(z; q) is a polynomial in z1, . . . , zn and q.

Proof. It is clear that Zλ(z; q) is a polynomial, since every Boltzmann weight is a polynomial.
Rewrite (4.7) as

(4.10) Sλ(z; q) =

∏
i>j(zi − qzj)Zλ(z; q)∏

i ̸=j(zi − qzj)
.

Both the numerator and the denominator on the right-hand side here are symmetric. In the
polynomial ring C[z1, . . . , zn, q], which is a unique factorization domain, the denominator is a
product of coprime polynomials. Hence it is sufficient to show that the numerator is divisible
by each. If i > j then it is obvious that the numerator in (4.10) is divisible by zi− qzj since
it is included as a factor in the product defining the numerator. Because it is symmetric, it
is divisible by all factors zi − qzj because the symmetric group permutes these transitively.
Thus the quotient Sλ(z; q) is a polynomial. □

Lemma 4.7. Let s be a state of the model. The total number of vertices with spin configu-
rations of types a2, b1 and c1 in the state is 1

2
n(n− 1).

Proof. A configuration is of type a2, b1 or c1 if and only if it has a ⊖ in the vertical edge
below the vertex. We recall the Gelfand–Tsetlin pattern associated to the state in Lemma 1.3
of Chapter 3. There is a ⊖ spin on the vertical edge below the vertex in row i and column
j if and only if j is one of the entries in the (i + 1)-th row of the Gelfand–Tsetlin pattern.
There are thus n− 1 configurations of type a2, b1 or c1 in the first row, n− 2 in the second
row, and so forth, and 1

2
n(n− 1) altogether. □

Proposition 4.8. Sλ(z; q) is independent of q.

Proof. The numerator and denominator in (4.7) are both polynomials in z1, . . . , zn, q and
the denominator has degree 1

2
n(n − 1) in q. We claim that the numerator has the same

degree in q. Reviewing the Boltzmann weights, only configurations of types b1 and c1 can
contribute a power of q. The number of such patterns is at most 1

2
n(n− 1) by Lemma 4.7.

Since the degree in q of the numerator of (4.7) is at most 1
2
n(n − 1), the degree of the

denominator is exactly 1
2
n(n − 1), and the quotient is known to be a polynomial, it has

degree 0 in q. Hence it is independent of q. □
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Since Sλ(z; q) is independent of q, we may suppress q from the notation and write
Sλ(z; q) = Sλ(z). We have proved that it is a symmetric polynomial. Later we will show
that if q = 0, this agrees with the combinatorial definition of sλ(z), and if q = 1, it agrees
with the Jacobi definition.

Proposition 4.9. Let s be a state of the system, and let

G =


a1,1 a1,2 · · · a1,n

a2,1 · · · a2,n−1

. . . . . .

an,1


be the corresponding strict Gelfand–Tsetlin pattern. Let Ai =

∑
j ai,j be the row sums. Then

the Boltzmann weight β(s) equals a polynomial in q times the monomial zµ where

µ = (A1 − A2, A2 − A3, . . . , An).

Proof of Proposition 4.9. To prove the proposition, we note from the Boltzmann weights
that β(s) is a polynomial in q times a monomial zµ for some µ. There is a contribution of
zi from every vertex of type a2, b2 or c1. These are precisely the vertices with a ⊖ spin to
the left of the vertex. Therefore the number of zi in the product of local Boltzmann weights
equals the number µi of ⊖ spins in the i-th row, not counting the right boundary edge.

We must show that µi = Ai−Ai+1 (or just Ai if i = n). To count the number of ⊖ spins
on the horizontal edges in the i-th row, not counting the right boundary edge, we enumerate
them by the paths. We note that one path enters from the top in the column ai,j and exits
at the column ai+1,j. There are ai,j − ai+1,j ⊖ spins on this edge.

The argument requires minor modification for the last row, in which the last remaining
path exits the right and contributes ai,n+1−i. We do not need to consider this an exception
if we extend the Gelfand–Tsetlin pattern by zero and define ai+1,n+1−i = 0. With this
convention, An+1 = 0.

Summing the contributions of all paths,

µi =
n+1−i∑
j=1

ai,j − ai+1,j = Ai − Ai+1,

as required. □

4. Tokuyama Ice: q = 1

If either q = 0 or q = 1, one of the six allowed configurations in the Tokuyama model
disappears. In these two cases, there are only five allowed states of spins adjacent to a vertex,
and we will call the resulting models five-vertex models. In the case q = 1, the Boltzmann
weights are:

a1 a2 b1 b2 c1 c2

+
+

+
+
z −

−
−

−
z +

−
+

−
z −

+
−

+
z −

+
+

−
z +

−
−

+
z

1 z −1 z 0 1
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We see that there can no longer be any c1 patterns. This has a profound effect on the
paths and on the Gelfand–Tsetlin patterns.

Lemma 4.10. If G is the Gelfand–Tsetlin pattern of a state having no c1 patterns, then
every row of the Gelfand–Tsetlin pattern is a subset of the row above, obtained by deleting
one entry.

Proof. If the (i + 1)-st row is not obtained from the i-th row by deleting a single entry,
then there is an element ai+1,j that is not in the i-th row. Since ai,j ⩾ ai+1,j ⩾ ai,j+1 by the
definition of a Gelfand–Tsetlin pattern we must have ai,j > ai+1,j > ai,j+1. This implies that
there is a c1 pattern in the i-th row at column ai+1,j, which is a contradiction. □

Recall that the “Weyl group” W is the symmetric group Sn and we have ρ = (n− 1, n−
2, . . . , 1, 0).

Proposition 4.11. When q = 1, we have

(4.11) Zλ(z; 1) =
∑
w∈W

sgn(w)zw(λ+ρ).

Proof. There are n! states s that omit c1 patterns, namely those in which each row is ob-
tained from the previous one by dropping a single entry. By Proposition 4.9, the Boltzmann
weight β(s) is ±zµ, where µi = Ai − Ai+1. By Lemma 4.10, this value Ai − Ai+1 is some
element of the i-th row, hence of the top row λ+ρ. (The sign − is the number of b1 patterns.)
We may therefore write µ = w(λ + ρ) for some permutation w ∈ W , and β(s) = ±zw(λ+ρ),
where the sign must be determined.

We have proved in Theorem 4.3 that

(4.12) Sλ(z) =
Zλ(z; 1)∏
i<j(zi − zj)

is symmetric. The denominator is alternating, that is, it changes sign when an odd permu-
tation is applied. Therefore the numerator Zλ(z; 1) is also alternating. Now there is one
state which has no b1 patterns: this is the state in which the entry in the i-th row of the
Gelfand–Tsetlin pattern G that is dropped is always the first one. For this state, β(s) = zλ+ρ.
Therefore Zλ(z; 1) is of the form

∑
w∈W ±zw(λ+ρ), is known to be alternating, and one of the

terms is zλ+ρ. Hence the signs of the other terms are determined. This proves (4.11). □

Theorem 4.12. The symmetric polynomial Sλ agrees with the Schur polynomial sλ by its
first definition.

Proof. We recognize the numerator and denominator in the ratio (4.12)

Sλ(z) =

∑
w∈W ±zw(λ+ρ)∏
i<j(zi − zj)

=
det(zλi+n−ij )

det(zn−ij )
,

using the Vandermonde identity. □
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5. The crystal limit: q = 0

Let us begin with an explanation of the importance of the case q = 0. Before the 1980’s,
an analogy between the representation theory of GL(n,C) and the theory of semistandard
Young tableaux (SSYT) emerged in work of Robinson, Littlewood, Schensted, Knuth, Las-
coux and Schützenberger. For example, if λ is a partition, then λ indexes both an irreducible

representation π
GL(n)
λ of GL(n,C) and the set Bλ of semistandard Young tableaux. The car-

dinality of Bλ equals the dimension of π
GL(n)
λ , and this is the beginning of a fruitful parallel.

Ultimately Kashiwara Kashiwara 1991, in the theory of crystal bases (crystals) gave an

explanation for this: the representation π
GL(n)
λ can be thought of as being in a family of

modules of the quantum groups Uq(gln). These are somewhat complicated objects, but in
the “crystal limit” q −→ 0 much of the complexity disappears, and the combinatorial theory
remains. The quantum group Uq(gln) does not, itself, have a limit when q = 0, but some of
its operations do survive, giving Bλ some extra structure, that of a crystal. We will therefore
refer to the case q −→ 0 as the “crystal limit.” Crystals are introduced in more depth in
Section 8.

When q = 0, we have the following Boltzmann weights:

a1 a2 b1 b2 c1 c2

+
+
+

+
z −

−
−

−
z +

−
+

−
z −

+
−

+
z −

+
+

−
z +

−
−

+
z

1 z 0 z z 1

Now we see that the pattern b1 no longer appears. This means that every path that
comes down to a vertex from the top must bend to the right.

Lemma 4.13. Let s be a state of the system Sλ(z; q), and let

G =


a1,1 a1,2 · · · a1,n

a2,1 · · · a2,n−1

. . . . . .

an,1

 ,

be the corresponding strict Gelfand–Tsetlin pattern. Then a necessary and sufficient condi-
tion that s contains no b1 patterns is that for every i, j we have ai,j > ai+1,j.

Proof. In terms of the paths, one path descends from above to the vertex in the i-th row
in column ai,j and leaves downwards in the column ai+1,j. Thus if ai,j = ai+1,j, that means
precisely that the vertex in row i and column ai,j produces a b1 pattern. □

We will call a Gelfand–Tsetlin pattern left-strict if its entries satisfy ai,j > ai+1,j ⩾ ai,j+1.
(The second inequality is part of the definition of a Gelfand–Tsetlin pattern, so the significant
assumption is that ai,j > ai+1,j.) We see that the states of the five-vertex model Sλ(z; 0) are
in bijection with the left-strict Gelfand–Tsetlin patterns with top row λ+ ρ.

Let us denote by ρk the vector (k − 1, k − 2, . . . , 0) in Zk, so that ρ = ρn in our previous
notation. We can make a Gelfand–Tsetlin pattern with rows ρn, ρn−1, . . . , ρ1 thus:
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(4.13) P =


n− 1 n− 2 · · · 0

n− 2 · · · 0
. . . . . .

0

 .

Lemma 4.14. The map G −→ G − P is a bijection between left-strict Gelfand–Tsetlin
patterns with top row λ+ ρ and Gelfand–Tsetlin patterns with top row λ.

Proof. This is easy to check. □

Let λ, µ be two partitions. Recall that if the Young diagram YD(µ) is contained in
the Young diagram YD(λ), then λ/µ is called a skew shape. Its Young diagram is the set-
theoretic difference YD(λ) − YD(µ). For example (5, 3, 2)/(3, 2, 1) is a skew shape and its
diagram is

.

Recall the bijection between Gelfand–Tsetlin patterns with top row λ and semistandard
Young tableaux of shape λ described in Chapter 3, Section 2.

Lemma 4.15. Let G be a Gelfand–Tsetlin patterns with top row λ and T the corresponding
semistandard Young tableaux of shape λ. The weight of T is

wt(T ) = (An, An−1 − An, . . . , A2 − A3, A1 − A2),

where Ai are the row sums of G.

Proof. Let λ(i) be the partitions in the rows of G. By definition, wt(T ) = (µ1, µ2, . . . , µn)
where µi is the number of boxes in T that contain the entry i. These comprise the skew
tableau with shape λ(n+1−i)/λ(n+2−i), and since |λ(i)| = Ai, we obtain the advertised formula
for wt(T ). □

Example 4.16. To illustrate Lemma 4.15, suppose n = 3 and

G =

 5 3 1
4 1

3

 so T =

1 1 1 2 3

2 3 3

3

.

The three skew shapes corresponding to 1, 2, 3 are

(3)/∅, (4, 1)/3, (5, 3, 1)/(4, 1) .

So wt(T ) = (3, 2, 4), which agrees with the formula (3, 5− 3, 9− 5) from Lemma 4.15

We let w0 be the “long element” of the Weyl groupW = Sn, which is the permutation that
maps k to n+1−k of {1, 2, 3, . . . , n}. If z = (z1, . . . , zn) ∈ (C×)n and µ = (µ1, . . . , µn) ∈ Zn,
then w0z = (zn, . . . , z1) and w0µ = (µn, . . . , µ1). Obviously zw0µ = (w0z)

µ.

Proposition 4.17. Let s be an admissible state of the system Sλ(z; 0). Since s has no
b1 patterns, the corresponding Gelfand–Tsetlin pattern G is left-strict. Let G◦ = G − P ,
which is a Gelfand–Tsetlin pattern with top row λ. Let T be the semistandard Young tableau
associated with G◦ as in Lemma 4.15. Then β(s) = zρ · (w0z)

wt(T ).
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Proof. Since the Boltzmann weights of every vertex can only be 1 or zi for some i, it is
obvious that β(s) is a monomial zµ and we need to compute µ. This is accomplished by
Proposition 4.9. Writing G = P + G◦ the contribution of P is obviously zρ, and we must
discuss the contribution of Go but by Lemma 4.15 and Proposition 4.9, this is zw0 wt(T ) =
(w0z)

wt(T ). □

Theorem 4.18. The polynomial Sλ = sλ where sλ is the Schur function defined by the
second combinatorial definition.

Proof. To summarize what we have done so far, culminating in Proposition 4.17, we have
seen that every state s of Sλ(z; 0) has no b1 patterns. Such states are parametrized by left-
strict Gelfand–Tsetlin patterns with top row λ+ ρ. Each such pattern G can be written as
G◦+P where G◦ is a Gelfand–Tsetlin pattern with top row λ. If T is tableau corresponding
to G◦ then β(s) = zρ · (w0z)

wt(T ). Summing over all states and using the combinatorial
definition of the Schur function we obtain

Zλ(z; 0) = zρ sλ(w0z).

On the other hand, we have shown for all q that

Zλ(z; q) =

(∏
i<j

(zi − qzj)

)
Sλ(z).

When q = 0, the product becomes zn−1
1 zn−2

2 · · · = zρ. Comparing gives

Sλ(z) = sλ(w0z).

We may replace z by w0z and remember that we proved (using the Yang–Baxter equation)
that Sλ is symmetric, so Sλ = sλ. □

Comparing the evaluations of Sλ(z) when q = 1 and q = 0, we have now proved the
equivalence of the two definitions of the Schur function.

6. Column parameters

In this section, we consider models whose partition functions are factorial Schur functions.
The models can be used to develop properties of these, but we only use the models to illustrate
Theorem 2.17 of Chapter 2.

In the Tokuyama models, the Boltzmann weights depend on the rows but not the columns.
Recall, however, Theorem 2.17 in Chapter 2 which classifies solvable lattice models in which
all the Boltzmann weights are controlled by a single parametrized Yang–Baxter equation. In
this theorem, we see that the Boltzmann weights can depend on two sets of parameters, the
α’s which are row parameters, and the β’s which are column parameters. Thus we certainly
have the option of introducing column parameters to the Tokuyama models.

Macdonald 1992 pointed out that Schur polynomials have a wide set of generalizations,
and to prove his point, he gave nine variations. As Macdonald shows, these generalizations
exhibit a certain set of properties, such as the Cauchy identity, Jacobi–Trudi identities, both
with dual forms, the Pieri rule and the Giambelli formula. Further such variations were
found by Okounkov and Olshanski 1998; Okunḱov and Oĺshanskĭı 1997, Okounkov 1998 and
Molev 1998.
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Lattice model approaches to such generalized Schur functions based on the free-fermionic
Yang–Baxter equation were taken by Bump, McNamara, and Nakasuji 2014, Motegi 2017a,
Aggarwal, Borodin, Petrov, and Wheeler 2023 and Naprienko 2024. The last two refer-
ences both treat (differently) four-parameter families of generalized Schur functions. The
parametrization in Naprienko 2024 is very elegant.

Macdonald’s sixth variation is the factorial Schur functions . These were introduced by
Biedenharn and Louck 1989 and by Chen and Louck 1993. Schur polynomials, of course, are
symmetric functions in a set of variables z = (z1, z2, . . .), and the factorial Schur functions
generalize a second set of parameters ααα = (α1, α2, . . .). They arise naturally in algebraic
geometry in the torus equivariant cohomology of Grassmannians. Bump, McNamara, and
Nakasuji 2014 gave lattice model proofs of many of their properties. In these models, the
parameters zi are associated with the rows of the model, and the parameters αi are associated
with the columns.

Let G = GL(2,C) ⊗ C× be the parameter group. By Corollary 2.16 and Theorem 2.17
of Chapter 2, if γi,j ∈ GL(2,C) × C× are the elements corresponding to the Boltzmann
weights at each vertex, then γbdγ

−1
ad depends on a and b but is independent of d. We recall

that the theorem shows that solvability amounts to writing γi,j = ϕ(i)ψ(j) in G, where
ϕ : {1, . . . , n} → G is a function of the row, and ψ is a function of the column.

Now let us consider the Tokuyama model. Let ϕ(i) and ψ(j) ∈ G be as in Theorem 2.17,
so γij = ϕ(i)ψ(j) where ψ(j) = 1G can be omitted, since the Boltzmann weights do not
depend on the column. Thus γij = ϕ(i). The Boltzmann weights are given by the following
table:

a1(zi) a2(zi) b1(zi) b2(zi) c1(zi) c2(zi)
1 zi −q zi (1− q)zi 1

Therefore

ϕ(i) =

((
a1(zi) b2(zi)
−b1(zi) a2(zi)

)
, c1(zi)

)
=

((
1 zi
q zi

)
, (1− q)zi

)
.

Now we may perturb the Tokuyama model by allowing the column parameter ψ(j) to be
nontrivial. The choice to give factorial Schur polynomials is

ψ(j) =

((
1 αj

1

)
, 1

)
.

Then

γij = ϕ(i)ψ(j) =

((
1 zi + αj
q zi + qαj

)
, (1− q)zi

)
.

This leads to the following modification of the Tokuyama weights:

a1(zi, αj) a2(zi, αj) b1(zi, αj) b2(zi, αj) c1(zi, αj) c2(zi, αj)
1 zi + qaj −q zi + aj (1− q)zi 1

As with Tokuyama ice, we use the extended wall boundary conditions with the zi as column
parameters. We use zi in the i-th row, but since our policy is to number the columns
0, 1, 2, . . . but the column parameters are α1, α2, . . ., we put αj in the j − 1 column. Let us
denote the partition function Zλ(z,ααα).

Theorem 4.19 (Bump, McNamara, and Nakasuji 2014). The partition function is

Zλ(z,ααα) =
∏
i<j

(zi − qzj) sλ(z∥ααα; q),
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where sλ(z∥ααα; q) is a polynomial that is symmetric in the zi (though not in the αi) that is
independent of q.

Proof. This is left to the reader (Exercise 4.6). □

The polynomials in Theorem 4.19 are the factorial Schur functions of Macdonald’s sixth
variation in Macdonald 1992. The notation sλ(z∥ααα; q) is consistent with Macdonald 1992
but differs from other authors, including Naprienko 2024. See Bump, McNamara, and Naka-
suji 2014 for further use of the lattice model representation to develop properties of these
polynomials and Aggarwal, Borodin, Petrov, and Wheeler 2023; Naprienko 2024 for more
general free-fermionic models that generalize Schur functions.

7. Gamma, Delta and hybrid models

In the last section we introduced column parameters to the free-fermionic Tokuyama
models, producing models for factorial Schur functions. We continue to investigate these
models, introducing a new phenomenon. The models that we have considered so far in this
chapter will be called Gamma models ; in these the paths move down and to the right. We
now mix these with “dual” models that we call Delta models in which the paths move down
and to the right. We are interested in the relationship between these two types of models,
and hybrid models in which layers of Gamma “ice” are layered with layers of Delta “ice.”
Paths move down and to the right on the Gamma layers, and down and to the left on the
Delta layers. Gamma and delta layers may be interchanged using the Yang-Baxter equation,

Our main result (Theorem 4.21) is the special case q = 0 of a more general result in
Chapter 19 of Brubaker, Bump, and Friedberg 2011b or the arxiv version of Brubaker,
Bump, and Friedberg 2011a. Other works where layers of Gamma and Delta ice are mixed
together include Brubaker, Buciumas, Bump, and Gustafsson 2020b; Gray 2017; Gustafsson
and Westerlund 2025; Ivanov 2012; Motegi 2017b; Zhong 2022. We will discuss further
analogs in Section 4.

To see this phenomenon in the simplest case, we will take Gamma ice to be the q = 0
Tokuyama model. However, we will generalize these slightly by including column parameters,
so these are actually models for factorial Schur functions, as in the last section. Thus, as
in the last section, supplementing the spectral parameters zi for each row, for each column
(numbered j) we pick a complex number αj and we use the following Boltzmann weights.

a1 a2 b1 b2 c1 c2

+
+
+

+
−
−
−

−
+
−
+

−
−
+
−

+
−
+
+

−
+
−
−

+

1 zi 0 zi + αj zi 1

The Boltzmann weights for the Delta model are given as follows.

a1 a2 b1 b2 d1 d2

+
+
+

+
−
−
−

−
+
−
+

−
−
+
−

+
−
+
+

−
+
−
−

+

zi + αj 1 −αj 1 1 zi
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Note that instead of c1 and c2 we have two d1 and d2 weights. Because of this difference,
for the Gamma weights the paths move down and to the right, but for the Delta weights the
paths move down and to the left. To distinguish these two types of weights we will use a
solid • for Gamma vertices and a white ◦ for Delta vertices.

We fix a partition λ = (λ1, . . . , λn) and spectral parameters (z1, . . . , zn), and column
parameters αj for j = 0, 1, 2, . . .. We have already described the boundary conditions for the
Gamma model: we put a ⊖ spin at the top boundary edge in columns λj+n− j and ⊕ spins
in the remaining columns, ⊕ spins on the left and bottom boundary edges, and ⊖ spins on
the right edges. We use the spectral parameter zi in the i-th row and the parameter αj in
the j-th column.

For the Delta model, there are two modifications to the Gamma R-matrix. We use the
Delta weights, and the top and bottom edge boundary spins are the same as the Gamma
R-matrix, but for the Delta system:

• We put ⊖ spins on the left edges and ⊕ spins on the right and bottom edges; and
• We reverse the order of the parameters in the row, putting zi in the n+ 1− i row.

Let SΓ
λ(z;α) and S∆

λ (z;α) denote the Gamma and Delta systems as described above.
Here α = (α0, α1, α2, . . .) represents the sequence of column parameters.

Example 4.20. Consider λ = (2, 1, 0), so that λ + ρ = (4, 2, 0). Here are sample states
for the two systems; in the Gamma system we use • to label the vertices. Observe that the
Delta state contains a b1 vertex in column 0, which is allowed provided α0 ̸= 0. If α0 = 0,
the Boltzmann weight would be zero. For Gamma weights, b1 states are never allowed.

−+−+−

+++++

+

+

+

−

−

−

z1

z2

z3

α4 α3 α2 α1 α0

(4.14)

−+−+−

+++++

−

−

−

+

+

+

z3

z2

z1

α4 α3 α2 α1 α0

Let Z(SΓ
λ(z;α)) and Z(S

∆
λ (z;α)) denote the partition functions of the Gamma and Delta

systems. The main result of this section is the following theorem. a more general result in
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Chapter 19 of Brubaker, Bump, and Friedberg 2011b or the arxiv version of Brubaker, Bump,
and Friedberg 2011a. Other works where layers of Gamma and Delta ice are mixed together
include Brubaker, Buciumas, Bump, and Gustafsson 2020b; Gray 2017; Gustafsson and
Westerlund 2025; Ivanov 2012; Motegi 2017b; Zhong 2022. We will discuss further analogs
in Section 4.

Theorem 4.21. The partition functions are equal:

Z(SΓ
λ(z;α)) = Z(S∆

λ (z;α)).

Remark 4.22. If the column parameters α = 0, then by Theorem 4.18 we have Z(SΓ
λ(z; 0)) =

zρsλ(z) in terms of the Schur polynomial sλ(z). This may also be proved by similar arguments
for Z(S∆

λ (z; 0)), establishing the theorem when α = 0. We will give a different argument
that is valid for general α below.

Rows of Gamma ice and Delta ice may be freely layered, and Yang–Baxter equations
exist to permute them. Note that we have labeled Gamma ice with a black dot • and Delta
ice with a white dot ◦. We preserve this notation to indicate the four R-matrices required
for these interchanges.

a1 a2 b1 b2 c1/d1 c2/d2

+

+ +

+
ΓΓ

−

− −

−
ΓΓ

+

+−

−
ΓΓ

+

+−

−
ΓΓ

+ +

− −
ΓΓ

+ +

− −
ΓΓ

zj zi 0 zi − zj zi zj

+

+ +

+
∆∆

−

− −

−
∆∆

+

+−

−
∆∆

+

+−

−
∆∆

+ +

− −
∆∆

+ +

− −
∆∆

zi zj 0 zi − zj zi zj

+

+ +

+
Γ∆

−

− −

−
Γ∆

+

+−

−
Γ∆

+

+−

−
Γ∆

+

+

−

−
Γ∆

+

+

−

−
Γ∆

−zi zi − zj zi zi zi zj

+

+ +

+
∆Γ

−

− −

−
∆Γ

+

+−

−
∆Γ

+

+−

−
∆Γ

+

+−

−
∆Γ

+

+

−

−
∆Γ

zi − zj zj zj zj zj zi

The R-matrix that we have labeled ΓΓ can be recognized as (4.6) with q = 0 and z = zi,
w = zj. In general if X, Y ∈ {Γ,∆} then XY represents an R-matrix that interchanges an
X vertex with a Y vertex. For example if XY = Γ∆, the Yang–Baxter equation looks like
this:

a

b

c

d

e

f

Γ∆ =

a

b

c

d

e

f

Γ∆
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Note that none of these R-matrices depend on α, and this is to be expected in view of the
proof of Theorem 2.15 in Chapter 2.

Proof of Theorem 4.21. We begin by noting that we can replace the bottom row of
Gamma ice by Delta ice. This entails changing all the ⊖ spins of the row to ⊕ and vice
versa. To see that this works, we note that in the bottom row only ⊕ spins can occur limiting
the possible states to a1, b2 and c2, and for these three spins (which then become b2, a1 and
d1 in the Delta system) this transformation leaves the Boltzmann weights unchanged. This
step in the proof can be done state-by-state giving a bijection between the Gamma system
and a hybrid system that has one row of Delta ice at the bottom. The Gamma state in
Example 4.20 becomes:

−+−+−

+++++

+

+

−

−

−

+

z1

z2

z3

α4 α3 α2 α1 α0

Now we wish to move the Delta row with the zn spectral parameter up. To do this, we
attach the Γ∆ R-matrix for and apply the train argument. Attaching the R-matrix at the
left multiplies the partition function by zn−1, while detaching it on the right divides the
partition function by zn−1, so there is non net change. For this step there is no bijection
between states, but here is a typical state for the resulting hybrid system:

−+−+−

+++++

+

−

+

−

+

−

z1

z3

z2

α4 α3 α2 α1 α0

We may repeat this process until the ∆ row (carrying the parameter zn) is at the top. Then
we have another Γ row, with parameter zn at the bottom. We may again change this into
a row of ∆ ice, and apply the train argument to move it up and to the top. When all rows
have been transformed into ∆ layers, we find that the order of the spectral parameters has
been reversed. □
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8. Crystals

Crystals are combinatorial analogs of representations of Lie groups. Kashiwara 1991
introduced them as certain limits of modules of quantum groups. Independently, Lusztig
1990 studied canonical bases from a geometric perspective.

Let Λ be the weight lattice of a reductive complex Lie group G. Thus if T is a maximal
torus of G we may identify Λ with the group of rational characters of T . If z ∈ T and λ ∈ Λ
we denote by zλ the application of λ to z. Let Φ ⊂ Λ be the root system. We will denote
by si the simple reflections in the Weyl group W , and by αi ∈ Φ the corresponding simple
roots for i ∈ I, where I is the index set of the underlying root system.

Following Kashiwara 1991, we now define crystals. We require a set C with a map
wt : C −→ Λ and some other structure. Let 0 be an auxiliary element (not in C). For each
index i ∈ I there will be maps ei, fi : C −→ C ∪ {0} such that if x, y ∈ C then fi(x) = y
if and only if ei(y) = x, and if this is true then wt(y) = wt(x) − αi. Furthermore there
will be maps εi, φi : C −→ Z such that εi(y) = εi(x) − 1 and φi(y) = φi(x) + 1, and
φi(x) − εi(x) = ⟨α∨

i ,wt(x)⟩. The crystal is seminormal if εi(x) ⩾ 0 is always the largest
integer k such that eki (x) ̸= 0, and φi(x) ⩾ 0 is always the largest integer m such that
fmi (x) ̸= 0.

This is not the most general definition, since Kashiwara allows the maps εi and φi to
take the value −∞ but although this is sometimes useful, such crystals will not appear in
this book, so we do not allow it.

If C and D are crystals, a tensor product crystal C ⊗ D is defined. We will follow the
conventions in Bump and Schilling 2017 which differ from the conventions in Kashiwara’s
papers. (See for example Kashiwara 1995 for a useful survey.) The tensor product C ⊗ D
consists of pairs x⊗ y with x ∈ C and y ∈ D with wt(x⊗ y) = wt(x) + wt(y) and

fi(x⊗ y) =

{
fi(x)⊗ y if φi(y) ⩽ εi(x),
x⊗ fi(y) if φi(y) > εi(x),

ei(x⊗ y) =

{
ei(x)⊗ y if φi(y) < εi(x),
x⊗ ei(y) if φi(y) ⩾ εi(x),

φi(x⊗ y) = max(φi(x), φi(x) + φi(y)− εi(x)),

εi(x⊗ y) = max(εi(y), εi(y) + εi(x)− φi(y)).

The tensor product is associative.
If C is a crystal, we may define its character

χC(z) =
∑
x∈C

zwt(x).

Given a crystal C, the associated crystal graph is the directed labeled graph with vertices C
where there is an edge x

i−→ y (labeled by the index i ∈ I) if y = fi(x). Note that we always
draw the arrow from x to fi(x). We say C is connected if its crystal graph is connected.
Each connected component is itself a crystal, so C is the disjoint union of its connected
components.

If u ∈ C we call u a highest weight element (or vector) if ei(u) = 0 for all i ∈ I. We call
C a highest weight crystal if it is connected and has a unique highest weight element. Let
λ = wt(u); we say λ is the weight of the highest weight crystal C.

Lemma 4.23. If C is a seminormal highest weight crystal of weight λ then λ is dominant.
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Proof. We must show that ⟨α∨
i , λ⟩ ⩾ 0 for every simple coroot α∨

i . Indeed this equals

⟨α∨
i ,wt(u)⟩ = φi(u)− εi(u) = φi(u) ⩾ 0

by seminormality. □

Weyl proved that if λ is a dominant weight then λ is the highest weight of a unique
irreducible representation of G. Let χλ(z) be its character for z ∈ T . The characters of
irreducible representations are a basis of the W -invariant functions of z.

Theorem 4.24 (Kashiwara, Lusztig, Littelmann). There is a class of crystals called normal
having the following properties. A crystal is normal if and only if every connected component
is normal. Every connected normal crystal is a highest weight crystal. For every dominant
weight λ, there is a unique connected normal crystal with highest weight λ. The character
χC of a connected normal crystal of highest weight λ equals χλ. A tensor product of normal
crystals is normal.

Proof. Kashiwara’s construction (see Kashiwara 1991) produces a crystal base for the
corresponding representation of a quantum group, with parallel results in the work of Lusztig
1990. Littelmann’s different approach (see Littelmann 1995b) uses the theory of “Littelmann
paths” in the ambient real vector space of Λ. For a combinatorial proof see Bump and
Schilling 2017, where the proof over several chapters begins with Theorem 5.20 and ends
with Corollary 13.9. □

8.1. Crystals on tableaux and Gelfand–Tsetlin patterns. Now let us specialize
to the case where G = GL(n) and Λ = Zn. Let λ = (λ1, . . . , λn) be a partition. Then λ
is a dominant weight, and the unique normal crystal of shape λ is the crystal of tableaux
Bλ defined by Kashiwara and Nakashima 1994. As a set, Bλ is SSYTn(λ), but we need to
describe the crystal operations. The weight operation is already defined: if T is a tableau
then wt(T ) = (µ1, . . . , µn) where µi is the number of entries equal to i. We must define the
maps ei, fi, εi and φi.

First we consider the case where λ = (k) = (k, 0, . . . , 0), so Bλ consists of rows of length
k, whose entries are weakly increasing. If R = r1 · · · rk ∈ B(k) then we define φi(R) to
be the number of i’s among the entries rj, and εi(R) to be the number of i+1’s. If φi(R) > 0
then fi(R) is obtained by replacing the rightmost i by i+ 1. And if εi(R) > 0, then ei(R) is
obtained by replacing the leftmost i + 1 by i. As a special case the crystal B(0) is defined,
with one element having weight 0, and B(0) ⊗ C ∼= C ⊗ B(0)

∼= C for any crystal C.
We have now completely defined the crystal structure for the crystal of rows B(k). With

this in mind, we have an embedding of Bλ into Bλn ⊗ Bλn−1 ⊗ · · · ⊗ Bλ1 as follows. If T is
a semistandard tableau of shape λ, let R1, . . . , Rn be the rows of T ; then we map T to the
“row reading” RR(T ) ∼= Rn ⊗ · · · ⊗R1. (We may omit Rj if λj = 0.)

Lemma 4.25. The image of the map RR is a connected component of Bλn⊗Bλn−1⊗· · ·⊗Bλ1.

Proof. This follows easily from Proposition 3.1 in Bump and Schilling 2017. □

Now we give Bλ the unique crystal structure that makes RR the embedding of a subcrystal
in Bλn ⊗ Bλn−1 ⊗ · · · ⊗ Bλ1 .
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Figure 1. The GL(3) crystal B(2,1), and its corresponding crystal of Gelfand–
Tsetlin patterns.

Example 4.26. Let n = 3, and let us compute f2(T ) where T = 1 2

2
. If this is nonzero,

f2 will change one of the 2’s to a 3, but which one is changed depends on a computation,
which we will now perform. (See Bump and Schilling 2017 Section 2.4 for a more systematic
approach.) Using the row reading the tableau is interpreted as

R2 ⊗R1 = x⊗ y, x = 2 , y = 1 2

We find that φ2(y) = 1, ε2(x) = 0, and by the tensor product rule

f2(T ) = x⊗ f2(y) =
1 3

2
.

We have seen in Chapter 3 that the set SSYTn(λ) of semistandard Young tableaux of
shape λ is in bijection with the set GTPn(λ) of Gelfand–Tsetlin patterns of size n with top row
λ. To recapitulate, let λ(i) be the sequence of shapes such that the skew shape λ(i)/λ(i−1)

contains the entries equal to i. Then λ(n), . . . , λ(0) are the rows of the Gelfand–Tsetlin
pattern. If G ∈ GTPn(λ) and T ∈ SSYTn(λ) we write T = SSYT(G) and G = GTP(T ).

Since GTPn(λ) is in bijection with the crystal Bλ, there is a crystal structure on GTPn(λ)
by transportation of structure. See Kirillov and Berenstein 1995 for much useful information
about these crystals. In particular, their discussion of the Schützenberger involution is very
important.
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Example 4.27. Let n = 3 and λ = (2, 1, 0). The crystal graphs for Bλ and GTPn(λ) with
corresponding elements drawn in corresponding locations are given in Figure 1.

8.2. Crystals for Tokuyama models. We have seen that for the six-vertex model
with extended wall boundary conditions, the states may be parametrized by Gelfand–Tsetlin
patterns. Then the crystal operators ei and fi become operations on the states. Let us show
how this works for the q = 0 Tokuyama models.

We will make use of the Schützenberger involution on Bλ, also called the Lusztig involu-
tion. It inverts the crystal graph, mapping the highest weight to the lowest weight.

Proposition 4.28. There is a unique map Sch : Bλ −→ Bλ such that wt(Sch(T )) =
w0(wt(T )) for T ∈ Bλ, and such that Sch ◦ei = fn−i ◦ Sch and Sch ◦fi = en−i ◦ Sch.

Proof. See Bump and Schilling 2017, Exercise 5.2. □

Let us first consider the q = 0 Tokuyama models from Section 5. We will describe a
specific bijection between the states of this model and Bλ. Let GTP(s) denote the associated
Gelfand–Tsetlin pattern of a state s. By Lemma 4.14, we may subtract the pattern P and
obtain a Gelfand–Tsetlin pattern GTP◦(s) := GTP(s) − P . The map GTP◦ is a bijection
between the states of Sλ(z; 0) and GTPn(λ). Then it is beneficial to apply the Schützenberg
involution to the corresponding tableau. Thus we define a map θ : Sλ(z; 0) −→ Bλ by

(4.15) θ(s) = Sch(SSYT(GPT◦(s))).

This is a bijection, so Sλ(z; 0) becomes a crystal by transportation of structure.

Example 4.29. Let n = 3 and λ = (2, 1, 0), so λ + ρ = (4, 2, 0). We will show how to
calculate θ(s) for the following state:

z3

z2

z1

++ −−−

+++++

+

+

+

−
−
−

4 3 2 1 0

We have used the color red to indicate which edges have ⊖ spin. We find that

GPT(s) =

 4 2 0
2 1

1

 , GPT◦(s) =

 2 1 0
1 1

1

 ,

and so

SSYT(GTP◦(s)) = 1 3

3
, θ(s) = 1 1

3
.

The crystal structure on Sλ(z; 0) can then be computed from the known crystal Bλ.
Figure 2 shows the case λ = (2, 1, 0).



8. CRYSTALS 63

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

++ −−−

−−−−−

+

+

+

−
−
−

f1

f2

f2

f1

f2

f1

f1

f2

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

Figure 2. The crystal structure on Sλ(z; 0) when λ = (2, 1) and n = 3.

Remark 4.30. We have chosen to consider the q = 0 models here because this is the
simplest case, and because for the q = 0 models we may use the crystal Bλ. However, it is
also important to consider general q. In (4.15) we defined an embedding of the states of the
q = 0 Tokuyama model into the crystal Bλ. If q ̸= 0, this procedure requires modification,
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because if the state contains b1 vertices, then GTP(s) is not left strict, and we are not able to
subtract the Gelfand–Tsetlin pattern P in Lemma 4.14. Therefore we modify the procedure
as follows omit this subtraction, replacing (4.15) by

(4.16) θ(s) = Sch(SSYT(GPT(s))).

Here SSYT(GPT(s)) ∈ Bλ+ρ, so Sch is the involution of Bλ+ρ. The image of the map θ is
no longer all of the crystal Bλ+ρ since there is a constraint on GPT(s), which is now a strict
Gelfand–Tsetlin pattern. The utility of this embedding, and the use of the Schützenberger
involution is seen in Brubaker, Bump, and Friedberg 2011b. Note that Bλ+ρ can be embedded
in Bλ ⊗Bρ and Kim and Lee 2011 proposed (in a slightly different context) that it is better
to consider the image of θ(s) in Bλ ⊗ Bρ.

8.3. Crystals for Delta ice. Let us consider Delta ice introduced in Section 7. We
take the column parameter αj to be zero. This makes b1 patterns for Delta ice zero; we will
see momentarily that this allows the states to be embedded in Bλ.

As with Gamma ice, the column numbers of the vertical edges that carry the lines can
be arranged in a Gelfand–Tsetlin pattern. Let us denote this, as before, as GTP(s). Now we
need the analog of Lemma 4.13. This is the fact that for Delta ice, a necessary and sufficient
condition for there to be no b1 patterns is that the corresponding Gelfand–Tsetlin pattern
is right strict, so that ai,j > ai−1,j+1. This is proved like Lemma 4.13, remembering that for
Delta ice the paths move down and to the left,

Now since GTP(s) is right strict, with top row λ+ ρ, we may subtract

(4.17) Q =


n− 1 n− 2 · · · 0

n− 1 · · · 1
. . . . . .

n− 1


and obtain another Gelfand–Tsetlin pattern, with top row λ. Let GTP◦(s) denote the
“reduced” pattern GTP(s) − Q. We may now adapt the map θ in (4.15). In this case we
omit the final step of the Schützenberger involution which is not needed for Delta ice. We
write

(4.18) θ∆(s) = SSYT(GPT◦(s)).

Example 4.31. We cannot use the state in (4.14), since it contains a b1 pattern. Let us
instead consider

(4.19)

−+−+−

+++++

−

−

−

+

+

+

z3

z2

z1
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We find that

GTP(s) =

 4 2 0
4 1

2

 , GTP(s) =

 2 1 0
2 0

0

 ,

so θ∆(s) =
2 3

3
.

The map θ∆ is a bijection S∆
λ (z; 0) → Bλ. One may check that

β(s) = zρzwt(θ(s)).

Exercises

Exercise 4.1. Compute the partition function for the six-vertex model with the weights as in Section 2 for
the partition (n− 1, n− 2, . . . , 1, 0) and show that it is a q-deformation of the Vandermonde determinant.

The next exercise generalizes Theorem 4.2. It shows that the parameter q can be replaced by a sequence of
parameters ti, so that the Tokuyama model then has two row parameters, zi and ti.

Exercise 4.2 (Brubaker, Bump, and Friedberg 2011a). For each 1 ⩽ i ⩽ n let zi and ti be nonzero complex
numbers. In place of the Boltzmann weights (4.5), use the following weights,

a1 a2 b1 b2 c1 c2
1 zi ti zi zi(1 + ti) 1

and in place of the R-matrix, use the following weights.

a1 a2 b1 b2 c1 c2
zj + tjzi zi + tizj tizj − tjzi zi − zj (1 + ti)zi (1 + tj)zj

Generalize Theorem 4.2 to prove the Yang–Baxter equation in this generality. Thus we recover Theorem 4.2
by specializing all ti to −q.

Exercise 4.3 (Brubaker, Bump, and Friedberg 2011a). Continuing from the previous exercise, generalize
Theorem 4.3 by showing that if we use the Boltzmann weights depending on zi and ti from the previous
exercise in the i-th row of the grid, the partition function equals∏

i<j

(zi + tizj)sλ(z).

For the next exercises we want to have two types of free-fermionic vertices, which we will call Gamma and
Delta. Gamma ice is the Tokuyama ice with Boltzmann weights (4.5), and Delta ice is new to these exercises.
They can be used together, and we will distinguish their Boltzmann weights by using a black dot for Gamma
ice, and a white dot for Delta ice as in the following table.

(4.20)

a1 a2 b1 b2 c1 c2

Gamma +
+

+
+

z −
−

−
−
z +

−
+

−
z −

+
−

+

z −
+

+
−
z +

−
−

+

z

1 z −q z z(1− q) 1

Delta +
+

+
+

z −
−

−
−
z +

−
+

−
z −

+
−

+

z −
+

+
−
z +

−
−

+

z

1 −qz 1 z (1− q)z 1
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We will also make use of the following R-matrix:

(4.21)

a1 a2 b1 b2 c1 c2

+

+ +

+

z, w

−

− −

−
z, w

+

+−

−
z, w

+

+−

−
z, w

+ +

− −
z, w

+ +

− −
z, w

z − qw w − qz q(z − w) z − w (1− q)z (1− q)w

Exercise 4.4 (Brubaker, Bump, and Friedberg 2011a). Prove a Yang–Baxter equation using the Delta
weights in (4.20) and the R-matrix (4.6).

Exercise 4.5 (Brubaker, Bump, and Friedberg 2011a). Now consider the lattice model with extended wall
boundary conditions, using Delta ice. That is, we use the weight (4.20) with instead of (4.5). Evaluate these
partition functions.

Exercise 4.6. Complete the proof of Theorem 4.19 by imitating the proof of Theorem 4.3.
Hint: You will need to know that the R-matrix for the factorial models is the same as the R-matrix (4.6).
Try to deduce this fact without further calculation from the discussion in this section.

Exercise 4.7. Theorem 2.17 of Chapter 2 implies that the factorial Schur functions satisfy a column Yang–
Baxter equation for some R-matrix. Make this explicit.



CHAPTER 5

Modifying R-matrices

In this chapter, we consider two methods of modifying solutions of the Yang–Baxter
equation to get new solutions. We will consider colored models, in which each spin is assigned
an attribute that we call a color , such as the colored models in Chapters 7 and 8. Borodin and
Wheeler Borodin and Wheeler 2022, motivated by probability theory, did much to stimulate
the current interest in colored models.

1. Jimbo’s R-matrix

In order to have an example in mind, let us use the R-matrix introduced by Jimbo 1986,

coming from the quantum group Uq(ŝlr). (Jimbo also gave R-matrices for standard modules
for the other classical Cartan types.) Let us choose r colors. The edge types depend on a
complex number z, which we call the spectral parameter . For every edge type, the spinsets
are the same, a set C = {c1, . . . , cr} of colors . The colors are ordered so that c1 > · · · > cr.
The set C is called the palette.

Let z and w be two spectral parameters. We will consider a vertex with adjacent edges
labeled a,b, c,d as follows:

(5.1)

a

b c

dz

w z

w

z,w or a

b

c

d

z

w

z

w

z,w

Thus z is the vertex type at the vertices labeled a and c, while w is the vertex type at the
vertices labeled b and c. The Boltzmann weights are as follows.

(5.2)

Jimbo’s R-matrix
Type A Type B Type C

a

a a

az

w z

w

z,w

a

b a

bz

w z

w

z,w

a

b b

az

w z

w

z,w

z − qw
q(z − w) if a < b,
z − w if a > b,

(1− q)z if a < b,
(1− q)w if a > b,

Jimbo showed that this R-matrix is associated with the quantum group Uq(ĝln). To be
precise the R-matrix in Jimbo 1986 is not exactly this R-matrix but differs from it by a
Drinfeld twist, since it gives both Type B weights the value

√
q(z−w). But for reference we

describe this as Jimbo’s R-matrix.
We have classified the configurations of spins at a vertex as Type A, Type B or Type C.

This is analogous to the classification of the configurations of the six-vertex model as a1, a2
(Type A), b1, b2 (Type B) and c1, c2 (Type C).

67
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Theorem 5.1 (Jimbo 1986). Jimbo’s R-matrix satisfies a parametrized Yang–Baxter equa-
tion. If a, b, c, d, e and f are any colors, then the partition functions of the following two
systems are equal:

z2,z3z1,z2

z1,z3

a

b

c

f

e

d z1

z2

z3

z3

z2

z1

z2,z3 z1,z2

z1,z3

a

b

c

f

e

d z1

z2

z3

z3

z2

z1

Proof. Note that the R-matrix only depends on the relative order of the colors a and b in
the table (5.2). We observe that it is sufficient to prove this when the number of colors is
⩽ 3. Indeed, the colors d, e, f must be a permutation of a, b, c, or else the system has no
states. This reduces the number of cases to a reasonably small finite number, which can be
checked using a computer or even by hand. In fact, with at most 3 colors and with d, e and
f a permutation of a, b, c there are at most 6 · 27 = 162 possible boundary conditions. □

Theorem 5.1 can be written compactly as follows. Let V be the free vector space on the
set C of colors, and let R(z, w) : V ⊗ V → V ⊗ V be the linear R-matrix associated with
this linear transformation as in Section 3 in Chapter 2. Then in terms of the Yang–Baxter
commutator:

JR(z1, z2), R(z1, z3), R(z2, z3)K = 0.

As a notational point, we may denote the vertex (here labeled z, w) alternatively as v,
and the Boltzmann weight as  βv(a, a, a, a) in Type A,

βv(a, b, a, b) in Type B,
βv(a, b, b, a) in Type C.

Here a and b are distinct colors, indicated by the colors blue and red, respectively.

1.1. Conservation of Color. In this Chapter, we will explain two methods of modify-
ing Yang–Baxter equations to obtain other Yang–Baxter equations, using Jimbo’s R-matrix
as an example. Subject to a requirement that we will explain next, the methods apply to col-
ored models, requiring minor modifications for other vertex types, such as for the T-vertices
in the bosonic models from Chapter 8.

What is required is a conservation of color . That is, let us classify two edges as inputs
and two as outputs, thus:

a

b c

d

inputs outputs a

b

c

d

inputs

outputs

Then the conservation of color requires that the number of inputs of a given color equals
the number of outputs. Note that this is true for the Jimbo R-matrix. If we allow bosonic
vertices, then these numbers must be counted with multiplicity. If the Boltzmann weights
satisfy this conservation of color we will call them viatic. We may weaken this condition
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slightly to allow a = b and c = d, in which case we say the Boltzmann weights are planoviatic.
Thus the six-vertex model is viatic, while the eight vertex model is planoviatic but not viatic.

If the Boltzmann weights are viatic then the edges of a single color can be organized
into paths, and if a path enters a vertex through an input vertex, then it must exit through
an output vertex, continuing through the structure, always moving down and to the right.
For planoviatic weights, paths also form but they are not forced to move in any particular
direction, so they may wander around or form loops.

2. Change of basis

This procedure modifies the Boltzmann weights for vertices of Type C. We may turn the
Yang–Baxter equation into a vector Yang–Baxter equation as in Section 3 in Chapter 2. Let
v denote a vertex such as the vertex z, w in (5.1), and let a,b, c,d be the adjacent edges,
labeled as in (5.1).

The vector space Ve associated with an edge type e is then the free vector space on
the spinset Σe. Thus with vertices labeled as in (5.1), the Boltzmann weight becomes the
matrix, with respect to the bases Σa ⊗ Σb and Σc ⊗ Σd of Va ⊗ Vb and Vc ⊗ Vd of a linear
map Va ⊗ Vb −→ Vc ⊗ Vd. Now if we choose another basis Σ′

e of Ve, we may refer this linear
map to the bases Σ′

a ⊗ Σ′
b and Σ′

c ⊗ Σ′
d and obtain a new set of Boltzmann weights for a

new Yang–Baxter equation.
A simple way of implementing this is to choose for each vertex map a function fe : Σe −→

C×, and to choose Σ′
e = {x′|x ∈ Σe}, where we define

x′ =
1

f(x)
x.

Let us use βv for the original Boltzmann weights, and β′
v for the modified ones. Let a ∈ Σa,

b ∈ Σb, c ∈ Σc and d ∈ Σd. Since the sets Σe and Σ′
e are in bijection, we write β′

v(a, b, c, d)
instead of β′

v(a
′, b′, c′, d′). Then

(5.3) β′
v(a, b, c, d) =

fa(a)fb(b)

fc(c)fd(d)
βv(a, b, c, d) =

fa(a)fb(b)

fa(c)fb(d)
βv(a, b, c, d)

because the vertex types a and c are the same, as are the vertex types b and d, so fa = fc
and fb = fd. In Types A and B, a = c and b = d, so

β′
v(a, b, c, d) = βv(a, b, c, d)

in Types A and B. On the other hand, let us denote fv = fa/fb. In Type C we have a = d
and b = c, so

β′(a, b, c, d) = fv(a)fv(b)β(a, b, c, d)

in this case.

3. Drinfeld twisting

Drinfeld twisting refers to an operation on Hopf algebras that modifies the comultiplica-
tion. If the Hopf algebra is quasitriangular, then it is a source of solutions to the Yang–Baxter
equation, and twisting also modifies the R-matrices. In a simple case, we may describe this
directly. We will will consider colored systems such as the Jimbo R-matrix. The scheme we
describe will modify the Boltzmann weights of Type B, leaving the weights of Type A and
Type C unchanged.
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If C is the set of colors, we require a function ϕ : C × C −→ C×. We require

ϕ(a, b)ϕ(b, a) = 1.

Now for Type C, we multiply the Boltzmann weight β(a, b, b, a) by ϕ(a, b). Thus we obtain
new Boltzmann weights as follows. With a, b distinct colors:

β′
v(a, a, a, a) = βv(a, a, a, a) Type A
β′
v(a, b, a, b) = ϕ(a, b)βv(a, b, a, b) Type B
β′
v(a, b, b, a) = βv(a, b, b, a) Type C

Proposition 5.2. If the weights β satisfy the Yang–Baxter equation, so do the weights β′.

Proof. Recall that the set C of colors is assigned an order. By a colored braid we mean an
Artin braid in which each strand is decorated by a color in C. Let us turn every state s of
the system (either the left-hand side or the right-hand side) into a “colored braid” of three
strands by the following scheme

Type A Type B1 Type B2 Type C

a

a a

a a

b a

b a

b a

b a

b b

a

a < b a > b

Thus we have divided Type B into two cases depending on the order of the color, but the
larger color always goes over the smaller color. Strands of the same color are not allowed to
cross. Let a1, a2 and a3 be the colors on the left (reading from bottom to top) and let b1,
b2 and b3 be the colors on the right. In order for there to exist any states, the bi must be a
permutation of the ai. Thus bi = aw(i) for a permutation of 1, 2, 3, and the permutation w
is uniquely determined by the requirement that the color ai is connected to the color bi by
a strand. This is because strands of the same color are not allowed to cross, which implies
that w is the smallest permutation (in the Bruhat order) such that bi = aw(i). Now if i < j
and w(i) > w(j) then we say that (i, j) is a descent of w. Since strands of the same color
cannot cross, ai ̸= aj if (i, j) is a descent.

Since alterations in the Boltzmann weights occur when strands cross, we obtain

β′(s)

β(s)
=

∏
descents (i, j)

ϕ(ai, aj).

This formula is the same on either the right-hand side or the left-hand side of the Yang–
Baxter equation, and so the Yang–Baxter equation for the β weights implies the Yang–Baxter
equation for the β′ weights.

If (i, j) is not a descent, it is possible for the ai strand to cross the aj strand twice, but if
this happens, the crossings are in opposite directions and since ϕ(ai, aj)ϕ(aj, ai) = 1, there
is no unwanted contribution.

A couple of examples should clarify this proof. In this example, a1 = a3 > a2 and w is
the permutation (2, 3). On the left-hand side there is one state:
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a1

a2

a3

a2

a3

a1

We have drawn the vertices as circles for clarity. On the right-hand side there are two states:

a1

a2

a3

a2

a3

a1

and:

a1

a2

a3

a2

a3

a1

For every one of these states, the blue lines and the red lines cross, so there is a contribution
of ϕ(a2, a3). This is the same for every state on both sides, so the Yang–Baxter equation is
preserved.

We give one more example to show that two colored lines may cross twice, with the
contributions cancelling. As before we take a1 = a3, but now we take bi = ai for all i, so
that the permutation w = 1. On the right-hand side, there are two states. In one, there are
no crossings:

a1

a2

a3

a2

a3

a1

In the other, there are two crossings, in opposite directions:
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a1

a2

a3

a2

a3

a1

For this one, there are two crossings, in opposite senses, and the contributions cancel. □

4. The spherical and antispherical R-matrices

Let us expand Jimbo’s R-matrix by adding an additional element ⊕ to the spinset. Thus
the spinset of any edge consists of ⊕ and the r colors {c1, . . . , cr}. The R-matrix is:

Spherical R-matrix

z,w

+

+ +

+z

w

w

z
z,w

c

c c

cz

w

w

z
z,w

c

+ +

cz

w

w

z
z,w

c

d d

cz

w

w

z

z − qw z − qw (1− q)z
(1− q)z if c < d
(1− q)w if c > d

z,w

+

c c

+z

w

w

z
z,w

+

c +

cz

w

w

z
z,w

c

+ c

+z

w

w

z
z,w

c

d c

dz

w

w

z

(1− q)w q(z − w) z − w
z − w if c > d
q(z − w) if c < d

We have titled this the spherical R-matrix for future reference. The name is justified
because of its relationship, to be explained later, to Demazure–Lusztig operators which
describe the so-called spherical representation of the affine Hecke algebra.

The spherical R-matrix satisfies the following Yang–Baxter equation. Let V be the free
vector space on the expanded set of colors C ∪ {⊕}. Then as in Section 3, the spherical R-
matrix may be encoded in a linear transformation R◦(z, w; q) = R◦(z, w) : V ⊗ V → V ⊗ V .

Theorem 5.3. If z1, z2, z3 are any spectral parameters, then

JR◦(z1, z2), R◦(z1, z3), R◦(z2, z3)K = 0.

We will show by two different methods how this Yang–Baxter equation for the spherical
R-matrix may be deduced from Theorem 5.1. Both proofs start with Jimbo’s R-matrix with
the expanded palette C ∪ {⊕}. So ⊕ is considered to be one of the colors.

First proof.. In the expanded palette C ∪ {⊕}, let us take ⊕ to be the smallest color, so
⊕ < cr < · · · < c1. This gives the right weights for the spherical R-matrix, except for two
that are incorrect:

z,w

c

+ +

c

z,w

+

c c

+

(1− q)w (1− q)z
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To fix these, we have to switch these Boltzmann weights. We recall that in Jimbo’s R-matrix,
the edge types depend on a spectral parameter z. Thus we will denote the edge type e(z).
Thus in the notation of Section 2, we have

a = c = e(z), b = d = e(w).

We can take

f(z)(a) =

{
z if a ∈ C,
1 if a = ⊕.

Using (5.3), this has the effect of interchanging these two cases. □

Second proof.. An alternative approach is to take ⊕ to be the largest color, so c1 < · · · <
cr < ⊕. Again we get the spherical weights, except that two are wrong. But now they are a
different pair:

z,w

+

c +

c

z,w

c

+ c

+

z − w q(z − w)

We can use the method of Drinfeld twisting in Section 3 to move the q to where it should
be in this case of the crossing of a ⊕ line with a colored line. □

Complementary to the spherical R-matrices are another family that we call anti-spherical.
Here are the Boltzmann weights:

Antispherical R-matrix

z,w

+

+ +

+z

w

w

z
z,w

c

c c

cz

w

w

z
z,w

c

+ +

cz

w

w

z
z,w

c

d d

cz

w

w

z

w − qz z − qw (1− q)z
(1− q)z if c < d
(1− q)w if c > d

z,w

+

c c

+z

w

w

z
z,w

+

c +

cz

w

w

z
z,w

c

+ c

+z

w

w

z
z,w

c

d c

dz

w

w

z

(1− q)w q(z − w) z − w
z − w if c > d
q(z − w) if c < d

Note that this differs from the spherical R-matrix only in the first weight, where all
adjacent spins are ⊕. It also satisfies the same Yang–Baxter equation. However the Yang–
Baxter equation for this R-matrix cannot be deduced from Jimbo’s by change of basis and
Drinfeld twisting. This is an instance of a Perk-Schultze equation Perk and Schultz 1981

equation. Whereas the relevant quantum group for the Spherical R-matrix is Uq(ĝl(r + 1)),

the relevant quantum group for the antispherical R-matrix is the superalgebra Uq(ĝl(r|1)).

Theorem 5.4. Let R•(z, w; q) = R•(z, w) denote the vector form of the antispherical R-
matrix. If z1, z2, z3 are any spectral parameters, then

JR•(z1, z2), R•(z1, z3), R•(z2, z3)K = 0.
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Proof. Although this cannot be deduced from Jimbo’s Yang–Baxter equation, it can be
proved the same way with a finite amount of computation. That is, since in order for the
system to have any solutions, the spins on the right boundary edges must be a permutation
of the spins on the left boundary edges, at most 3 colors (not counting ⊕) can appear among
the boundary edges. There are therefore at most 6× 43 = 384 cases to be checked, and this
can easily be done using a computer. □

5. Relation with the field-free six-vertex model

The parametrized Yang–Baxter equation in Theorem 3.10 can also be related to Jimbo’s
R-matrix. We multiply the parametrized weights by 2, without affecting the Yang–Baxter
equation. The Boltzmann weights for this are:

a1 a2 b1 b2 c1 c2

+

+ +

+ −

− −

− +

− +

− −

+ −

+ −

+ +

− +

− −

+

zq − (zq)−1 zq − (zq)−1 z − z−1 z − z−1 q − q−1 q − q−1

If R(z) is the corresponding vector R-matrix, then the parametrize Yang–Baxter equation
can be written

(5.4) JR(z), R(zw), R(w)K = 0.

It will be convenient to modify the parameters z,w and q in Jimbo’s R-matrix, replacing
z → z2, w → w2 and q → q−2. We choose the palette to be {⊕,⊖} with ⊖ < ⊕. Then the
R-matrix is:

a1 a2 b1 b2 c1 c2

+

+ +

+ −

− −

− +

− +

− −

+ −

+ −

+ +

− +

− −

+

z2−q−2w2 z2−q−2w2 z2−w2 q−2(z2−w2) (1−q−2)z2 (1−q−2)w2

Now we multiply every weight by the same factor qz−1w−1. Then the Boltzmann weights
only depend on the ratio ζ := z/w. They are:

a1 a2 b1 b2 c1 c2
qζ−(qζ)−1 qζ−(qζ)−1 q(ζ−ζ)−1) q−1(ζ−ζ−1) (q−q−1)ζ (q−q−1)ζ−1

We can write the corresponding R-matrix as R′(ζ) = R′(z/w). The Yang–Baxter equa-
tion has the form:

JR′(z1/z2), R
′(z1/z3), R

′(z2/z3)K = 0.

This is to be compared with (5.4). Since (z1/z2)(z2/z3) = (z1/z3) it has the right form. The
R-matrix R′(ζ) may be transformed into R(ζ) with a Drinfeld twist and a change of basis.
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Exercises

Exercise 5.1. Check the 384 cases in the proof of Theorem 5.4 via computer.

Exercise 5.2. Check the claim that R-matrix R′(ζ) can be transformed into R(ζ) with a Drinfeld twist and
a change of basis.



CHAPTER 6

Demazure Operators

In this chapter, we continue the study of colored models and will see many examples
of the following phenomenon. We consider models whose boundary conditions depend on
a permutation w of a set of colors, describing their locations on the boundary. Thus the
partition functions form a family, indexed by w. If w = 1, one finds that the system is
monostatic, meaning that it has only one state, and the partition function is completely
known. Supplementing this information, and coming from the Yang–Baxter equation, there
are recursion relations that allow one to deduce the partition function for more general w.
These recursion formulas are in terms of certain Demazure operators that generate a Hecke
algebra. In this chapter, we introduce these algebraic topics.

To quickly illustrate how Yang–Baxter equations lead to Demazure recursions for parti-
tion functions, we will consider a special case in this chapter, where the R-matrix and the
T-vertices are all drawn from a single homogeneous parametrized Yang–Baxter equation.

1. Some Lie theory

If G is a complex reductive Lie group, we may associate with G a Weyl group W , a
maximal torus T , a root system Φ and a weight lattice Λ. Elements of Λ are called weights.
The weight lattice Λ is the group of rational characters of T , and if z ∈ T , λ ∈ Λ, we will
denote by zλ the application of λ to z. The root system Φ is a finite subset of Λ and the
group W = N(T )/T acts on T by conjugation, hence on Λ, preserving the root system Φ.
Let ΛR = R⊗Λ be the ambient real vector space of Λ. It may be endowed with aW -invariant
inner product.

Example 6.1. In the majority of our examples, G will be the general linear group, and
the reader may specialize to this case if they want, with little loss of continuity. So let us
define G,W, T,Φ,Λ when G = GL(n,C). In this case, the normalizer N(T ) is the group
of monomial matrices, and the Weyl group W = N(T )/T is the symmetric group Sn. The
torus T is (C×)n, which we embed in G via

z = (z1, . . . , zn) 7−→

 z1
. . .

zn

 .

The weight lattice Λ can be identified with Zn. Then if z ∈ T and µ = (µ1, . . . , µn) ∈ Λ,
we denote zµ = zµ11 · · · zµnn . The W -invariant inner product on ΛR is then just the usual dot
product on Rn = ΛR. Let ei be the standard basis vectors in Zn. Then the root system Φ
consists of vectors ei − ej with 1 ⩽ i, j ⩽ n and i ̸= j.

As usual in Lie theory, the root system Φ can be partitioned into two parts Φ = Φ+∪Φ−

called positive and negative roots, respectively. Let Σ = {α1, . . . , αℓ} be the set of simple
roots , which are the positive roots that cannot be decomposed into other positive roots.

76
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Then W is generated by the simple reflections si corresponding to the αi. For GL(n), the
positive roots are ei − ej with 1 ⩽ i < j ⩽ n, and the simple roots are αi = ei − ei+1.

Let Γ be a group with a set I = {s1, . . . , sℓ} of generators. We assume the quadratic
relations

(6.1) s2i = 1.

Since the si have order 2, for every pair si, sj of distinct elements such that the order ni,j of
sisj is finite, we also have the braid relations

(6.2) sisjsi · · · = sjsisj · · ·

with ni,j factors on both sides. For example, if G = GL(n) the braid relations are sisjsi =
sjsisj if j = i± 1, and sisj = sjsi if |i− j| > 1.

With these assumptions, the group Γ is called a Coxeter group if the quadratic and
braid relations give a presentation of Γ. Concretely, this means that if Ξ is any group
containing elements σi that also satisfy the quadratic and braid relations, then there is a
unique homomorphism ϕ : Γ −→ Ξ such that ϕ(si) = σi.

Theorem 6.2. The Weyl group W is a Coxeter group.

Proof. The statement is true for the Weyl group of any Lie group, though we are specializing
to the case of the symmetric group. See Bump 2013, Theorem 25.1 or Humphreys 1990,
Theorem 19.1. □

Lemma 6.3. The reflection si sends αi to its negative, and permutes other positive roots.
In other words si maps Φ+ − {αi} to itself.

Proof. See Bump 2013, Proposition 20.1 (ii) or Bourbaki 2002, Section IV.1.6 Corollary 1.
□

Definition 6.4. A Weyl vector is a vector ρ ∈ Λ such that ρ − si(ρ) = αi for simple roots
αi and corresponding simple reflections si.

Example 6.5. The weight 1
2

∑
Φ+ α is a Weyl vector, as follows from Lemma 6.3. If G is

semisimple, this is the unique Weyl vector.

If G is not semisimple, there may be some freedom in choosing the Weyl vector.

Example 6.6. If G = GL(n), so W = Sn and Λ = Zn then a useful choice for the Weyl
vector is

(6.3) ρ = (n− 1, n− 2, . . . , 0).

Defining ρ to be half the sum of the positive roots would give
(
n−1
2
, n−3

2
, . . . , 1−n

2

)
, and if n

is even, this vector has denominators that we can avoid by the choice (6.3). Moreover this
choice works well for applications to lattice models.

A factorization w = si1 · · · sik into simple reflections of shortest possible length k is called
a reduced expression. The Weyl group has a length function ℓ : W −→ N = {0, 1, 2, 3, . . .}.
Two possible definitions can be given which are equivalent.
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Definition 6.7. The length ℓ(w) is the length k of a reduced expression w = si1 · · · sik .
Alternatively, ℓ(w) is the cardinality of the set

{α ∈ Φ+ | w(α) ∈ Φ−}.
Proposition 6.8. The two definitions of ℓ(w) are equivalent. If w = si1 · · · sik is a reduced
expression, then

{α ∈ Φ+ | w(α) ∈ Φ−} = {αik , sik(αik−1
), siksik−1

(αik−2
), . . .}.

Proof. See Bump 2013, Propositions 20.5 and 20.10 or Bourbaki 2002, Section IV.1.6
Corollary 2. □

Let Λ∗ be the dual lattice HomZ(Λ,Z). Dual to the root system Φ ⊂ Λ, there is a
root system Φ∨ in Λ∗, with a bijection α 7→ α∨ between Φ and Φ∨ such that the simple
reflection si is the map

si(λ) = λ− ⟨λ, α∨
i ⟩αi.

Elements of Φ∨ are called coroots . If we use theW -invariant inner product to identify ΛR with
its dual space, then Λ and Λ∗ are both subgroups of ΛR and if we make this identification,
we have α∨ = 2

⟨α,α⟩α.

A weight λ ∈ Λ is called dominant if ⟨α∨
i , λ⟩ is a nonnegative integer. Also, we introduce

a partial order on ΛR in which µ ≼ λ if λ − µ is a sum of positive roots, if we may write
λ−µ =

∑
niαi where ni are nonnegative integers. Let (π, V ) be an irreducible representation

of G, and let χπ be its character. Restricting χπ to T , we may write

χπ(z) =
∑
µ∈Λ

mπ(µ) z
µ,

and the weight multiplicity functionmπ isW -invariant. The µ such thatmπ(µ) > 0 are called
the weights of the representation. There is a unique weight λ that is maximal with respect
to ≼, called the highest weight of the representation. It is a dominant weight. Conversely,
given any dominant weight there is a unique irreducible representation with highest weight
λ, so π ↔ λ is a bijection between irreducibles and dominant weights.

The function w 7→ (−1)ℓ(w) is a character of W . Denoting χπ = χλ we have the Weyl
character formula

(6.4) χλ(z) =
∏
α∈Φ+

(1− z−α)−1
∑
w∈W

(−1)ℓ(w)zw(λ+ρ)−ρ.

The Weyl denominator formula is the identity

(6.5) zρ
∏
α∈Φ+

(1− z−α) =
∑
w∈W

(−1)ℓ(w)zw(ρ).

Both (6.4) and (6.5) are true for any choice of Weyl vector ρ. If G = GL(n,C), then (6.4) is
equivalent to (4.4.2).

1.1. Matsumoto’s theorem. An expression w = si1 · · · sik with k = ℓ(w) is called
reduced. There may be many reduced expressions for w. For example if W = S4 and
w0 = (1, 4)(2, 3) is the longest element, there are 16 reduced expressions for w0.

Matsumoto’s theorem was found independently by Matsumoto 1964 and by Tits in the
1960’s. This extremely useful fact says that if ℓ(w) = k and if

w = si1 · · · sik = sj1 · · · sjk
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are two reduced expressions, then the equivalence of the two expressions can be proved using
only the braid relations (6.2) and not the quadratic relations (6.1). To give an example, if
W = S4 then w0 = s1s2s1s3s2s1 and w0 = s3s2s3s1s2s3 are two reduced expression. The
braid relations are:

s1s2s1 = s2s1s2, s2s3s2 = s3s2s3, s1s3 = s3s1.

Matsumoto’s theorem asserts that we can prove s1s2s1s3s2s1 = s3s2s3s1s2s3 using the braid
relations and not the quadratic relations. Let us write 121321 instead of s1s2s1s3s2s1. Using
the braid relations:

121321 = 212321 = 213231 = 231213 = 232123 = 323123.

To formulate Matsumoto’s theorem rigorously, we introduce the braid group B(W ) of a
Coxeter group W . This is the group with generators ui (in bijection with the si) that satisfy
the braid relations but not the quadratic relations.

Theorem 6.9 (Matsumoto Matsumoto 1964). If si1 · · · sik and sj1 · · · sjk are reduced expres-
sions for the same element of W , then the corresponding elements ui1 · · ·uik and uj1 · · ·ujk
are equal in the braid group B(W ).

Proof. See Björner and Brenti 2005, Theorem 3.3.1. For a geometric proof assuming W is
a Weyl group, see Bump 2013, Theorem 25.2. □

1.2. Hecke algebras. A simple application of Matsumoto’s theorem is the construction
of Hecke algebras, which are deformations of the group algebra of the Weyl group. We pick
a parameter q which may be a complex number or an indeterminate. Now the ring has
generators Ti subject to the same braid relations as the simple reflections si and the new
quadratic relation:

(6.6) T 2
i = (q − 1)Ti + q.

Let Hq = Hq(W ) be the algebra generated by the Ti modulo these relations. This is the
Iwahori Hecke algebra of W .

Proposition 6.10. If w = si1 · · · sik is a reduced expression, define Tw = Ti1 · · ·Tik . Then
Tw depends only on w, not the reduced expression. The Tw (w ∈ W ) are a basis of Hq.

Proof. Let w = si1 · · · sik and w = sj1 · · · sjk be reduced expressions. We want to show
Ti1 · · ·Tik = Tj1 · · ·Tjk , and by Matsumoto’s theorem, we are reduced to the case where the
two reduced words differ by a single braid group operation. But the Ti satisfy the braid
relation. This proves that Tw is well-defined. We omit the verification that they are a vector
space basis of Hq. □

1.3. The Bruhat order. Another application of Matsumoto’s concerns the definition
of the Bruhat order, an important partial order on Weyl group elements. Let u, v ∈ W .
Choose a reduced word v = si1 · · · sik . We write u ⩽ v if there is a subsequence (j1, . . . , jℓ) of
(i1, . . . , ik) such that u = sj1 · · · sjℓ . Because of the following property of Coxeter groups, if
such a subsequence exists, it may be arranged so that u = sj1 · · · sjℓ is a reduced expression.
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Proposition 6.11. Let w = si1 · · · sik be a product of k simple reflections such that ℓ(w) < k.
Then it is possible to omit two of the factors and get another reduced expression:

w = si1 · · · ŝia · · · ŝib · · · sik ,
where the “hat” means a factor is omitted, with 1 ⩽ a < b ⩽ k.

Proof. This is Bump 2013, Proposition 20.4. □

Proposition 6.12. The definition of the Bruhat order does not depend on the reduced ex-
pression v = si1 · · · sik .

Proof. Matsumoto’s theorem shows that it suffices to show there exists such an expression
v = si′1 · · · si′k when (i1, . . . , ik) and (i′1, . . . , i

′
k) differ by a braid relation, and this case may

be easily handled. □

2. Demazure operators

Let G, T,Λ,W be as in Section 1. Let O(T ) be the ring of rational functions on O(T ).
This is isomorphic to the group algebra C[Λ] of the weight lattice; as a ring, it is a Laurent
polynomial ring. Let O(Treg) be the ring obtained from O(T ) by adjoining the reciprocals
of polynomials 1− zα with α ∈ Φ. Since 1− zα and 1− z−α differ by the unit −z−α we need
only adjoin 1 − zα for α ∈ Φ+. The ring O(Treg) can be regarded as the ring of functions
that are regular on the set Treg of regular elements of T , defined as those z ∈ T such that
the functions 1− zα are all nonvanishing nonvanishing.

For example if G = GL(n,C) and T ∼= (C×)n is the diagonal torus, then O(T ) is isomor-
phic to the Laurent polynomial ring C[z1, z−1

1 , . . . , zn, z
−1
n ], and elements are holomorphic

functions of z = (z1, . . . , zn) ∈ T . The ring Treg is the set of z such that the components zi,
zj are distinct. The ring O(Treg) is C[zi, z−1

i , (1− zi/zj)
−1] = C[zi, z−1

i , (zi − zj)
−1].

Definition 6.13. Let R be the ring generated by O(Treg) and W , subject to the relations

wfw−1 = wf, wf(z) = f(w−1z), w ∈ W, f ∈ O(T ).

There is a representation R −→ End(O(Treg)), in which f ∈ O(Treg) acts by multiplica-
tion, and an element w ∈ W acts through the usual action ofW on O(Treg). So we will regard
elements of R as operators on O(T ). A priori such an operator takes O(T ) into O(Treg),
since they could introduce denominators of the form (1− zα)−1, but we will consider certain
divided difference operators that take O(T ) into O(T ).

Let si be a simple reflection. We define two elements of R as follows. Let

∂i = (1− z−αi)−1(1− z−αisi), ∂◦i = (zαi − 1)−1(1− si).

These are Demazure operators acting on O(T ). Explicitly

∂if(z) =
f(z)− z−αif(siz)

1− z−αi
, ∂◦i f(z) =

f(z)− f(siz)

zαi − 1
.

The relation

(6.7) ∂i = ∂◦i + 1

is easily checked.

Lemma 6.14. If f ∈ O(T ), then ∂if, ∂
◦
i f ∈ O(T ).
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Proof. The operators introduce denominators, since (zαi − 1)−1 is not in O(T ). However
the numerators of both ∂i and ∂

◦
i also vanish when zαi = 1. This is because z = siz, and so

f = si(f). Therefore the quotients are rational functions without poles. □

Proposition 6.15. The operators ∂◦i satisfy the same braid relations as the si, and the
quadratic relation

(6.8) (∂◦i )
2 = −∂◦i .

Therefore they generate a ring of operators isomorphic to H0.

Proof. See Bump 2013, Proposition 25.1 for a proof of the braid relations. (The operators
∂◦i are denoted Di there.) We will check (6.8) as follows.

(∂◦i )
2 = (zαi − 1)−1(1− si)(z

αi − 1)−1(1− si).

We expand the first 1 − si obtaining two terms. The first is (zαi − 1)−1(zαi − 1)−1(1 − si)
and the second is

−(zαi − 1)−1si(z
αi − 1)−1(1− si) = −(zαi − 1)−1(z−αi − 1)−1si(1− si).

Combining the two terms gives

(zαi − 1)−1

(
1

zαi − 1
+

1

z−αi − 1

)
(1− si) = −∂◦i

since 1
x−1

+ 1
x−1−1

= −1. □

Proposition 6.16. The operators ∂i also satisfy the same braid relations as the si, and also
the quadratic relation

(6.9) ∂2i = ∂i.

We have si∂i = ∂i.

Proof. The braid relations are proved in Bump 2013, Proposition 25.3, but note a typo:
the wrong font is used for the operators ∂i in the statement of the theorem. The relations
∂2i = si∂i = ∂i are easily checked along the lines of (6.8) in Proposition 6.15. □

Both ∂◦i and ∂i satisfy the same braid relations as the si. Let w = si1 · · · sik be a reduced
decomposition of w ∈ W . Define

∂◦w = ∂◦i1 · · · ∂
◦
ik
, ∂w = ∂i1 · · · ∂ik .

Because both ∂◦i and ∂i satisfy the same braid relations as the si, Matsumoto’s theorem
shows that ∂◦w and ∂w are well defined.

Let Ω ∈ R be the operator

(6.10) Ω =
∏
α∈Φ+

(1− z−α)−1
∑
w∈W

(−1)ℓ(w)zw(ρ)−ρw.

By the Weyl character formula, if λ is a dominant weight

Ω(zλ) = χλ(z)

is the character of the irreducible representation with highest weight λ, as a function on
T ⊂ G. For GL(n), Ω(zλ) = sλ is a Schur polynomial.
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Theorem 6.17 (Demazure). Let w0 be the long element of W , and let λ be a dominant
weight. Then ∂w0 = Ω. Therefore

χλ(z) = ∂w0z
λ.

Proof. See Bump 2013, Theorem 25.3 for a proof. □

2.1. Demazure characters and Demazure crystals. First, in Theorem 6.19 we clar-
ify the relationship between the operators ∂◦w and ∂w. If w ∈ W and if s is a simple reflection,
then either sw > w or sw < w (not both). We say that s is a left ascent (resp. descent) if
sw > w (resp. sw < w).

Proposition 6.18. Let y, w ∈ W and let s be a simple reflection. Assume that w < sw and
y < sy. Then the following are equivalent:

(i) y ⩽ w;
(ii) y ⩽ sw;
(iii) sy ⩽ sw.

Proof. See Deodhar 1977, Property Z or Björner and Brenti 2005, Theorem 2.2.7. □

Theorem 6.19. Let w ∈ W . Then

(6.11) ∂w =
∑
y⩽w

∂◦y .

Proof. If w = 1 this is clear and both sides equal 1. Arguing by induction on ℓ(w), we
assume (6.11) and prove the same identity with w replaced by sw, where s is any left ascent
of w. Using our induction hypothesis

∂sw = ∂s∂w = ∂s
∑
y⩽w

∂◦y .

Consider a term where sy < y. We will argue that ∂s∂
◦
y = 0. Indeed, ∂◦y = ∂◦s∂

◦
sy since

ℓ(y) = ℓ(sy)+1. Now ∂s∂
◦
s = (1+∂◦s )∂

◦
s = 0 by (6.8), and the statement follows. So we may

ignore these terms and remembering (6.7) we have

∂sw = (1 + ∂◦s )
∑
y⩽w
y<sy

∂◦y =
∑
y⩽w
y<sy

∂◦y +
∑
y⩽w
y<sy

∂◦sy.

Now we may apply Proposition 6.18 with y < sy and w < sw. Then y ⩽ w if and only if
y ⩽ sw if and only if sy ⩽ sw, so this equals∑

y⩽sw
y<sy

∂◦y +
∑
sy⩽sw
y<sy

∂◦sy.

In the second term we replace y by sy and obtain

∂sw =
∑
y⩽sw
y<sy

∂◦y +
∑
y⩽sw
sy<y

∂◦y =
∑
y⩽sw

∂◦y .

□
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If w ∈ W then the function
χλ(z;w) := ∂wz

λ

is called a Demazure character or key polynomial . These may be defined for any Cartan
type, and were shown by Demazure 1974 to compute spaces of sections of line bundles on
Schubert varieties. If w = w0 then by Theorem 6.17 this is the character of an irreducible
representation (i.e. a Schur polynomial if G = GL(n)).

Proposition 6.20. Let Wλ be the stabilizer in W of λ. If w,w′ lie in the same coset wWλ

then χλ(z;w) = χλ(z;w
′). The coset wWλ contains a unique element of shortest length.

Proof. With λ = (λ1, . . . , λn) a partition, its stabilizer in Sn is the subgroup generated
by si such that λi = λi+1. A subgroup generated by simple reflections is called a Young
or parabolic subgroup of Sn, and every coset of a parabolic contains a unique element of
shortest length.

For the first assertion, since Wλ is parabolic it is sufficient to ∂wz
λ = ∂w′zλ if w′ = wsi

where siλ = λ. Then ∂w′ = ∂w∂i, and it follows from the definition of ∂i that if siλ = λ then
∂iz

λ = zλ. □

Proposition 6.21. Let Wλ be the stabilizer in W of λ. If w,w′ lie in the same coset wWλ

then χλ(z;w) = χλ(z;w
′). The coset wWλ contains a unique element of shortest length.

Proof. With λ = (λ1, . . . , λn) a partition, its stabilizer in Sn is the subgroup generated
by si such that λi = λi+1. A subgroup generated by simple reflections is called a Young
or parabolic subgroup of Sn, and every coset of a parabolic contains a unique element of
shortest length.

For the first assertion, since Wλ is parabolic it is sufficient to ∂wz
λ = ∂w′zλ if w′ = wsi

where siλ = λ. Then ∂w′ = ∂w∂i, and it follows from the definition of ∂i that if siλ = λ then
∂iz

λ = zλ. □

The related polynomials χ◦
λ(z;w) := ∂◦wz

λ were defined in Lascoux and Schützenberger
1990, who called them standard bases . Nowadays following Mason 2009 they are called
Demazure atoms . By Theorem 6.19 we have

(6.12) χλ(z;w) =
∑
y⩽w

χ◦
λ(z; y).

These facts can be lifted to statements about crystals. Following Kashiwara 1993; Lit-
telmann 1995a, we may lift the definition of the operator ∂i to the crystal Bλ of SSYT of
shape λ as follows. First note that for any weight µ we have si(µ) = µ − kαi and where
k = ⟨α∨

i , µ⟩, and so

∂iz
µ =

1− z−αi(1+k)

1− z−αi
=

 zµ + zµ−αi + · · ·+ zµ−kαi if k ⩾ 0,
0 if k = −1,
−(zµ+αi + zµ+2αi + · · ·+ zµ+(−k−1)αi) if k < −1,

by the geometric series formula. This lifts to the crystal using the operators ei and fi.
Namely, we may define an endomorphism of the free abelian group Z[Bλ] by

∂iv =

 v + fi(v) + · · ·+ fki (v) if k ⩾ 0,
0 if k = −1,
−(ei(v) + · · ·+ e−k−1

i (v)) if k < −1,
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for v ∈ Bλ. Now Kashiwara 1993; Littelmann 1995a proved that there exist subsets Bλ(w)
called Demazure crystals such that if w = si1 · · · sik is a reduced expression and if Tλ is the
highest weight element of Bλ then

∂i1 · · · ∂ikTλ =
∑

T∈Bλ(w)

T.

See also Bump and Schilling 2017 Chapter 13.
Moreover there exist subsets B◦

λ(w), called crystal Demazure atoms , such that

Bλ(w) =
⋃
y⩽w

B◦
λ(y).

A key tableau is one in which every column (except the first) is a subset of the previous
column. The weight of a key tableau of shape λ is w(λ) for some w ∈ W . Lascoux and
Schützenberger 1990 defined a (right) key map from tableaux to key tableaux. For GL(n)
crystals, the existence of the subsets B◦

λ(w) is essentially due to Lascoux and Schützenberger,
because the subsets B◦

λ(w) can be characterized as the set of tableaux whose right key has
weight w(λ). For other Cartan types, the existence of crystal Demazure atoms is proved in
Kashiwara 2002, Section 9.1.

The subsets B◦
λ(w) are disjoint. If λ is strongly dominant, they are all nonempty. Oth-

erwise B◦
λ(w) is nonempty if and only if w is the shortest element in the coset wWλ.

2.2. The nil-Hecke algebra. Demazure operators are also commonly called divided
difference operators. The operators ∂w and ∂◦w can be defined for any root system, but here
we will consider operators Dw that are special to G = GL(n) and W = Sn. Define

Di = z−1
i+1∂

◦
i , Dif(z) = (zi − zi+1)

−1(f(z)− f(siz)).

Proposition 6.22.

(i) The functions Di satisfy the same braid relations as si ∈ Sn. Thus DiDjDi =
DjDiDj if j = i± 1, and DiDj = DjDi if |i− j| > 1.

(ii) The operators Di satisfy the quadratic relation D2
i = 0.

Proof. It is convenient to work in the ring R again, and write Di = (zi − zi+1)
−1(1− si).

Assume j = i + 1. Then si and sj generate a subgroup ⟨si, sj⟩ isomorphic to S3. Ex-
panding out DiDi+1Di and rearranging, we find

DiDjDi = c−1 ·
∑

w∈⟨si,sj⟩

(−1)ℓ(w)w,

where the constant c = (zi−zi+1)(zi−zi+2)(zi+1−zi+2). A small amount of algebra is needed
to simplify the coefficients of 1 and si. But Di+1DiDi+1 simplifies to the same expression.
The proof that DiDj = DjDi if |i− j| > 1 is easy. As for the quadratic relation, D2

i equals

(zi − zi+1)
−1(1− si)(zi − zi+1)

−1(1− si) = (zi − zi+1)
−2(1 + si)(1− si) = 0.

□

Since the Di satisfy the braid relations, we may define Dw for w ∈ W the same way that
∂w and ∂◦w were defined.
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The algebra generated by theDi, subject to the braid relations and the quadratic relations
D2
i = 0 is called the nil-Hecke algebra. It can be defined for any Cartan type by these defining

relations, though the particular operators Di are only available in Type A. A more subtle
approach in Kostant and Kumar 1986 realizes the nil-Hecke algebra in terms of Demazure
operators for all Cartan types. The nil-Hecke algebra is important for understanding the
cohomology of flag varieties, and the definition of Schubert polynomials.

2.3. Demazure–Lusztig operators. Let q be a parameter. We define the Demazure–
Lusztig operator

Li = (zαi − 1)−1
(
(1− si)− q(1− zαisi)

)
.

Similarly, we define the Demazure–Whittaker operator

Ti = (zαi − 1)−1
(
(1− si)− q(1− z−αisi)

)
.

Thus if q = 0 both operators specialize to the operator ∂i. We will also consider the conju-
gation ρTi := zρTiz−ρ. Because si(ρ) = ρ− αi we have

ρTi = (zαi − 1)−1
(
(1− zαisi)− q(1− si)

)
.

Theorem 6.23 (Lusztig). Let Ti denote either Li or Ti, or ρT . The operators Ti satisfy
the braid and quadratic relations

T2
i = (q − 1)Ti + q,

and hence generate an algebra isomorphic to H(W ).

Proof. The quadratic relation may be checked by expanding L2
i or T 2

i in the ring R. The
braid relation for Li is harder and is proved in Lusztig 1985. For a proof of the quadratic
relation for Ti based on intertwining operators on Whittaker functions for p-adic represen-
tations, see Brubaker, Bump, and Licata 2015, Theorem 2. The same argument applied to
Iwahori spherical functions would work for Li. See Brubaker, Bump, and Friedberg 2016. □

Theorem 6.23 implies that we have two representations σs and σa of Hq in which σs(Ti) =
Li, and σa(Ti) = Ti. But these may be extended to the affine Hecke algebra, as we will now
explain.

The (extended) affine Hecke algebra H̃q = H̃q(W ) is described as follows. It contains a
copy of Hq, and also an abelian algebra θΛ spanned as a vector space by elements θλ (λ ∈ Λ).
These satisfy θλθµ = θλ+µ, and the Bernstein relation

θλTi − Tiθsiλ = (q − 1)
θλ − θsiλ
1− θ−αi

.

The multiplication map θΛ ×Hq → H̃q induces a vector space isomorphism θΛ ⊗Hq
∼= H̃q.

Now extend σs and σa to H̃q in which θλ acts as multiplication by z−λ. The Bernstein
relation must be checked. The representations σs and σa are called (respectively) the spherical
and antispherical representations of the affine Hecke algebra.

We recall the operator Ω defined in (6.10). We will work in the ring Rq := C(q) ⊗ R,
where we have extended the ground field to contain q. (We recall that q can be either a
complex number or an indeterminate.) Similarly let Oq(Treg) = C(q)⊗O(Treg).
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Proposition 6.24. We have

(6.13)
∑
w∈W

Lw = Ω
∏
α∈Φ+

(1− qz−α),
∑
w∈W

Tw =
∏
α∈Φ+

(1− qz−α)Ω

in the ring Rq.

Proof. We note the identities

(6.14) 1 + Li = ∂i(1− qz−αi), 1 + Ti = (1− qz−αi)∂i,

which are easily checked in the ring Rq.
Let us denote

Θ =
∑
w∈W

Lw, Θ′ = Ω
∏
α∈Φ+

(1− qz−α).

We begin by checking that for w ∈ W we have wΘ = Θ and wΘ′ = Θ′. It is sufficient to
prove these when w = si is a simple reflection. We have

Θ = (1 + Li)
∑
w∈W
siw>w

Lw = ∂i(1− qz−αi)
∑
w∈W
siw>w

Lw,

so siΘ = Θ and siΘ
′ = Θ′ follow from the identities si∂i = ∂i and siΩ = Ω.

Now let Θ =
∑

w∈W θw · w and Θ′ =
∑

w∈W θ′w · w for θw, θw′ ∈ Oq(Treg). Then since
wΘ = Θ and wΘ′ = Θ′ we have for y ∈ W the identities θyw = yθw and θ′yw = yθ′w. This
means that if we verify θw = θ′w for any particular w, then Θ = Θ′. We will show that
θw0 = θ′w0

.
Let w0 = si1 · · · siN be a reduced expression for the long element. For any root α define

ϕ(α) =
1− q

zα − 1
, ψ(α) =

1− qzα

1− zα
.

Then Li = ϕ(αi) + ψ(αi)si, so

Lw = (ϕ(αi1) + ψ(αi1)si1) · · · (ϕ(αiN ) + ψ(αiN )siN ).

Expanding out this product, there is only one way to get a coefficient of w0 which is to take
all the ψ(αi) factors and none of the ϕ(αi). Thus

θw0 · w0 = ψ(αi1)si1ψ(αi2)si2 · · ·ψ(αiN )siN .
Moving all the sik to the right conjugates the ψ(αi) to produce

θw0 · w0 = ψ(αi1)ψ(si1αi2) · · ·ψ(si1si2 · · · siN−1
αiN−1

) · si1 · · · siN .
Now by Proposition 6.8 applied with w = w−1

0 = siN · · · si1 , the arguments of ψ are all
positive roots, proving

θw0 =
∏
α∈Φ+

ψ(α).

On the other hand from the definition of Ω and Θ′,

θ′w0
· w0 =

∏
α∈Φ+

(1− z−α)−1zw0(ρ)−ρ w0

∏
α∈Φ+

(1− qz−α).

Since ρ− w0(ρ) is the sum of the positive roots, we see that θ′w0
= θw0 .

We have proved the first identity in (6.13). The second identity can be proved similarly
(see Exercise 6.1). □
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3. Demazure operators and colored models

We have introduced five types ∂i, ∂
◦
i , Di,Li and Ti of divided difference or Demazure

operators in this chapter. We will consider the actions of these on partition functions.
Moreover, if T is one of these operators we may consider the ρ-conjugated function ρTi =
zρTiz

−ρ. Here are these operators and some of their ρ-conjugates.

∂i = (1− z−αi)−1(1− z−αisi) ∂2i = ∂i
∂◦i = (zαi − 1)−1(1− si) (∂◦i )

2 = −∂◦i
Di = (zi − zi+1)

−1(1− si) D2
i = 0

Li = (zαi − 1)−1((1− si)− q(1− zαisi)) L2
i = (q − 1)Li + q

Ti = (zαi − 1)−1((1− si)− q(1− z−αisi)) T 2
i = (q − 1)Ti + q

ρ∂i = (1− z−αi)−1(1− si)
∂◦i = (zαi − 1)−1(1− zαisi)
ρTi = (zαi − 1)−1((1− zαisi)− q(1− si))

These operators all satisfy the braid relations, discussed earlier in this chapter. We are
listing the quadratic relations for the unconjugated operators; naturally Ti and

ρTi satisfy
the same braid and quadratic relations.

Let Ti be one of the operators
ρ∂i,

ρ∂◦i , Di, Li or ρTi. For each of the these cases we will
exhibit a family {Sw} of lattice models indexed by w ∈ W satisfying a Demazure recursion
for the partition functions. If siw > w, then

(6.15) Z(Ssiw) = TiZ(Sw).

This is complemented by the fact that for a particular value of w (often w = 1) system Sw

is monostatic, so that Z(Sw) is known. From these facts all partition functions from the
family can be evaluated.

3.1. Boundary conditions. We consider a class of colored models that gives examples
of all of these operators. In place of the ⊖ spin we have a family of n colors c1, . . . , cn
ordered so that c1 ⩽ c2 ⩽ · · · ⩽ cn. We also have the ⊕ spin connoting the absence of color.
The spinset of all edges in the model have spinset Σ = {⊕, c1, . . . , cn}. Although we allow
repetitions among the ci, the ⊕ spin is not allowed to be one of the ci so the cardinality of
Σ is at least two. Let V be the free vector space on Σ. For notational reasons, we denote ⊕
as v+ if it is considered to be a vector in V .

Let R(z, w) be a homogeneous parametrized Yang–Baxter equation. In the RTT equa-
tions that leads to the Demazure recurrence (6.15), this is the R-matrix. The T-matrices
may or may not be drawn from the same homogenous parametrized Yang–Baxter equation.

Now we consider a grid with n rows, andN columns, with row parameters z = (z1, . . . , zn).
As in Chapter 3 and Chapter 4 we label the rows 1 to n from top to bottom, and the columns
from 0 to N − 1 right to left. At the vertex in row i and column j, we place a vertex Tj(zi),
whose Boltzmann weights need to be specified. It is required that for every j we have a
Yang–Baxter RTT equation

(6.16) JR(z, w), Tj(z), Tj(w)K = 0

or equivalently, the two following systems must be equivalent. If the T-matrix Tj(z) does not
depend on the column j we just write Tj(z) = T (z). As usual, this RTT equation amounts
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to the equivalence of the two systems:

a

b

c

d

e

f

R(z, w)

Tj(z)

Tj(w)

a

b

c

d

e

f

R(z, w)

Tj(z)

Tj(w)

The boundary conditions are colored generalizations of the extended wall boundary con-
ditions introduced in Chapter 3. In the examples that we will consider, the Boltzmann
weights will be viatic, that is, they will satisfy the conservation of color (Section 1.1). This
means that the edges of a given color can be organized into paths, moving downward and
to the right. We will consider only models with ⊕ spins on the left and bottom boundary
edges, so the colored boundary edges are only at the top and right. Thus the colored paths
start at the top and end on the right. We allow uncolored ⊕ boundary edges at the top, but
not on the right.

We call these the colored extended wall boundary conditions . If λ = 0 and n = N (so
the grid is square) we will call these boundary conditions colored domain wall boundary
conditions.

(6.17) +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

c3 c2 c1

c3

c2

c1

5 4 3 2 1 0

The number N of columns must be at least λ1 + n − 1, and the columns are labeled 0 to
N − 1 from right to left (as in Chapters 3 and 4). We may fix a partition λ = (λ1, . . . , λn) to
describe the locations of colors on the top boundary edges, putting a color in the columns
λj + n− j.

By a banner we mean an n-tuple of colors. (These are sometimes also called flags but to
avoid confusion with flag varieties we will use the term “banner.”) The Weyl group acts on
banners as follows. For w ∈ W let

wd = (dw−1(1), . . . , dw−1(n)).

Remark 6.25. Note that this is a left action. Indeed, if d′ = (d′1, . . . , d
′
n) := w2d, then d

′
i =

dw−1
2 (i). So w1d

′ = (d′
w−1

1 (1)
, . . . , d′

w−1
1 (n)

) and d′
w−1

1 (i)
= dw−1

2 w−1
1 (i) = d(w1w2)−1(i). Therefore

w1(w2d) = (w1w2)d. This is basic but a source of possible confusion.
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The boundary colors are described by two banners d = (d1, . . . , dn) and f = (f1, . . . , fn),
where we put the color fi on the right boundary edge in row i, and di on the top boundary
edge in column λj +n− j. Now, there is a bijection between the top boundary colors at the
top and the right boundary colors, in which corresponding colors are connected by a path.
Thus the top boundary colors duplicate those on the right boundary edge, so no more than
n can occur, either on the boundary or on any edge in any state.

3.2. Demazure opertors for systems with no repeated colors. We wish to pa-
rametrize the system by a Weyl group element w. For simplicity, we will assume in this
section that there are no repeated colors, though else in the text we will not assume this.

Assumption 6.26. The colors ci are distinct, so c1 < · · · < cn.

We may choose one of two conventions for the Weyl group element w. We consider the
top boundary banner d to be fixed, and suppress it from the notation; we are more interested
in how the system depends on f . Let c0 = (c1, . . . , cn) be the “standard” banner.

Example 6.27. In the state (6.17), red = c3 is the largest color. The boundary flag d is
(c3, c2, c1) = w0c0, and the right boundary flag f is (c3, c1, c2) = ww0c0, where w = s1s2 =
(123) in cycle notation.

Convention 6.28. We either let w ∈ W be chosen so that f = wc0, or we choose w so that
f = ww0c0. Let Sw = Sw(z) be the resulting system.

Lemma 6.29.

(1) With the convention that f = wc0, we have siw > w if and only if fi < fi+1.
(2) With the convention that f = ww0c0, we have siw > w if and only if fi > fi+1.

Proof. In both cases, switching fi and fi+1 increases the number of inversions in the
partition w. □

Remark 6.30. We have chosen the number of rows and the number of colors are both the
same number n. This is somewhat arbitrary but taking more colors than rows would not
be helpful. The reason is that since clearly only colors in d can appear on any edge in any
state, no more than n colors can appear in the boundary conditions, so we may limit the
palette to just the n colors in d.

Subject to a mild “orderly” assumption that we will explain presently, in Theorem 6.34
below we will show that the Demazure recurrence (6.15) is satisfied for a suitable Demazure
operator Ti, depending only on R. We will find R producing the five operators tabulated
at the beginning of this subsection. We will also see that the system Sw can be evaluated
explicitly for one particular choice of w, and the combination of (6.15) and this information
determines Z(Sw) for all w.

We now impose one more assumption. We say that the Boltzmann weights (already
assumed viatic) are orderly if they depend only on the orders of the colors, and we make this
assumption. In other words, denoting by βz,w the Boltzmann weights of R(z, w), we assume
that

(6.18) c(z, w; c, d) := βz,w

(
d

c c

d

)
, b(z, w; c, d) := βz,w

(
c

d c

d

)
,
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only depend on the order c < d or d > c. Hence there exist functions c±(z, w) and b±(z, w)
such that

(6.19) c(z, w; c, d) =

{
c+(z, w) if c > d,
c−(z, w) if c < d,

b(z, w; c, d) =

{
b+(z, w) if c > d,
b−(z, w) if c < d.

We also denote

a(z, w) = βz,w

(
+

+ +

+

)
.

Assumption 6.31. We assume that the weights are orderly.

Lemma 6.32. Suppose that c and d are distinct colors. Then b(z, w; c, d) is a constant
multiple of z − w. Furthermore

a(z, z) = c(z, z; c, d).

Proof. As part of the definition of a homogeneous parametrized Yang–Baxter equation, the
matrix R(z, z) is assumed to be a scalar matrix. Both assertions follow from this fact.

First consider b(z, w; c, d). With respect to the basis of V ⊗ V consisting of the spinset
C ∪{⊕}, this Boltzmann weight is an off-diagonal entry, so it vanishes when z = w. Because
it is a homogeneous linear polynomial in z and w, it is a multiple of z − w.

Now since R(z, z) is a scalar matrix, write R(z, z) = cIV⊗V . Then R(z, z) multiplies
v+ ⊗ v+ ∈ V ⊗ V by c, where v+ denotes the image of the spin ⊕ in V . Thus a(z, z) = c,
and similarly c(z, z; c, d) is the same constant c. □

Lemma 6.32 does not guarantee that b(z, w; c, d) is nonzero; indeed, it can vanish. But
define operators T+

i and T−
i on O(Treg) by

(6.20) T±
i f(z) =

c±(zi+1, zi)f(z)− a(zi+1, zi)f(siz)

−b±(zi+1, zi)

when the denominator is nonzero.

Proposition 6.33. If both operators T+
i and T−

i are defined, they are inverse operators on
O(T ).

Proof. See Exercise 6.2. □

Theorem 6.34. Assume that the Boltzmann weights are viatic and orderly. Then

Z(Ssiw) =

{
T+
i Z(Sw) if fi > fi+1 and T+

i is defined;
T−
i Z(Sw) if fi < fi+1 and T−

i is defined.

Proof. Let c = cw−1(i) and d = cw−1(i + 1). These are the right edge boundary colors in
the i and i + 1 rows, respectively. Note that c > d if and only if w−1(i) < w−1(i + 1), or
equivalently siw > w. The two cases are similar: we assume that c > d or siw > w.

The R-matrix for the train argument is R(zi, zi+1). The Boltzmann weights are given in
Chapter 5, Section 4, with z = z1, w = z2. We attach the R-matrix between the i and i+ 1



3. DEMAZURE OPERATORS AND COLORED MODELS 91

rows, and a portion of the configuration looks like this:

· · ·

· · ·

...

...

zi

zi+1

...

...

zi

zi+1

...

...

zi

zi+1

...

...

zi

zi+1+

+ c

da

b

Here c = w−1(i) and d = w−1(i+ 1).
We are summing over the interior vertices a and b. Since the weights are viatic, the

Boltzmann weight of the R-vertex is zero unless a = b = ⊕, so the partition function of this
system is

βzi,zi+1

(
+

+ +

+

)
Z(Sw(z)) = a(zi, zi+1)Z(Sw(z)).

Running the train argument produces the system

· · ·

· · ·

...

...

zi

zi+1

...

...

zi

zi+1

...

...

zi

zi+1

...

...

zi

zi+1

+

+

a

b c

d

Now there are two possibilities. If b = c and a = d, the contribution is

βzi,zi+1

(
d

c c

d

)
Z(Sw(siz)) = c(zi, zi+1; c, d)Z(Sw(siz)).

On the other hand if b = d and a = c, then we obtain a contribution

βzi,zi+1

(
c

d c

d

)
Z(Ssiw(z)) = b(zi, zi+1; c, d)Z(Ssiw(z)).

The banner has changed, explaining why w becomes siw in this term. So

a(zi, zi+1)Z(Sw(z)) = c(zi, zi+1; c, d)Z(Sw(siz)) + b(zi, zi+1; c, d)Z(Ssiw(siz)).

Now we replace z by siz (so zi ↔ zi+1) and reorganize to get

Z(Ssiw(z)) =
c(zi+1, zi; c, d)Z(z;w)− a(zi+1, zi)Z(Sw(siz))

−b(zi+1, zi; c, d)
= TiZ(Sw(z)) .

□
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To summarize, Theorem 6.34 implies that if siw > w, then we may write

Z(Ssiw(z)) = TiZ(Sw(z)),

where (see Convention 6.28):

Ti =

{
T+
i if we use the convention f = ww0c0,

T−
i if we use the convention f = wc0,

provided that the operator is defined. Similarly if siw < w then

Z(Ssiw(z)) = T′
iZ(Sw(z)),

where

T′
i =

{
T−
i if we use the convention f = ww0c0,

T+
i if we use the convention f = wc0,

again subject to the assumption that the operator is defined. If both Ti and T′
i are defined,

they are inverses.

3.3. Examples. The operators T±
i from the last section really only depend on the R-

matrix, not on the T-matrices. We begin by pointing out that if a homogenous parametrized
Yang–Baxter equation is given, there are always models with those R-matrices, and for these
the Demazure recursions of the previous subsection are valid.

To see this, we may draw the T-matrices from the same parametrized Yang–Baxter
equation as the R-matrix. This gives a system with both row and column parameters. We
use x and y when there are both row and column parameters, so in this paragraph z = x.
We may then take Tj(z) = R(z, yj). The following identities hold

JR(xi, xi+1), Tj(xi), Tj(xi+1) = JR(xi, xi+1), R(xi, yj), R(xi+1, yj)K = 0,

so we have an RTT equation, and we can build solvable lattice models. In conclusion, all we
need in order to build solvable lattice models is the homogenous parametrized Yang–Baxter
equation, and these will give examples of the theory in the last subsection.

Example 6.35. Let R = R◦ be the spherical R-matrix from Section 4 of Chapter 5, the
Boltzmann weights R(xi, yj) at the T-vertex in the i-th row and j-th column are:

T-vertices for the Spherical Model

+

+

+

+

xi,yj c

c

c

c

xi,yj c

+

+

c

xi,yj c

d

d

c

xi,yj

xi − qyj xi − qyj (1− q)xi
(1− q)xi if c < d
(1− q)yj if c > d

+

c

c

+

xi,yj c

+

c

+

xi,yj +

c

+

c

xi,yj c

d

c

d

xi,yj

(1− q)yj q(xi − yj) xi − yj
xi − yj if c > d
q(xi − yj) if c < d

We will show that the operator Ti in Theorem 6.34 is the Demazure–Lusztig operator Li.
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In this section, we give five examples of homogeneous parametrized colored Yang–Baxter
equations that are viatic and orderly. For each of these we compute the operators Ti in
Theorem 6.34. For definiteness we use the operators Ti = T+

i , though if we want T−
i we

could obtain those also by varying the boundary conditions in Convention 6.28.

Example 6.36. Consider the spherical model, whose T-weights were considered in Exam-
ple 6.35. The R-matrix from Chapter 5 gives the following values for c+(zi+1, zi), a(xi+1, xi)
and b+(xi+1, xi):

βzi+1,zi

(
d

c c

d

)
βzi+1,zi

(
+

+ +

+

)
βzi+1,zi

(
c

d c

d

)
(1− q)zi+1 (zi+1 − qzi) zi+1 − zi

Now with zαi = zi/zi+1 we can multiply the numerator and denominator of (3.2) by z−1
i+1 and

obtain

T+
i = (z−1 − 1)−1(1− si − q(1− zαisi)(z, w) = Li.

Example 6.37. Next let R = R• be the antispherical R-matrix from Chapter 5. Here are
the relevant Boltzmann weights:

βzi+1,zi

(
d

c c

d

)
βzi+1,zi

(
+

+ +

+

)
βzi+1,zi

(
c

d c

d

)
(1− q)zi+1 (zi − qzi+1) zi+1 − zi

For this example

Ti = (zαi − 1)−1(1− zαisi − q(1− si)) =
ρT i.

Next we come to two R-matrices that are very closely related to each other. These will be
put to use in Section 4. We call them the open and closed R-matrices. The open R-matrix
is obtained by specializing q = 0 in the antispherical model. Here is the R-matrix:

Open R-matrix

z,w

+

+ +

+z

w

w

z
z,w

c

c c

cz

w

w

z
z,w

c

+ +

cz

w

w

z
z,w

c

d d

cz

w

w

z

w z z
z if c < d
w if c > d

z,w

+

c c

+z

w

w

z
z,w

+

c +

cz

w

w

z
z,w

c

+ c

+z

w

w

z
z,w

c

d c

dz

w

w

z

w 0 z − w
z − w if c > d
0 if c < d

The closed R-matrix is nearly identical but differs only in one case (the last case in the
first row):
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Closed R-matrix

z,w

+

+ +

+z

w

w

z
z,w

c

c c

cz

w

w

z
z,w

c

+ +

cz

w

w

z
z,w

c

d d

cz

w

w

z

w z z
w if c < d
z if c > d

z,w

+

c c

+z

w

w

z
z,w

+

c +

cz

w

w

z
z,w

c

+ c

+z

w

w

z
z,w

c

d c

dz

w

w

z

w 0 z − w
z − w if c > d
0 if c < d

Like the open R-matrix, this is a valid homogeneous parametrized Yang–Baxter equa-
tion. However unlike the open R-matrix, the closed R-matrix is not (as far as we know) a
specialization of a more general R-matrix depending on q.

Example 6.38. Let us compute the operator for the open model. With c > d we have

c+(zi+1, xi) a(zi+1, zi) b+(zi+1, zi)
zi+1 zi zi+1 − zi

Thus (3.2) gives

Ti = (zi − zi+1)
−1(zi+1 − zisi) = (zαi − 1)−1(1− zαisi) =

ρ∂◦i .

The operator T′ is not defined since c−(zi+1, zi) = 0, and indeed the operator ∂◦i is not
invertible.

Example 6.39. The operator for the closed model is similar, though we will see in Chapter 7
that the subtle difference is important.

c+(zi+1, zi) a(zi+1, zi) b+(zi+1, zi)
zi zi zi+1 − zi

Thus (3.2) gives

Ti = (zi − zi+1)
−1(zi − zisi) = (1− z−αi)−1(1− si) =

ρ∂i.

As with the operator T′ is not defined since c−(zi+1, zi) = 0, and the operator ∂◦i is also not
invertible.

Example 6.40. This model is called the classical pipedream model, and we will make further
use of this homogeneous parametrized Yang–Baxter equation in Chapter 7. For classical
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pipedreams we use the following R-matrix:

Classic Pipedreams R-matrix

z,w

+

+ +

+z

w

w

z
z,w

c

c c

cz

w

w

z
z,w

c

+ +

cz

w

w

z
z,w

c

d d

cz

w

w

z

1 1 1 1

z,w

+

c c

+z

w

w

z
z,w

+

c +

cz

w

w

z
z,w

c

+ c

+z

w

w

z
z,w

c

d c

dz

w

w

z

1 0 z − w
z − w if c > d
0 if c < d

These satisfy a parametrized Yang–Baxter equation (see Exercise 6.3). For consistency
with Chapter 7, we use x instead of z in this example. Let us compute the corresponding
Demazure operator. We have

c+(xi+1, xi) a(xi+1, xi) b+(xi+1, xi)
1 1 xi+1 − xi

Then

Ti = (xi − xi+1)
−1(1− si) = Di.

3.4. Monostatic systems. We recall that a system is called monostatic if it has only
one state. Let d and f be the banners describing the top and right boundary colors.

Proposition 6.41. If d = f then the colored extended wall system is monostatic.

Proof. Since d1 = f1, the leftmost color on the top row must end up at the right boundary
of the top row, and there is only one path connecting these two boundary edges. With this
path fixed, there is only one possible path for the color d2 = f2 and the state looks like this:

(6.21) +

+

+

+

+

+

+

+

+

+

+

+

+

+

+

c3 c2 c1

c3

c2

c1

5 4 3 2 1 0

□

Thus with d fixed, we have a family of systems Sw in which one system is monostatic,
and the others are related to it by Demazure recursions. From this information, the partition
functions can be computed. Since f = wc0, the w ∈ W for which Sw is monostatic is the
one for which d = wc0.
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See Blum 2025 for an interesting and more nuanced situation where there are many
monostatic systems, and the partition functions of other systems can be deduced from the
monostatic ones using Demazure-like relations coming from the Yang–Baxter equation.

4. The open and closed models

We will apply these principles to the colored versions of the q = 0 Tokuyama models
called the open and closed models. The partition functions are, respectively, Demazure
atoms and Demazure characters (times zρ).

For the open models we use the following Boltzmann weights:

+
+

+
+

z a
b
a

b

z
a
b
b

a

z a
+

a
+

z
a

+
+

a

z +
a
a

+

z

1
z a ⩾ b
0 a < b

0 a > b
z a < b

z z 1

Then the Yang–Baxter equation is satisfied with the R-matrix given in the previous section.
Our convention is that the top boundary banner d = w0c0 and that the right boundary
banner is f = ww0c0 = wd for w ∈ W . We denote by S◦

λ,w = S◦
λ,w(z) the system described

by these Boltzmann weights and these boundary conditions.
We note that two paths of distinct colors are only allowed to cross in one direction. That

is, if a and b are distinct colors, and if paths of the colors a and b meet there, thus:

(6.22)

a

b

c

d

If a > b then the paths must cross at the vertex. On the other hand, if a < b they may not
cross and instead the paths touch without crossing.

With this in mind, consider what happens when a pair of paths meet several times. The
boundary conditions, illustrated in (6.17) guarantee that the first time they meet the color
entering the vertex is the larger color. They must therefore cross the first time they meet.
The second time they meet, however, the color entering the vertex is the smaller color, and
they may not cross. This means that if the two paths meet several times, the first time they
meet they will cross, and never again.

Proposition 6.42. The partition function

(6.23) Z(S◦
λ,w) = zρ∂◦wz

λ.

Proof. We will prove this by induction on the length ℓ(w). If w = 1W , then the system is
monostatic; see (6.21) for the ground state. It is easy to see that there are λi+n− i vertices
that contribute zi in the i-th row, and thus Z(S◦

λ,1) = zρ. Now suppose that (6.24) is known
for some w, and let siw > w. By Theorem 6.34 we have

Z(S◦
λ,siw

) = T+
i Z(S

◦
λ,w)

where by Example 6.38 the operator T+
i = ρ∂◦i = zρ∂◦i z

−ρ. So

Z(S◦
λ,siw

) = zρ∂◦i ∂
◦
wz

λ = zρ∂◦siwz
λ
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and (6.24) follows for siw. □

Now let us consider the question of embedding S◦
λ,w into Bλ by adapting (4.15). Given

a state s, we construct a Gelfand–Tsetlin pattern GTP(s) whose entries are the columns of
the vertical edges carrying a color. This Gelfand–Tsetlin pattern is left strict, as in the q = 0
Tokuyama model, so we may again subtract P and write GTP◦(s) = GTP(s)−P . Then we
may again define a map θw by

θw(s) = Sch(SSYT(GTP◦(s)))

exactly as in (4.15). Thus θw : S◦
λ,w −→ Bλ is defined. It may be checked that β(s) = zwt(θ(s)).

There is one point that we must consider, which is that GTP◦(s) does not record the
color of the edges. Still, we have:

Proposition 6.43. The maps θw are injective. The crystal Bλ is the disjoint union of the
images of the maps θw.

Proof. The open Boltzmann weights are “deterministic” in the following sense. Suppose
that two colored paths meet at a vertex with input colors a and b as in (6.22). If a > b,
then the paths must cross at the vertex, meaning that c = a and d = b. This is because
otherwise, the Boltzmann weight is zero, from the table of open weights. With this in mind,
we can reconstruct the colors of all edges from just the information in GTP(s), beginning
at the top left and moving to the right, then downward row by row. When we are finished,
we can read off the banner of right boundary spins, finding that the colored path is is in the
image θw(Sλ,w) for a unique w. Both statements are clear from these considerations. □

If Sλ(z) is the q = 0 Tokuyama model, this implies that

Z(Sλ(z)) =
∑
w

Z(Sλ,w(z)).

Using Proposition 6.42 and Theorem 4.18, we obtain

sλ(z) =
∑
w∈W

χ◦
λ(z;w).

This is the special case of (6.12) where w = w0.
These results can be lifted to the crystal.

Theorem 6.44. The image of θw is the crystal Demazure atom B◦
λ(w).

Proof. Different proofs of this may be found in Brubaker, Buciumas, Bump, and Gustafsson
2021; Yang 2025. □

We now turn to the closed models . The Boltzmann weights are very similar to the open
models with a minor change:

+
+

+
+

z a
b
a

b

z
a
b
b

a

z a
+

a
+

z
a

+
+

a

z +
a
a

+

z

1
z a ⩾ b
0 a < b

z a > b
0 a < b

z z 1



98 6. DEMAZURE OPERATORS

The boundary conditions will be the same as the open model, but there are some interesting
differences. We will denote the closed system as S•

λ,w.

Proposition 6.45. The partition function

(6.24) Z(S•
λ,w) = zρ∂•wz

λ.

Proof. The structure of the proof is the same as Proposition 6.42. The R-matrix is given
in Subsection 3.3, and by Theorem 6.34 we have

Z(S•
λ,siw

) = T+
i Z(S

•
λ,w)

where by Example 6.39 the operator T+
i = ρ∂i = zρ∂iz

−ρ. The remaining details are as in
Proposition 6.42. □

The closed weights are not deterministic in the same sense that the open weights are.
Referring to the configuration (6.22), we see that if a > b then both c = a and d = b or c = b
and d = a are legal weights. In other words, if two paths meet at a vertex with the larger
color on the left, the paths are free to either cross or not cross.

On the other hand, if a < b then there are no possibilities for c and d. Thus the paths
may not meet with the smaller color on the left.

These observations have the following consequences. Two paths of different colors may
meet several times, and they are not obligated to cross. However if they do cross, the crossing
must be the last time they meet, since if they cross earlier, the next time they meet, the
smaller color will be on the left, and there will be no legal state. Consider the following two
cases.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

c3 c2 c1

c3

c2

c1

5 4 3 2 1 0

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

c3 c2 c1

c2

c3

c1

5 4 3 2 1 0

Both are legal states for closed models S•
λ,s1s2

and S•
λ,w0

, with λ = (3, 2, 0). The red and blue
lines meet twice, and either cross the last time they meet, or do not cross. Note that these
states correspond to the same Gelfand–Tsetlin pattern, showing that the Gelfand–Tsetlin
pattern does not determine the state; this reflects the fact that the weights are not locally
deterministic.

Yet if we fix w in S•
λ,w, the Gelfand–Tsetlin does determine the state. This does not

contradict the last example, because there the two states correspond to different values of
w. So there is still an injective map θw : S•

λ,w −→ Bλ.

Theorem 6.46 (Yang). The image θw(S
•
λ,w) is the Demazure crystal Bλ(w).

Proof. See Yang 2025 for a proof. □
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5. Color merging

Let Sλ(z) be the q = 0 Tokuyama model. In this section we will reprove (6.12) in the
form

(6.25) Z(Sλ) =
∑
w∈W

Z(S◦
λ,w).

The proof in this section is based on what we call color merging . It is called color blindness
by Borodin and Wheeler. See Aggarwal, Borodin, and Wheeler 2023a; Borodin and Wheeler
2022; Brubaker, Buciumas, Bump, and Gustafsson 2019; Bump and Naprienko 2022 for
other examples. Not all Boltzmann weights have this property, but when they do there are
consequences of which (6.25) is a typical example.

We begin with the observation that both the open and closed models contain the q = 0
Tokuyama weights as special cases. That is, if we fix one color c (say c = c1) and restrict
the palette to just P1 = {⊕, c1}, we recover the q = 0 Tokuyama weights with c playing the
role of the odd spin ⊖. With this in mind, the terms on both sides of (6.25) can be regarded
as partition functions of the open model. (Earlier in this chapter, we did not allow banners
with repeated colors, but in this section we do allow repeated colors on the top and right
boundaries.)

Now we will formulate a more subtle local lifting property of the open weights. This
will allow us to eliminate one color of the palette Pr = {⊕, c1, . . . , cr} from the boundary
conditions, and indeed from all states of the model. Let σ : Pr → P1 be the “retraction”
map defined by σ(ci) = c1 while σ(⊕) = ⊕.

Proposition 6.47 (Local Lifting Property). Let a, b ∈ Pr and let a′, b′, c′, d′ ∈ P1 such that
σ(a) = a′ and σ(b) = b′. Then using the weights of the open model,

(6.26) β

 za′

b′

c′

d′

 =
∑
c,d∈Pn

σ(c)=c′,σ(d)=d′

β

 za

b

c

d


Proof. This can be checked easily by examining the Boltzmann weights. The most inter-
esting case is where a and b are distinct colors, so a′ = b′ = c1 are not distinct. Now the
Boltzman weights are as follows:

c1

c1
c1

c1

z a
b
a

b

z
a
b
b

a

z

z
z a > b
0 a < b

0 a > b
z a < b

Both sides of the identity (6.26) equal z in this case, whether a > b or a < b. All other cases
are straightforward. □

The statement of the local property may seem slightly technical, but it is actually very
natural, and the example in the proof should clarify its meaning. It has a global generaliza-
tion, and its significance is that the local property implies the global one.
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Theorem 6.48 (Global Lifting Property). Let αi, βi ∈ Pn and α′
i, β

′
i, γ

′
i, δ

′
i ∈ P1 be spins

such that σ(αi) = α′
i and σ(βi) = β′

i. Then

(6.27) Z

 α′
n

α′
2α
′
1

β′
2β′

N

γ′n

γ′1

δ′1δ′N

...
...

· · ·

· · ·

· · ·

· · ·

...
...


=

∑
γi,δj

σ(γi)=γ
′
i

σ(δi)=δ
′
i

Z

 αn

α2α1

β2βN

γn

γ1

δ1δN

...
...

· · ·

· · ·

· · ·

· · ·

...
...


where the summation is over γi and δi such that σ(γi) = γ′i and σ(δi) = δ′i.

Proof. First we will prove this if n = 1, so there is only one row. If also N = 1 this is
exactly the local lifting property, so assume by induction that N > 1 and that the result
is true for N − 1 columns. Using the definition of the partition function as a sum over the
spins of interior edges, and then using the induction hypothesis, the left-hand side in (6.27)
equals

∑
t′∈P1

Z

 α′
1

β′
2β′

N

t′

δ′2δ′N

· · ·

 β

 t′

β′
1

γ′1

δ′1

 =

∑
t′∈P1

∑
t,δ2,··· ,δN∈Pn

σ(t)=t′,σ(δi)=δ′i

Z

 α1

β2βN

t

δ2δN

· · ·

 β

 t′

β′
1

γ′1

δ′1


Now interchanging the order of summation gives:

∑
δ2,··· ,δN∈Pn

σ(δi)=δ
′
i

∑
t∈Pn
t′=σ(t)

Z

 α′
1

β′
2β′

N

t′

δ′2δ′N

· · ·

 β

 t′

β′
1

γ′1

δ′1


after using the local lifting property in the form

β

 zt′

β′
1

γ′1

δ′1

 =
∑

γ1,δ1∈Pn

σ(γ1)=γ′1,σ(δ1)=δ
′
1

β

 zt

β1

γ1

δ1


we may reassemble this to obtain the right-hand side of (6.27), which is then proved if the
number of rows is 1.

Now very similar arguments go from one row to n. We leave this step to the reader. □

Remark 6.49. Applying this to the open weights and the colored extended wall boundary
conditions gives (6.25).
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Exercises

Exercise 6.1. Prove the second identity in (6.13).

Exercise 6.2. The goal of this exercise is to prove Proposition 6.33. As part of the definition of a homoge-
neous parametrized Yang–Baxter equation, it is assumed that R(xi+1, xi)R(xi, xi+1) is a constant multiple
of the identity matrix. Show that this implies identities

a(xi, xi+1)a(xi+1, xi) =
b(xi, xi+1; d, c)b(xi+1, xi; c, d) + c(xi, xi+1; c, d)c(xi+1, xi; c, d),

c(xi, xi+1; d, c)b(xi+1, xi; c, d) + b(xi, xi+1; c, d)c(xi+1, xi; c, d) = 0,

and use these to prove that T+
i and T−

i are inverse operators.

Exercise 6.3. Show that the classic pipedreams R-matrix satisfies a homogeneous parametrized Yang–
Baxter equation.
Hints: Note that including ⊕ as a color smaller than all the other colors the Boltzmann weights remain
orderly, that is, the Boltzmann weights only depend on the order of the colors. Deduce that only three colors
(possibly including ⊕) can occur in any configuration of the Yang–Baxter equation, resulting in a relatively
small number of cases that can be checked by hand or with a computer.



CHAPTER 7

Schubert Polynomials

Schubert polynomials originate in the cohomology of flag varieties. Grothendieck polyno-
mials are generalizations related to K-theory. These geometric polynomials have descriptions
called pipedreams that fit nicely into the theory of solvable lattice models. In this chapter,
we discuss these pipedream models, and related crystal structures on pipedreams.

1. Schubert polynomials: Definition and history

Schubert polynomials constitute a family of multivariate polynomials that represent co-
homology classes of Schubert varieties in the flag manifold, playing a central role in al-
gebraic geometry, combinatorics, and representation theory. Introduced by Lascoux and
Schützenberger 1982, they generalize the concept of Schur polynomials (see Chapter 4) and
provide a combinatorial tool for understanding the geometry of flag varieties. Schubert poly-
nomials are labeled by permutations and encode intersection numbers and degeneracy loci in
terms of polynomial expressions. Their rich algebraic structure connects to symmetric func-
tions, Demazure operators (see Chapter 6), and the geometry of Grassmannians, making
them a key object in modern algebraic combinatorics.

1.1. Geometry. A complete flag in V = Cn is a sequence of subspaces

{0} = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ Vn = V,

such that dimVi = i for all i = 0, 1, . . . , n. Let Fℓ(n) denote the variety of complete flags
in V .

Let G = GLn(C) and B be the Borel subgroup of upper triangular matrices in G. Then
G/B is the vector space of formal linear combinations of cosets of B with the action of G
given by left multiplication. We can pick the matrices with the following property as the
coset representatives of the cosets in G/B. The rightmost nonzero entry in each row is 1 and
is the first nonzero entry in its column. Let e1, . . . , en be the standard basis of Cn, where ei
has 1 in position i and zeros everywhere else. The Borel subgroup B stabilizes the standard
flag

E• = ({0} = E0 ⊂ E1 ⊂ · · · ⊂ En = Cn) , with Ei = span{e1, . . . , ei}.
There is a left action of G on Fℓ(n) given by

g (V0 ⊂ V1 ⊂ · · · ⊂ Vn) = (gV0 ⊂ gV1 ⊂ · · · ⊂ gVn) for all g ∈ G.

Hence Fℓ(n) can be identified with the quotient G/B via

G/B ↔ Fℓ(n)
gB ↔ gE•.

Fix a reference flag

F• = ({0} = F0 ⊂ F1 ⊂ · · · ⊂ Fn = V ) , with dimFi = i.

102
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For each permutation w ∈ Sn, the corresponding Schubert cell X◦
w ⊂ Fℓ(n) is defined as

X◦
w =

{
F̃• ∈ Fℓ(n)

∣∣∣ dim(F̃i ∩ Fj) = #{k ⩽ i | w(k) ⩽ j} for all i, j
}
.

Their Zariski closures are called Schubert varieties, denoted by Xw. Schubert varieties are
intimately related to the Bruhat order introduced in Chapter 6, Section 1.3. In particular,
Xv ⊆ Xw if and only if v ⩽ w in Bruhat order and

Xw =
⋃
v⩽w

X◦
v .

In the bijection of Fℓ(n) with G/B, the open Schubert cell X◦
w corresponds to the double

coset BwB/B. It is an affine space of complex dimension ℓ(w), or real dimension 2ℓ(w).
This gives a cellular decomposition of Fℓ(n) showing that the Schubert classes [Xw] are a
basis of the cohomology ring. Since they are algebraic, the cohomology ring coincides with
the Chow ring of algebraic cycles. Because there is cohomology only in even dimensions,
H∗(Fℓ(n)) is therefore commutative. See Fulton 1997 and Brion 2005 for further details.

Under the Borel isomorphism (see Borel 1953) the cohomology of G/B is identified with
the polynomial ring in n variables

H∗(G/B) ∼= Z[x1, . . . , xn]/ISn

modulo the ideal ISn generated by the nonconstant symmetric polynomials. The Schubert
polynomials Sw indexed by w ∈ Sn are polynomials in Z[x1, . . . , xn] which map to Schubert
classes under the surjective ring homomorphism

Z[x1, . . . , xn] → H∗(G/B)

Sw 7→ [Xw0w],

where w0 = n n−1 . . . 1 is the long permutation and (w0w)(i) = n+1−w(i). The Schubert
polynomials play the analogous role in the cohomology of flag varieties as Schur polynomials
play in the cohomology of the Grassmannian.

1.2. Recursive definition. Recall the divided difference operator Di from Chapter 6,
Section 3 defined on polynomials f(x1, . . . , xn) ∈ Z[x1, . . . , xn] as follows. Let si = (i, i+ 1)
be the adjacent transposition in the symmetric group Sn. Then

Dif(x1, . . . , xn) =
f(x1, . . . , xn)− sif(x1, . . . , xn)

xi − xi+1

,

where sif(x1, . . . , xn) is the polynomial obtained by swapping xi and xi+1 in f(x1, . . . , xn).
The Schubert polynomial Sw := Sw(x1, . . . , xn) corresponding to a permutation w ∈ Sn

is defined recursively as follows:

(1) For the longest permutation w0 = n (n− 1) · · · 1 in one-line notation, define

Sw0 := xρ = xn−1
1 xn−2

2 · · ·xn−1,

where ρ = (n− 1, n− 2, . . . , 1, 0) as in (6.3).
(2) For any w ∈ Sn and si such that ℓ(wsi) < ℓ(w) (i.e., si reduces the length), define

(7.1) Swsi = DiSw.

This recursive definition produces a well-defined polynomial Sw for every permutation w ∈
Sn by the Matsumoto theorem (see Section 1.1) since the divided difference operators obey
the same braid relations as the symmetric group.
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Example 7.1. Let S3 denote the symmetric group on 3 elements. The Schubert polynomials
Sw for w ∈ S3 are given as follows, where the permutations are given by their reduced
expressions organized in weak order:

Sid = 1

Ss1 = x1 Ss2 = x1 + x2

Ss1s2 = x1x2 Ss2s1 = x21

Sw0 = x21x2

A generalization called double Schubert polynomials were introduced by Macdonald 1991a,b.
Double Schubert polynomials are polynomials in two sets of variablesSw(x1, x2, . . . , xn, y1, y2, . . . , yn)
indexed by a permutation w ∈ Sn, which become the usual Schubert polynomials when all
the variables yi are 0. The double Schubert polynomial Sw(x1, x2, . . . , xn, y1, y2, . . . , yn) can
also be defined recursively as follows:

(1) We have

Sw0(x1, x2, . . . xn, y1, y2, . . . , yn) =
∏
i+j⩽n

(xi − yj),

where w0 is the long element in Sn.
(2) For any w ∈ Sn and si such that ℓ(wsi) < ℓ(w) (or alternatively w(i) > w(i + 1)),

define
DiSw = Swsi ,

where the Di operator acts on the x variables.

There is a formula which expresses the double Schubert polynomials in terms of Schubert
polynomials

(7.2) Sw(x,y) =
∑

w=v−1u

ℓ(w)=ℓ(u)+ℓ(v)

Su(x)Sv(−y).

For a proof see Macdonald 1991a, equation (6.3).

2. Combinatorics of Schubert polynomials

In the early 1990s, Stanley was the first to conjecture the monomial expansion for the
Schubert polynomial Sw in terms of compatible sequences. Compatible sequences appeared
in his study of the number of reduced expressions for w0 in his celebrated paper Stanley 1984.
Billey, Jockusch, and Stanley 1993 proved the monomial formula using recurrences. Fomin
and Stanley 1994 gave a different proof using nil-Coxeter algebras. An analysis in terms
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of the Yang–Baxter equation was given by Fomin and Kirillov 1996. Combinatorial models
using reduced pipedreams was first given by Bergeron and Billey 1993 (though they called
them rc-graphs). The term pipedreams was coined by Knutson and Miller 2005. We will
discuss another more recent model in terms of reduced bumpless pipedreams by Lam, Lee,
and Shimozono 2021 in the next section. For this reason, we use the terminology classical
pipedreams for the pipedreams of Bergeron and Billey 1993; Knutson and Miller 2005.

2.1. Classical pipedreams. Classical pipedreams are configurations of lines called
pipes through an n×n grid, that may sometimes cross. In our convention the pipes connect
to the top and left edges of the grid. Pipes move down and to the left from the top. They
may cross or bend around each other. The following configurations are allowed:

These may be thought of as tiles that may be assembled to make the pipedream. The first
tile is called the “crossing” and the second the “bump.” The last three partially empty two
tiles are needed because there will be regions in the grid that do not contain any pipes.
For boundary conditions, we assume that every top boundary edge is connected to a left
boundary edge by a pipe but that no pipes exit to the right or bottom. These boundary
conditions actually rule out the last tile, which doesn’t occur but which should be allowed
for reasons related to the Yang-Baxter equation.

Here are the possible classic pipedreams for n = 3:

(7.3)

1 2 3

1

2

3

1 2 3

2

1

3

1 2 3

1

3

2

1 2 3

1

3

2

x1

x2

x3

1 2 3

3

1

2

1 2 3

2

3

1

3 2 3

3

2

1

3 2 3

1

2

3

x1

x2

x3

We may associate a permutation w(p) with a pipedream p. To define this, we label the
columns 1 to n from left to right; then the pipes carry these numbers to the left boundary,
where we can read off the permutation in one-line notation. In the n = 3 pipedreams, for
example, the permutations in one-line notation are (123) = 1W , (213) = s1, (132) = s2 and
(132) = s2 for the top row, and (312) = s2s1, (231) = s1s2, (321) = w0 and (123) = 1W for
the second row.

A pipe is called reduced if no pair of lines crosses more than once. For w ∈ W let RP(w)
be the set of reduced pipes p with w(p) = w. The last pipedream is nonreduced since the
two red lines cross twice. We are mainly interested in the reduced pipedreams.

If p is a reduced pipedream let xwt(p) be the monomial in x1, · · · , xn in which the exponent
of xi is the number of crossings in the i-th row. In the examples, we’ve circled the crossings,
from which the weights of the pipedreams can be seen to be 1, x1, x1 and x2 for the first
row, and x21, x1x2 and x

2
1x2 for the first three patterns of the second row. (We are excluding

the nonreduced pattern.)
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Later in this section we will prove that

(7.4)
∑

p∈RP(w)

xwt(p) = Sw(x).

This can be confirmed for the S3 Weyl group by comparing the values from the pipedreams
with Example 7.1.

Example 7.2. If w = s2 = (132) in one-line notation, then RPw consists of the last
two pipedreams in the top row of (7.3). These have weights x2 and x1, consistent with
Ss2 = x1 + x2. For S3, this is the only permutation with more than one reduced pipedream.

Equation (7.4) has an easy generalization to double Schubert polynomials. Let us define

(x|y)wt(p) =
∏

crossing at (i, j)

(xi − yj).

Then

(7.5)
∑

p∈RP(w)

(x|y)wt(p) = Sw(x;y).

Of course (7.4) is the special case y = 0.
Before we prove (7.5), let us explain how the addition of color to the pipes makes

pipedreams into solvable lattice models. Thus far we have defined classic reduced pipedreams
as they appear in much literature such as Knutson and Miller 2005, but more recently they
have been treated as states of solvable lattice models. For example, the models that we
will discuss in this section are special cases of the colored models in Brubaker, Frechette,
et al. 2023, and the colored lattice model versions of the bumpless pipedreams that we will
consider below in Section 2.4 are special cases of lattice models considered in Buciumas and
Scrimshaw 2022a.

We choose n colors c1, · · · , cn and an “uncolor” ⊕ ordered so that ⊕ < c1 < · · · < cn.
We now describe a model that resembles those of Chapter 6, though differs from those by a
mirror reflection (left to right) and also in that the Weyl group element w follows a different
convention. We will number the rows of the grid 1 to n from top to bottom, and the columns
1 to n from left to right. We have seen before that the lattice model point of view often
gives us the option of introducing column parameters. In this case we will obtain double
Schubert polynomials as the partition functions. So let y = (y1, · · · , yn) be a second set of
parameters. We make use of the following Boltzmann weights at the i-th row and the j-th
column:

(7.6)
1 xi − yj 0 1 1

1 xi − yj 0 1 1

We are using Red and Blue to denote two distinct colors with red(•) > blue(•).
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For boundary conditions, we put color ci at the top boundary in column i, and with
w ∈ W fixed we put color cw(i) at the left boundary in row i. (In Chapter 6, we would put
cw−1(i) at the right boundary in row i.) On the right and bottom boundary edges we put ⊕.

With our boundary conditions the first pattern does not appear, since there will be no
more than one path of any given color. However we include it since it does appear in the
Yang-Baxter equation.

An important point is that two colors can only cross in one direction, because the third
pattern is given weight zero. A consequence of this is that two colored paths may not cross
twice. We have already seen this phenomenon with the open and closed models in Chapter 6.
If two paths of colors ck ⩽ cl both appear, since the larger color starts on the top boundary
to the right of the smaller, a crossing will be legal and will contribute a factor if xi − yj to
the Boltzmann weight. The second time they meet, the will be in the third pattern in (7.6),
and the Boltzmann weight is zero. This is similar to the fact that in the open and closed
models, two paths may not cross more than once, for exactly the same kind of reason.

Let Pw(x;y) denote the colored model that we have described. We will call it the colored
classical pipedream model. The terminology is justified by the following observation.

Proposition 7.3. Let w ∈ W . Then∑
p∈RP(w)

(x|y)wt(p) = Z(Pw(x;y)).

Proof. Let us consider a pipedream p ∈ RP(w). We may obtain a state s of the model P
described above by simply coloring the paths. It is clear that

(x|y)wt(p) = β(s)

since both sides are products of terms xi − yj over the crossing points (i, j). □

Example 7.4. The partition function of Pw where w = s1s3 = 2143 ∈ S4 is

(7.7) (x1 − y1)(x1 − y3) + (x1 − y1)(x2 − y2) + (x1 − y1)(x3 − y1).

The three terms are associated with the three classical pipedreams:

4321
2

1

4

3

4321
2

1

4

3

x1

x2

x3

x4

4321
2

1

4

3

(x1 − y1)(x1 − y3) (x1 − y1)(x2 − y2) (x1 − y1)(x3 − y1)

where
red (•) > blue (•) > green (•) > orange (•).

The expression (7.7) equals the double Schubert polynomial Sw.

Theorem 7.5. The partition function of Pw(x;y) is the double Schubert polynomial Sw(x;y).

Note that this implies (7.5) and hence (7.4).
Before we can prove this, we will need a Yang-Baxter equation. The R-matrix is es-

sentially the parametrized Yang–Baxter equation from Example 6.40. We use the following
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Boltzmann weights, where it is understood that red(•) > blue(•). As with the T-vertices
discussed above, we allow the possibility that one color in this chart is the uncolor ⊕, which is
ordered smaller than the other colors. This gives us a parmetrized Yang-Baxter equation. It
is related to the Yang-Baxter equation from Example 6.40, by easy transformations (switch
the order of the colors and the signs of z and w).

(7.8)

xi

xj

1 xj − xi 0 1 1

We extend this to all colors, including ⊕ which (we recall) is the smallest color.

(7.9)

xi

xj

1 xj − xi 0 1 1

The boundary conditions for the pipedream models are similar to the colored domain wall
boundary conditions, which are the special case of the extended wall boundary conditions of
Chapter 6 in which λ = 0. But the pipedream models are the mirror images of the colored
domain wall boundary conditions from Chapter 6.

Proof of Theorem 7.5. For w = w0, there is only one configuration for the classical
pipedream model: the largest color goes to row 1, the second largest color goes to row 2 and
so on. Since colors can only cross once, this forces all paths. For n = 3 the configuration
looks as follows:

x1

x2

x3

321

3

2

1

There are crossings at all positions (i, j) in row i and column j for j ⩽ n − i. Hence the
weight for this configuration is xρ = xn−1

1 xn−2
2 · · ·xn−1. This shows that Sw0(x) = Zw0(x).

Computing the Yang–Baxter equation as in the proof of Theorem 6.34 in Chapter 6.
Attach the R-matrix (7.8) with (i, j) taken to be (i + 1, i) to the right of the grid, run the
train argument to obtain

Zw(x) = (xi − xi+1)Zwsi(six) + Zw(six).

Replacing x by six gives

Zw(six) = (xi+1 − xi)Zwsi(x) + Zw(x),

which yields the recursion

Zwsi(x) = DiZw(x).

Comparing with (7.1) shows that both Zw and Sw satisfy the same recursion and hence
must be equal. □
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2.2. Compatible sequences. Reduced pipedreams can also be encoded as compatible
sequences Billey, Jockusch, and Stanley 1993. A compatible sequence for a permutation
w ∈ Sn is a pair (a, r) of sequences a = (a1, . . . , aℓ) and r = (r1, . . . , rℓ) such that a is a
reduced word for w and r is a-compatible. A sequence r is a-compatible if

(1) ri ⩽ rj for 1 ⩽ i < j ⩽ ℓ,

(2) rk ⩽ ak for all 1 ⩽ k ⩽ ℓ,

(3) ak < ak+1 implies rk < rk+1 for all 1 ⩽ k < ℓ.

(7.10)

The weight of a compatible sequence (a, r) is wt(a, r) = (wt1, . . . ,wtn−1), where wti is the
number of letters i in r. Denote by RC(w) the set of compatible sequences for w.

There is a weight preserving bijection between reduced classical pipedreams and compat-
ible sequences

φ : RP(w) → RC(w)
defined as follows. Denote by (i1, j1), . . . , (iℓ, jℓ) the coordinates of the crosses in the reduced
classical pipedream p ∈ RP(w), where ik is the row index and jk is the column index with
rows labeled from top to bottom and columns labeled from left to right. Note that a classical
pipedream is uniquely specified by the position of the crosses. Order these coordinates
according to the following order. We say (i, j) < (i′, j′) if either i < i′ or i = i′ and j > j′.
Set r = (i1, . . . , iℓ) and a = (a1, . . . , aℓ), where ak = ik + jk − 1.

Proposition 7.6. The map φ is well-defined. That is, for p ∈ RP(w), we have φ(p) ∈
RC(w).

Proof. Note that by definition due to the ordering we have ri ⩽ rj for i < j which is
condition (1) in (7.10). Also rk = ik ⩽ ik + jk − 1 = ak since jk ⩾ 1, so that (2) in (7.10)
holds. Assume rk = rk+1. Then ik = ik+1, so that by the ordering we have jk > jk+1. But
this implies that ak = ik+ jk−1 > ik+1+ ik+1−1 = ak+1. Hence (3) in (7.10) holds. Finally,
we need to show that a is a reduced word for w. This follows from the fact that the paths
are wavy diagonal lines moving southeast along the trajectories i+ j = constant (where i is
the row index and j is the column index), which are allowed to cross, but never to recross
since the classical pipedreams are reduced. Hence (a, r) ∈ RC(w). □

Example 7.7. Let w = s1s2s1s3 ∈ S4, so that w = 3241 in one-line notation. The following
is a reduced classical pipedream in RP(w)

x1

x2

x3

x4

4321

3

2

4

1

where

red (•) > blue (•) > green (•) > orange (•).
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The ordered list of the coordinates of the crosses is

(1, 2), (1, 1), (2, 1), (3, 1)

so that r = (1, 1, 2, 3) and a = (2, 1, 2, 3).

We may also interpret a compatible sequence as a decreasing factorization of a reduced
word for w. Recall that a = (a1, . . . , aℓ) is a reduced word for w. By the conditions
in (7.10), the values ak > ak+1 are decreasing whenever rk = rk+1. Hence viewing all ak with
corresponding rk = i as part of the i-th decreasing factor of the reduced word for w, we may
interpret (a, r) as a decreasing factorization.

Example 7.8. Continuing Example 7.7, we find that

(a, r) = ((2, 1, 2, 3), (1, 1, 2, 3))

corresponds to the decreasing factorization (21)(2)(3).

2.3. Chute moves and crystal operators. Bergeron and Billey 1993 defined chute
moves on classical pipedreams. Recall that a classical pipedream is uniquely specified by the
position of the crosses. A chute move on rows i and i+1 for columns c1 to c2 (with c1 < c2)
changes a configuration of crosses as follows

(7.11)
c1 c2

i · + + + + +
i+ 1 · + + + + ·

7→
c1 c2
· + + + + ·
+ + + + + ·

Lenart 2004 considered a subset of these chute moves. Lenart’s chute moves on classical
pipedreams were rediscovered in Gold, Milićević, and Sun 2024a,b as Demazure crystal
operators by showing that the weight preserving bijection of Section 2.2 intertwines the
crystal operators of Assaf and Schilling 2018 on decreasing factorizations with the chute
moves.

To define the crystal chute moves of Gold, Milićević, and Sun 2024a,b; Lenart 2004, we
need to define a pairing process that pairs some of the crosses in row i with some of the
crosses in row i+1. This pairing process matches crosses in row i one at time, from right to
left.

Definition 7.9. Given a reduced classical pipedream p for a permutation in Sn, we fix a
row index i ∈ [n]. Denote the rightmost cross in row i by c. (Since crosses only occur in
boxes (i, j) such that i + j ⩽ n, p has no crosses in row n.) We define a pairing process on
row 1 ⩽ i < n of p as follows:

(1) Look for an unpaired cross c+ in row i + 1 whose column index is greater than or
equal to that of c, so that c+ lies below and weakly to the right of c in the diagram
p. If there are multiple such c+, choose the leftmost c+.
(a) If such a c+ exists, we say that c and c+ are paired.
(b) If no such c+ exists, we say that c is unpaired.

(2) Denote by c′ the cross in row i which is both closest to c and lies to the left of c.
(a) If such a c′ exists, we reset c := c′ and start again from step (1).
(b) If no such c′ exists, the pairing process on row i is complete.

The crystal operators acting on a reduced classical pipedream p depend on the set P+ of
coordinates of the crosses in p.
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Definition 7.10. Define ( lowering) crystal chute moves

fi : RP(w) → RP(w) ⊔ {∅} for w ∈ Sn and 1 ⩽ i < n

as follows. Let p ∈ RP(w). Perform the pairing process of Definition 7.9 on row i of p.

(1) If all crosses in row i are paired, set fip = ∅.
(2) Otherwise, denote by (i, j) ∈ P+ the leftmost unpaired cross in row i.

(a) If (i, k) ∈ P+ for all 1 ⩽ k ⩽ j, set fip = ∅.
(b) Otherwise, fip is given by the chute move of (7.11) with c2 = j. More formally,

define m ∈ N such that:
(i) (i, j −m), (i+ 1, j −m) ̸∈ P+ and
(ii) (i, j − k), (i+ 1, j − k) ∈ P+ for all 1 ⩽ k < m.

Define a new classical pipedream by

fip = p \ {(i, j)} ∪ {(i+ 1, j −m)}.

Example 7.11. Consider the classical pipedream of Example 7.7. For i = 1, the crosses in
positions (1, 1) and (2, 1) are paired. The cross with coordinates (1, 2) is unpaired. We are
in case (ii) (a) of Definition 7.10 and hence f1p = ∅.

Similarly, let p1 and p2 be the classical pipedreams on the left and right of (??), respec-
tively. Then f1p1 = p2.

The operators fi are called lowering operators since they lower the weight of a reduced
classical pipedream by a simple root αi. That is, if fip ̸= ∅ for p ∈ RP(w), then

wt(fip) = wt(p)− αi.

The lowering crystal chute moves have partial inverses called raising crystals chute moves
which we define next.

Definition 7.12. Define ( raising) crystal chute moves

ei : RP(w) → RP(w) ⊔ {∅} for w ∈ Sn and 1 ⩽ i < n

as follows. Let p ∈ RP(w), and perform the pairing process of Definition 7.9 on row i of p.

(1) If all crosses in row i+ 1 are paired, set eip = ∅.
(2) Otherwise, let (i + 1, j) ∈ P+ be the rightmost most unpaired cross in row i + 1.

Let q > j be minimal such that (i+ 1, q) /∈ P+. Then

(7.12) eip = p \ {(i+ 1, j)} ∪ {(i, q)}.

A reduced pipedream p ∈ RP(w) is called highest weight if eip = ∅ for all 1 ⩽ i < n.

One of the main results of Assaf and Schilling 2018 (translated to classical pipedreams
in Gold, Milićević, and Sun 2024a,b) is that RP(w) with the crystal chute moves fi and ei
decomposes into a union of Demazure crystals. To state the results, we first need to review
an algorithm to extract a permutation from a highest weight pipedream (see Gold, Milićević,
and Sun 2024b, Algorithm 6.1).

Definition 7.13 (Algorithm 6.1 Gold, Milićević, and Sun 2024b). For w ∈ Sn, let p ∈
RP(w) be a highest weight element. On the set of crosses P+ of p perform the following:

(1) Shift all crosses in row i to the right by i− 1.
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(2) For each row, beginning in the lowest row, move the leftmost cross say in position
(r, c) down to position (c, c), so that its row and column index match. Fix these
crosses.
Set ℓ = 2.

(3) (a) Beginning with the lowest row containing unfixed crosses, consider the leftmost
unfixed cross. Move that cross down to the lowest possible row, remaining in
its current column, such that:

(i) The cross does not move through other crosses;
(ii) The cross is the ℓ-th cross from the left in its new row; and
(iii) The cross does not have any previously fixed crosses to its right in the

new row.
(b) Fix this moved cross.
(c) Repeat steps 3a and 3b once within each row until all rows with unfixed crosses

have been considered.
(4) Increment ℓ by 1 and repeat step 3.

Once all crosses in the diagram are fixed, the algorithm terminates. Denote the resulting
diagram by p̃.

The truncating permutation πp is the shortest permutation such that wt(p̃) = πp(wt(p)).

Theorem 7.14 (Assaf and Schilling 2018; Gold, Milićević, and Sun 2024a,b). Given w ∈ Sn,
the operators ei and fi for 1 ⩽ i < n from Definitions 7.10 and 7.12 define a type An−1

Demazure crystal on RP(w) as follows:

(7.13) RP(w) ∼=
⋃

p∈RP(w)
eip=∅,∀1⩽i<n

Bπp(wt(p)),

where the truncating permutation πp is given in Definition 7.13.

Example 7.15. Let w = (1, 2, 5, 4, 3) ∈ S5. A reduced expression for this permutation is w =
s3s4s3. The Schubert polynomial indexed by w can be computed to be Ss3s4s3(x1, x2, x3) =
s(2,1)(x1, x2, x3). The classical pipedreams are arranged as a crystal in Figure 1.

The crosses for the highest weight element in Figure 1 are given by

p =

· · + + ·
· · + · ·
· · · · ·
· · · · ·
· · · · ·

.

After applying the algorithm of Definition 7.13, we obtain

· · · · ·
· · · · ·
· · + + ·
· · · + ·
· · · · ·

so that πp = s2s3s1s2.

Note that the Schubert polynomial of Example 7.15 is indeed a symmetric function. It
turns out that this is always the case in the stable limit as we will see in Section 3. The
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f1

f2

f2

f1

f2

f1

f1

f2

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

Figure 1. The classical pipedreams for the permutation w = (1, 2, 5, 4, 3) ∈
S5 arranged as a crystal B3(2, 1).

stable limit of Schubert polynomial Sw for w ∈ Sn is defined as (see Macdonald 1991a,b)∑
m→∞

S1m×w(x1, x2, . . . , xn+m).

Remark 7.16. Note that instead of considering row chute moves, one could have also used
columns chute moves for an analogous column crystal structure.

2.4. Bumpless pipedreams. In 2021, Lam, Lee, and Shimozono 2021 introduced an-
other combinatorial model for (double) Schubert polynomials in terms of bumpless pipedreams.
In this model the following set of tiles is allowed

xi 1 1 1 1 1

The first tile is empty with spectral parameter xi associated to row i, and the second tile is
a cross where the colors are ordered as

red (•) > blue (•).
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The remaining tiles are vertical, horizontal, and corner tiles. Note that unlike for classical
pipedreams, there are no bump tiles, hence the name bumpless pipedreams.

Remark 7.17. Note that the bumpless pipedream tiles are in bijection with the six states
of the six-vertex model introduced in Chapter 5.

The bumpless pipedream model is given by a square grid with n rows and columns, with
columns labeled by 1, . . . , n from left to right at the bottom, and the rows are labeled by
the one-line notation of w ∈ Sn from bottom to top on the right. The colors on the top
boundary are ordered with the largest color to the left.

Pipes move from the top down and to the right. Note that with this scheme, two pipes
may cross once but they cannot cross a second time.

Remark 7.18. Our convention differs from Lam, Lee, and Shimozono 2021 in that rows are
reflected top to bottom. This convention is more suitable for the study of hybrid pipedreams
(see Section 4) with the conventions for classical pipedreams of Section 2.1.

Denote by BP(w) the set of reduced bumpless pipedreams with right boundary given by
w. Define

ZBP
w (x) =

∑
p∈BP(w)

xwt(p)

to be the partition function of the bumpless pipedream model.

Theorem 7.19 (Lam, Lee, and Shimozono 2021). The Schubert polynomial is the partition
function of the bumpless pipedream model

Sw(x) = ZBP
w (x).

Example 7.20. In Example ??, we computed Ss2(x1, x2, x3) = x1 + x2 using classical
pipedreams. Let us now compute this Schubert polynomial using bumpless pipedreams. As
before, we use the ordering of colors

red (•) > blue (•) > green (•).

The two bumpless pipedream configurations in this model with weight x1 and x2, respec-
tively:

x1

x2

x3

321

1

3

2

x1

x2

x3

321

1

3

2

x1 x2
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Example 7.21. Let us now compute the Schubert polynomial Ss1s3(x1, x2, x3, x4) = x21 +
x1x2 + x1x3 from Example 7.4 using bumpless pipedreams:

x1

x2

x3

x4

4321

2

1

4

3

x1

x2

x3

x4

4321

2

1

4

3

x21 x1x2

x1

x2

x3

x4

4321

2

1

4

3

x1x3

For bumpless pipedreams, the R-matrix is given by

(7.14)
1 1 xj − xi xj − xi

1 1 1 1

Proof of Theorem 7.19. For w = w0, there is only one configuration for the bumpless
pipedream model, with n− i empty cells in row i. The case n = 4 is shown below:

x1

x2

x3

x4

4321

4

3

2

1
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Hence the weight for this configuration is xρ = xn−1
1 xn−2

2 · · ·xn−1. This shows that
Sw0(x) = ZBP

w0
(x).

Using the train argument it can be shown that ZBP
w (x) satisfies the same recursion as

the Schubert polynomial (see Exercise 7.5)

ZBP
wsi

(x) = DiZ
BP
w (x).

□

3. Stanley symmetric functions

The Stanley symmetric function Fw indexed by a permutation w ∈ Sn was introduced
by Stanley 1984 to enumerate the reduced decompositions of w. The Stanley symmetric
functions are related to Schubert polynomials through a stable limit

Fw(x) = lim
s→∞

S1s×w(x),

where 1s × w is the permutation 12 . . . s(w1 + s) . . . (wn + s) in one-line notation.
Stanley 1984 conjectured that the coefficients cλw in the Schur expansion of Fw

Fw(x) =
∑
λ

cλw sλ(x)

are nonnegative integers. This was shown by Edelman and Greene 1987 through an insertion
algorithm from reduced words of w to a pair of tableaux now known as the Edelman–Greene
insertion. This algorithm shows that cλw is equal to the number of increasing tableaux of
shape λ whose row reading words are reduced words of w−1. See also Fomin and Greene
1998; Lascoux and Schützenberger 1985.

The Edelman–Greene coefficients cλw can also be understood by counting highest weight
elements in a crystal. As mentioned in Section 2.2, reduced classical pipedreams are equiv-
alent to compatible sequences which in turn can be interpreted as decreasing factorizations
of reduced words of w. Denote by Ww the set of all decreasing factorizations of w ∈ Sn.
More precisely, these are all factorizations wkwk−1 · · ·w1 such that w = wkwk−1 · · ·w1 with
ℓ(w) = ℓ(w1) + · · · + ℓ(wk) and each wi is decreasing. Then from the results in Section 2.2
one can deduce that

Fw(x) =
∑

wk···w1∈Ww

x
ℓ(w1)
1 · · · xℓ(w

k)
k .

In Morse and Schilling 2016, a crystal structure on Ww was defined (see also Bump and
Schilling 2017, Chapter 10). Through the correspondence between decreasing factorizations
and reduced classical pipedreams, this crystal is related to the crystal of Section 2.3.

In this section, we define an analogous crystal for Stanley symmetric polynomials in s+1
variables on bumpless pipedreams. Lam, Lee, and Shimozono 2021 defined EG-pipedreams
as the bumpless pipedreams, where all the empty boxes are in the southwest corner (in our
convention) and form a partition. The partition is called the shape of the EG-pipedream.

Example 7.22. The first two bumpless pipedreams in Example 7.21 are EG-pipedreams
with shapes (2) and (1, 1), respectively. The last bumpless pipedream in this example is not
an EG-pipedream since not all empty cells are in the southwest corner.
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By Lam, Lee, and Shimozono 2021, Theorem 5.14, the Edelman–Greene coefficient cλw is
equal to the number of EG-pipedreams of w of shape λ.

The EG-pipedreams correspond to the highest weight elements in the crystal. In general,
a bumpless pipedream for the permutation 1s×w with empty boxes only in the bottom s+1
rows can be associated to a semistandard Young tableau T of shape λ as follows. The shape
λ is obtained by sliding all empty boxes along their diagonals d = c− r, where r is the row
index (from the bottom) and c is the column index (from the left), towards their southwest
corners. The entries of the semistandard Young tableau T on the diagonal d are the row
indices of the empty boxes on diagonal d in the bumpless pipedream.

Example 7.23. Consider the bumpless pipedream

x1

x2

x3

x4

x5

54321

1

2

5

4

3

for the permutation (1, 2, 5, 4, 3) = 12 ×w for w = (3, 2, 1). It has an empty cell on diagonal
0 and row 1, diagonal 1 and row 2, and diagonal -1 and row 3. This bumpless pipedream

corresponds to the semistandard Young tableau 1 2

3
, which has an entry 1 on diagonal 0,

entry 2 on diagonal 1, and entry 3 on diagonal -1.

We would like to emphasize that the association of a semistandard Young tableaux to
a bumpless pipedream of 1s × w with empty boxes only in the bottom s + 1 rows is not
a bijection; for example there can be multiple EG-pipedreams of the same shape λ, which
would all be associated to the same highest weight semistandard Young tableau of shape λ.
For a fixed configuration of the strands s+ 1, s+ 2, . . . , s+ n, the map is however bijective.

We have discussed in Chapter 8 how to define crystal operators fi and ei for 1 ⩽ i ⩽ s on
semistandard Young tableaux of shape λ in the alphabet {1, 2, . . . , s + 1}. The above map
from certain bumpless pipedreams for 1s×w to semistandard Young tableaux thus induces a
crystal structure on these bumpless pipedreams by keeping the stands s+1, . . . , s+ n fixed.
Note that the first s strands for the bumpless pipedreams associated to 1s×w do not cross.
Recall that an fi crystal operator on a semistandard Young tableaux locally changes a letter
i to a letter i+1. Hence locally an fi crystal operator on a bumpless pipedreams for 1s×w
acts as a droop move

i

i+ 1 fi−→
i

i+ 1

An example is given in Figure 2.

4. Hybrid pipedreams

Both the classic and bumpless pipedream models represent double Schubert polynomials.
Yet the models seem rather different. Knutson and Udell 2023 observed that one can mix
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f1

f2

f2

f1

f2

f1

f1

f2

1 1

2

1 2

2

1 1

3

1 3

2

1 2

3

1 3

3

2 2

3

2 3

3

Figure 2. The crystal B3(2, 1) on the bumpless pipedreams for w =
(1, 2, 5, 4, 3). The corresponding semistandard Young tableaux are also in-
dicated.

layers of classic and bumpless pipe freely to obtain interesting hybrid models. These are
analogous to the hybrid models for Gamma and Delta ice that we considered in Chapter 7,
and indeed the structure of the proof of Theorem 7.25 here is very similar to the proof of
Theorem 4.21.

In this section we consider the Knutson–Udell hybrid models. A difference is that we will
replace their Theorem 3 by an application of the Yang–Baxter equation.

The version of the Yang–Baxter equation that we require uses the following R-matrix:

CB CB CB CB

xj − xi 0 1 0

CB CB CB CB

1 1 1 1

This assumes that red is the larger color. The CB R-matrix depends on two parameters xi
and xj which we suppress from the notation. Its R-matrix resembles bumpless pipedreams
in that if two paths of the same color meet, they must cross, and crossings are only allowed
in one direction.

Because we will be mixing classic and bumpless pipedreams, we will use the following
notation. A vertex of classic pipedream is marked with a white dot ◦, while a vertex of
bumpless pipedream is marked with a black dot •. We also decorate the vertices with two
parameters, xi and yk for some k. In the applications, the subscript k of yk is the column
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number. But since the rows move up and down, the parameter i in xi is not necessarily the
row number. As we have already seen, in the pure classic pipedream models, the parameter
in the i-th row is xi; in the pure bumpless pipedream models, the parameter in the i-th row
is xn+1−i. In the hybrid models, the parameter in the i-th row can be any one of x1, . . . , xn.

The Yang–Baxter equation then has the following form:

a

b

c

d

e

f

CB
xi, yk

xj, yk

a

b

c

d

e

f

CB

xj, yk

xi, yk

This is valid for any selection of boundary spins (colors or ⊕) a–f . To prove this, at most
3 colors can appear in any legal configuration, so all cases can easily be checked using a
computer program or otherwise.

Proposition 7.24. Let c and d be colors (possibly equal). Then the two following systems
are equivalent for any choice of the boundary spins:

(7.15)

· · ·

· · ·

ε1 ε2 εn

δ1 δ2 δn

c

+ d

+xi,y1

xj ,y1

xi,y2

xj ,y2

xi,yn

xj ,yn

(7.16)

· · ·

· · ·

ε1 ε2 εn

δ1 δ2 δn

c

+ d

+

xi,y1

xj ,y1

xi,y2

xj ,y2

xi,yn

xj ,yn

Proof. We attach the CB R-matrix as follows:

· · ·

· · ·

BC

ε1 ε2 εn

δ1 δ2 δn

c

+

d

+xi,y1

xj ,y1

xi,y2

xj ,y2

xi,yn

xj ,yn

Note that there is only one legal configuration for the R-matrix, so this equals (7.15). Now
we may run the train argument and detach the R-matrix to obtain (7.16). □
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We may now describe the Knutson–Udell mixed models, which contain the classical
pipedream and bumpless pipedream models as special cases. Columns are labeled 1 to n.
Every row is either a row of a classic or bumpless pipedream. For the boundary conditions,
the top boundary colors are, as with the classic and bumpless pipedream models, c1, . . . , cn
in ascending order from left to right. Each classic row gets one of these colors at its left
boundary, and ⊕ signifying no color at the right; and each bumpless row gets one of these
colors at its right boundary, with ⊕ on the left.

The rows and columns are labeled as shown.

1

2

3

4

5

1 2 3 4 5

x2, y2

The columns are labeled 1–n from left to right. For the rows, the rule is more complicated:
we visit the boundary edges as indicated by the arrow, first labeling the classic rows on the
left edge from top to bottom (but skipping the bumpless rows), then labeling the remaining
bumpless rows from bottom to top.

We use the row and column parameters xi in the i-th row, labeled this way, and yj in the
j-th column. The Boltzmann weights are then as in Subsection 2.1 for the classical rows,
and as in Subsection 2.4 for the bumpless rows. We have shown a sample state that is legal
in both the classic and bumpless rows, and labeled the vertex in row 2 (by the numbering
scheme just described) and column 2.

Let w be the permutation such that cw(i) is the color of the colored boundary edge in
the i-th row. In this example, the permutation is (12453) in 1-line notation. The model is
determined by the permutation w, with one other piece of information, which is the sequence
of classic and bumpless rows. We can indicate this information in a code, which is a sequence
of n letters B or C indicating the species of the rows ordered from top to bottom. So for the
above example, the code is CBCCB indicating that we have rows of classic, then bumpless
pipes stacked in that order. We may indicate the hybrid model as Pw(γ), where γ is the
code.

Theorem 7.25 (Knutson-Udell). Let w be a permutation and γ any code. Then the partition
function Z(Pw(γ)) = Sw(x;y).

Proof. If γ = Cn or Bn this is the classic or bumpless pipedream model, and we have already
shown that the partition function is the double Schubert polynomial. So the essence of the
statement is that the models Pw(γ) all have the same partition function, independent of the
code. In this way we also obtain a new proof that the classic and bumpless representations
of Sw(x;y) represent the same value.
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It follows from Proposition 7.24 that we may interchange B and C layers. We need to
supplement this fact with another fact: we may change the bottommost layer from C to B
without changing the partition function. Let us see why this is true. Let γ be a code ending
in C, and let γ′ be the code obtained by changing the C to be B. We will describe a weight
preserving bijection between the states of Pw(γ) and Pw(γ

′).
Depending on the code γ, this row is numbered i for some value, according to the scheme

described above. It carries a unique pipe that descends in some column numbered k for some
value.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

i

k

+c

c

The vertices in this row in columns 1 to k − 1 contribute:

(7.17)
k−1∏
j=1

(xi − yj).

We may modify this state to obtain a state of Pw(γ
′) by reversing the direction of the

path:

+

+

+

+

+

+

+

+

+

+

+

+

+

+

i

k

c

c

+

Again, the vertices in the bottom row to the left of column k contribute the same factor
(7.17), and these two corresponding states of Pw(γ) and Pw(γ

′) have the same weight.
Summing over all states, the partition functions are equal.

Now we may see why all codes γ give the same partition function. We are allowed to
do the following operations on the code: either interchange a B and a C, or change the last
letter from C to B or vice versa. □
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Exercises

Exercise 7.1. Show that the dimension of the Schubert cell X◦
w is given by

dimX◦
w =

(
n

2

)
− ℓ(w),

where ℓ(w) is the length of the permutation w ∈ Sn.

Exercise 7.2. Prove the formula (7.2) for double Schubert polynomials.

Exercise 7.3. Show that with the R-matrix in (7.8) for classical pipedreams, the Yang–Baxter equation is
satisfied.

Exercise 7.4. Show that with the R-matrix in (7.14) for bumpless pipedreams, the Yang–Baxter equation
is satisfied.

Exercise 7.5. Use the train argument to show that

ZBP
wsi(x) = DiZ

BP
w (x).



CHAPTER 13

The Fermionic Fock Space

In Chapter 12 we saw that in the field-free six-vertex model there is a Hamiltonian H
and also a commuting family of six-vertex model row transfer matrices Tθ acting on a Hilbert
space, which in that case was H = ⊗NC2. The main theorem is that H commutes with Tθ,
which was proved by showing that H = (T−1

θ T ′
θ)|θ=χ + cIH for a suitable constant c. This

result was proved by Baxter, in the greater generality of the eight-vertex model.
For the free-fermionic six-vertex model, there is a similar result, due to Brubaker and

Schultz Brubaker and Schultz 2018. In the proof we will follow Brubaker, Buciumas, Bump,
and Gustafsson 2020b, where a more general result is proved. (The models in Brubaker,
Buciumas, Bump, and Gustafsson 2020b may be regarded as generalizations of the result
in Brubaker and Schultz 2018 to a colored model.) In this free-fermionic case there is a
Hamiltonian operator H and a row transfer matrix T , and the result is now in the form
eH = T . But the conclusion is the same: the Hamiltonian H commutes with the row
transfer matrix T .

The identity eH = T can be thought of as an expansion of T in terms of operators Jk
which move particles right or left to lower or higher energy levels. If k > 0, then Jk moves
the particle right to a lower energy level, and if k < 0 it moves the particle to the left. There
are correspondingly two versions of both the Hamiltonian and the row transfer matrix.

1. The fermionic Fock space

The fermionic Fock space was invented by Dirac in the theory of the electron. The
electron is described by the Dirac equation, which we will not discuss, except to mention
that the energy levels are quantized, and there are solutions of arbitrary negative energy.
This seems unphysical, since a particle could radiate an arbitrarily large amount of energy
by falling to lower and lower energy levels.

But Dirac proposed a solution to this. Since the Dirac equation is linear, solutions can
exist in superposition. The electron is a fermion, subject to the Pauli exclusion principle,
meaning that no two electrons can occupy the same state. Dirac’s proposal was that all
sufficiently large negative energy level states are occupied, and all sufficiently large positive
energy levels are unoccupied.

Mathematically, the states are vectors in a Hilbert space that is called the fermionic Fock
space F, which we will now describe. This is based on another Hilbert space that we call V ,
with basis vectors ui (i ∈ Z). Each ui represents a particle with a definite energy level equal
to i. Let us fix m ∈ Z and consider a sequence j = (jm, jm−1, . . .) where jm > jm−1 > · · ·
and jk = k for k sufficiently negative. Define the charge m fermionic Fock space, denoted
Fm to be the free vector space on formal symbols

(13.1) |j⟩ := |j⟩m = ujm ∧ ujm−1 ∧ · · · , j = (jm, jm−1, jm−2, . . .).

174
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The Fock space F resembles the exterior algebra
∧
V , except that the basis vectors are

infinite wedges (called semi-infinite monomials).
We extend the notation ξj to sequences j = (jm, jm−1, . . .), where jk = k for k sufficiently

negative, dropping the assumption that the sequence is strictly decreasing, by the usual
rules for ∧ in the exterior algebra. Thus |j⟩ = 0 if jk = jl for any distinct k, l < m. And
interchanging two adjacent indices changes the sign of |j⟩.

We can visualize the vector |j⟩ by a Maya diagram in which sites numbered by integers
are filled with stones. If the site n equals jk for some k, the site is occupied , otherwise it is
unoccupied . We put a black stone at the occupied sites, and a white stone at the unoccupied
sites.

For example, if j = (4, 2,−1,−2,−3,−4, . . .) and hence

|j⟩ = u4 ∧ u2 ∧ u−1 ∧ u−2 ∧ u−3 ∧ u−4 ∧ · · ·
then the Maya diagram looks like this:

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·

· · · · · ·

The main point is that every sufficiently negative site is occupied, and every sufficiently
positive site is unoccupied. Although Maya diagrams are traditional (originating in soliton
theory with M. Sato and his collaborators), because we want to relate this story to the six-
vertex model as we have been, we prefer to use − and + for the occupied and unoccupied
sites respectively. Hence the Maya diagram looks as follows:

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·

+ + + ++ − − − − − −· · · · · ·

For this state the charge is m = 1.
If jk = k for all k ⩽ m, we obtain the charge m vacuum vector for which we have an

alternative notation
|∅⟩m = um ∧ um−1 ∧ · · · .

In general we may define the energy of |j⟩m to be
∑

k⩽m(jk − k). This is a finite sum. The
vacuum is the unique semi-infinite monomial in Fm of energy 0.

2. The row transfer matrix T∆(z; q)

We will describe a version of the free-fermionic six-vertex model that we call Delta ice.
The grid is of infinite width, and the Boltzmann weights in each row depends on a parameter
z ∈ C×.

Remark 13.1. The quantity ∆ here is different from Baxter’s ∆, which is

(a1a2 + b1b2 − c1c2)/2a1b1.

Baxter’s ∆ is zero here, since all weights in this chapter are free-fermionic.

Let i = (im, im−1, . . .) and j = (jm, jm−1, . . .) be two sequences such that im > im−1 > · · ·
and jm > jm−1 > · · · and ii = jk = k for k sufficiently negative. We define a simple system
consisting of a single row, and either no states or a single state. We consider a grid with
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only one row that is infinite in both directions. As boundary conditions, the spins of the
vertical edges at the top are given by the Maya diagram for ξi, and for the vertical edges
at the bottom, by the Maya diagram for ξj. There is also a “boundary condition” for the
horizontal edges, that there are only finitely many + spins. We use the following Boltzmann
weights:

a1 a2 b1 b2 c1 c2

∆-ice +++

+++

+++

+++

z,q −−−

−−−

−−−

−−−

z,q
+++

−−−

+++

−−−

z,q −−−

+++

−−−

+++

z,q −−−

+++

+++

−−−

z,q
+++

−−−

−−−

+++

z,q

1 −qz 1 z (1− q)z 1

Since as part of the boundary conditions there are only finitely many horizontal edges
with + spins, all but finitely factors in the Boltzmann weight of a state are of type b1 (for
vertices far to the left) or of type a1 (for vertices far to the right). Therefore the Boltzmann
weight of a state is an infinite product with only finitely many terms not equal to 1, and so
has a well-defined finite value.

Lemma 13.2. The condition for the partition function to have a state (which is therefore
unique) is that

(13.2) im ⩾ jm ⩾ im−1 ⩾ jm−1 ⩾ · · · .

We express the conditions in (13.2) by saying that the sequences i and j interleave. We
already encountered interleaving partitions in (3.4) in Chapter 3, Section 2.

Proof. This may be seen by consideration of the paths, which we recall from Chapter 3,
Section 1 are obtained by joining edges with spin −. Because of our boundary condition,
that there are only finitely many horizontal edges with spin −, each path must begin at the
top and exit at the bottom for this system. For example, suppose that m = 1 and

i = (4, 2, 1,−2,−3,−4, . . .), j = (3, 1,−1,−2,−3,−4, . . .).

Then we have the following state:

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·
− − − − − −+ + + + +· · · · · ·

− − − − − −+ + + + +· · · · · ·
+ + + − + − − − + + + +

Every path must start in the ik column and end in the jk column. Call this the k-th path.
We must have ik ⩾ jk since the paths move down and to the right. We also need jk ⩾ ik−1

since otherwise two paths will overlap between the ik−1 column and the jk column. □

We quickly review Dirac notation for operators. Let H be a Hilbert space. A vector in
v ∈ H is denoted alternatively as |v⟩, and called a ket . On the other hand, a vector w gives
rise to a linear functional v → (v, w) using the inner product on H, and we denote this linear
functional as ⟨w|, also called bra. The notation works well in quantum mechanics due to the
emphasis on Hermitian (self-adjoint) operators. If T is Hermitian, then (Tv, w) = (v, Tw),
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which we denote ⟨w|T |v⟩. We can either think of this as the linear functional ⟨w| applied to
the vector T |v⟩, or as the linear functional ⟨w|T applied to the vector v.

As a special case, the partition function of the monostatic system above will be denoted

⟨j|T∆(z; q)|i⟩,

and we are now thinking of T∆(z; q) as being an operator on H.

Theorem 13.3. The operators T∆(z; q) all commute. That is, if w and v are other param-
eters, we have

T∆(z; q)T∆(w, v) = T∆(w; v)T∆(z, q).

Proof. We make use of the general free-fermionic Yang–Baxter equation from Chapter 3.
By Theorem 3.14 of Chapter 3, there exists an R-matrix R depending on z, q, w, v such that
we have a Yang–Baxter equation in the form

a

b

c

d

e

f

R

z,q

w,v

a

b

c

d

e

f

R

w,v

z,v

It is of course not hard to compute the Boltzmann weights but we do not need them for this
proof. We only need that the a2 weight of R is nonzero. We fix i and k and will show that

(13.3) ⟨k|T∆(w; v)T∆(z, q)|i⟩ = ⟨k|T∆(z; q)T∆(w, v)|i⟩.

The left-hand side is the partition function of a 2-rowed infinite grid, but we may truncate
this to a finite grid such that all sites of |i⟩ and |k⟩ to the right are occupied, and all sites
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to the left are unoccupied. This partition function looks like this:

−

−

−

−z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

z,q

w,v

− − −+ + +

− − −+ + +

i

k

All vertices outside this finite grid have type a1 or b1, and Boltzmann weight 1, so discarding
them does not change the partition function. So the partition function of this system is

⟨k|T∆(w; v)T∆(z; q)|i⟩.

Now we attach the R-matrix, which multiplies the Boltzmann weight by a2(R). We apply
the train argument, and discard the R-matrix on the right, which divides the Boltzmann
weight by the same constant a2(R). The resulting system has the rows switched, proving
(13.3). Since this is true for all i and k, the row transfer matrices are proved to commute. □

We can define T∆(z; q) as an operator on F by

(13.4) T∆(z; q)|i⟩ =
∑
j

⟨j|T∆(z; q)|i⟩ |j⟩.

The sum on the right is finite, so this defines an element of F. However T∆(z; q) is not
a bounded operator. That is, if we make F into a Hilbert space where the semi-infinite
monomials |i⟩ are an orthonormal basis, since the number of terms on the right side of
(13.4) can be arbitrarily large, the map T∆(z; q) defined on basis elements does extend to an
operator with bounded operator norm.

3. The row transfer matrix TΓ(z; q)

There is another type of six-vertex model that is in a sense dual to the models in Section 2.
For these we use the following Boltzmann weights:

a1 a2 b1 b2 c1 c2

Γ-ice +

+

+

+

z,q −

−

−

−

z,q
+

−

+

−

z,q −

+

−

+

z,q −

+

+

−

z,q
+

−

−

+

z,q

z−1 1 −qz−1 1 1− q z−1
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Remark 13.4. These are the same as the weights Tokuyama models introduced in Chap-
ter 4, Section 2, divided by z. Since every weight is divided by the same constant, we could
use these weights in the Tokuyama model, and the partition functions would be essentially
unchanged, altered only be a constant monomial. However our boundary conditions will be
different from the Tokuyama models.

Now we change the boundary conditions. We require all but finitely many horizontal
spins to be −. This guarantees that the row transfer matrix is essentially a finite product,
since all but finitely many spins will be of type a2 or b2.

We can define ⟨j|T∆(z; q)|i⟩ as before, but now the condition for this to be nonzero is
changed: we require

(13.5) jm ⩾ im ⩾ jm−1 ⩾ im−1 ⩾ · · · .
Here is a sample state with i = (3, 1,−1,−2,−3, . . .) and j = (4, 2, 1,−2,−3, . . .). We modify
the rule for describing the paths: now the paths follow the − spins on vertical edges, and +
spins on the horizontal edges. This means that the paths move down and to the left, so the
row transfer matrix is energy raising, in accordance with (13.5).

· · · 6 5 4 3 2 1 0 −1 −2 −3 −4 · · ·
− − − − − −+ + + + +

− − − − − −+ + + + +

− − − + − + + + − − − −
· · · · · ·· · · · · ·

We can try to define TΓ(z; q) as an operator,

TΓ(z; q)|i⟩ =
∑
j

⟨j|TΓ(z; q)|i⟩ |j⟩.

However (in contrast with ∆-ice) the sum on the right-hand side is no longer finite.

4. The Heisenberg Lie algebra

We now come to a representation of the Heisenberg Lie algebra s with generators

{jk | k ∈ Z} and 1,

with 1 central, and

[jk, jl] =

{
k if k = −l,
0 otherwise.

The center of s is spanned by 1 and j0. This representation is at the heart of the boson-
fermion correspondence. This is a relationship between the fermionic Fock space and the
bosonic Fock space which originated in mathematical physics, and has important applica-
tions to representation theory and algebraic combinatorics (Frenkel 1981; Kac, Raina, and
Rozhkovskaya 2013; Lam 2006).

We remind the reader that we have defined

ujm ∧ ujm−1 ∧ · · ·
even if we do not have jm ⩾ jm−1 ⩾ · · · . It is only necessary that jk = k for k sufficiently
negative. However, this monomial might be zero (if some index is repeated) or the negative
of a basis element if putting the vectors in order produces an odd number of sign changes.
If jm ⩾ jm−1 ⩾ · · · we denote this vector as |j⟩. Otherwise we will avoid this notation.
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Let k ∈ Z. For the time being assume that k ̸= 0. We define an operator Jk on V by
Jk(un) = un−k. Then we transport Jk to acting on F by the Leibnitz rule, so that

Jk|j⟩ = (ujm−k ∧ ujm−1 ∧ · · · ) + (ujm ∧ ujm−1−k ∧ · · · ) + · · · .
In other words, to apply Jk, we pick one occupied location, and move the particle at that
location k steps lower or higher (depending on the sign of k) to an unoccupied location. We
also define J0 to have eigenvalue m on Fm.

Theorem 13.5. The operators Jk on Fm satisfy

[Jk, Jl] =

{
k · 1Fm if k = −l,
0 otherwise.

Hence jk 7→ Jk defines a representation of the Heisenberg Lie algebra.

Proof. Let us first show that

(13.6) JkJ−k|j⟩ − J−kJk|j⟩ = k|j⟩.
We may assume k > 0 since the statements for k and −k are trivially equivalent.

First suppose that |j⟩ = |∅⟩m is the vacuum. Then Jk|∅⟩m = 0. On the other hand,
J−k|∅⟩ is a sum of k terms, and applying Jk to each of these produces a copy of |∅⟩m. Now
we prove (13.6) for general j. If |j⟩ = |j⟩m is not the vacuum may write |j⟩m = uj ∧ η where
j = jm and

η = ujm−1 ∧ ujm−1 ∧ · · ·
has strictly smaller energy than |j⟩m. By induction on enery we may assume that (13.6) is
true for η. Now we have J−k = uj+k ∧ η + uj ∧ J−kη and so

JkJ−k|j⟩m = uj ∧ η + uj+k ∧ Jkη + uj−k ∧ J−kη + uj ∧ JkJ−kη.
Similarly

J−kJk|j⟩m = uj ∧ η + uj−k ∧ J−kη + uj+k ∧ Jkη + uj ∧ J−kJkη.
Subtracting,

JkJ−k|j⟩m − J−kJk|j⟩m = uj ∧ (JkJ−kη − J−kJkη) = uj ∧ kη = k|j⟩m,
where we have used our induction hypothesis.

We leave it to the reader to show that Jk and Jl commute unless k = −l. □

5. Row transfer matrices as vertex operators

We emphasize that the Jk with k > 0 all commute, and the J−k with −k < 0 all
commute, so we have two large commuting families of “operators” on F or Fm. The J−k are
not operators in the usual sense, since each turns each basis vector into an infinite sum of
basis vectors, which is not in F. Still, the two-point functions

⟨i|Jk|j⟩
do make sense for all k, and as long as we couch our results in terms of these, there are no
difficulties.

Now let us introduce two “Hamiltonians”

H+(z; q) =
∞∑
k=1

1

k
(1− qk)zkJk, H−(z; q) =

∞∑
k=1

1

k
(1− qk)z−kJ−k.
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Theorem 13.6 (Brubaker and Schultz 2018). We have

(13.7) eH+(z;q) = T∆(z; q), eH−(z;q) = TΓ(z; q).

The operator H+(z; q) commutes with T∆(w; v) for all w,v, and the operator H−(z; q) com-
mutes with TΓ(w; v) for all w,v.

Proof. We will take this up in Section 6. For now we point out that the identities (13.7) im-
ply the commutativity statements, since for example the operators T∆(w; v) and the operator
H+(z; q) are all seen to be expressible in terms of the Jk with k > 0, which commute with
each other. We also obtain a new proof of the commutativity statement in Theorem 13.3
from this observation in Section 7. □

“Operators” such as eH+(z;q) and eH−(z;q), particularly in combinations such as:

(13.8) eH−(z;q)eH+(z;q) = exp

(
∞∑
k=1

1

k
(1− qk)z−kJ−k

)
exp

(
∞∑
k=1

1

k
(1− qk)zkJk

)
are called vertex operators. Here “operators” is in quotation marks since there is a nontrivial
problem in making sense of this. Similar expressions appear in conformal field theory and
in soliton theory. A purely algebraic and rigorous axiomatization of the underlying mathe-
matics may be found in the theory of vertex algebras. In this context, expressions such as
(13.8) appear in lattice vertex algebras (Frenkel and Ben-Zvi 2004 Chapter 5 or Kac 1998
Section 5.4). See also Kac and Leur 1987 and Jimbo and Miwa 1983.

As mentioned above, a proof of Theorem 13.3 follows by expressing the row transfer
matrix T∆(z; q) as the exponential of the Hamiltonian

H+(z; q) =
∑
k=1

1

k
(1− qk)zkJk.

There is a corresponding result for TΓ and H+ but we will omit that. (It can be deduced
from the T∆ case by taking adjoints, as at the end of Section 4 in Brubaker, Buciumas,
Bump, and Gustafsson 2020b.)

6. Fermionic operators

We introduce fermionic creation operators ψ∗
n (n ∈ Z) on F that create particles by

ψ∗
n(η) = un ∧ η.

If η is a basis vector of Fm, say

η = |j⟩ = ujm ∧ ujm−1 ∧ · · · ,
then ψ∗(η) = 0 if n is among the indices jm, jm−1, . . .. Otherwise, ψ∗

n(η) can be calculated by
moving un to its proper place among the indices. This can involve interchanging some uj,
which can introduce sign changes and so ψ∗

n(η) is either zero or ±|j′⟩, where j′ is obtained
by sorting {n, jm, jm−1, . . .} into descending order. We see that ψ∗

n : Fm −→ Fm+1.
Dual to the creation operators ψ∗

n are their adjoints ψn : Fm+1 −→ Fm. The operator ψn
deletes un from the semi-infinite monomial if n ∈ {jm, jm−1, . . .}, which can result in a sign
change. If n /∈ {jm, jm−1, . . .}, then ψn|j⟩ = 0.

Lemma 13.7. We have
[Jk, ψ

∗
j ] = ψ∗

j−k.



182 13. THE FERMIONIC FOCK SPACE

Proof. From the Leibnitz rule, if η ∈ F, then

Jkψ
∗
j η = Jk(uj ∧ η) = Jk(uj) ∧ η + uj ∧ Jk(η) = uj−k ∧ η + ψ∗

j (Jkη).

Rearranging,

[Jk, ψ
∗
j ]η = uj−k ∧ η = ψ∗

j−k(η).

□

Now let us introduce the fermion field

ψ(x) =
∑
j∈Z

ψ∗
jx

j.

For our purposes this is just a formal expression that we can use to do a calculation. (The
“field” terminology comes from quantum field theory.)

Proposition 13.8. We have

(13.9) [H+(z; q), ψ
∗(x)] = log

(
1− qxz

1− xz

)
ψ∗(x).

Proof. Note that by Lemma 13.7 we have

[Jk, ψ
∗(x)] =

∑
j

xj[Jk, ψ
∗
j ] =

∑
j

xj[Jk, ψ
∗
j ] =

∑
j

xjψ∗
j−k = xkψ∗(x).

Now the left-hand side of (13.9) equals∑
k

1

k
(1− qk)zk[Jk, ψ

∗(x)] =
∑ 1

k
(1− qk)(xz)kψ∗(x) = − log(1− xz) + log(1− qxz)

from the identity

− log(1− t) =
∞∑
k=1

tk

k
.

□

Lemma 13.9. Suppose that xa− ax = ca, where c ∈ C×. Then

exae−x = eca.

Proof. This is a special case of the Baker–Campbell–Hausdorff formula. We treat this as a
formal identity, disregarding convergence. We need the following identity, for k ⩾ 0:

(13.10)
∑
j

(
k

j

)
(−1)jxk−jaxj = cka.

To avoid some bookkeeping we sum over all j ∈ Z but regard
(
k
j

)
as zero unless 0 ⩽ j ⩽ k,

so most terms are zero. Assuming this true for k− 1, we may establish (13.10) by induction,
writing

(
k
j

)
=
(
k−1
j−1

)
+
(
k−1
j

)
. The left-hand side equals

x ·

[∑
j

(
k − 1

j − 1

)
(−1)jxk−1−jaxj

]
−

[∑
j

(
k − 1

j − 1

)
(−1)j−1xk−jaxj−1

]
· x.
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Both terms in brackets equal ck−1a by induction, so we obtain ck−1[x, a] = cka. This
proves (13.10).

Now expand the exponentials and collect terms of degree k to write

exae−x =
∑
k

1

k!

∑
j

(
k

j

)
(−1)jxk−jaxj =

∑
k

1

k!
cka = eca,

as required. □

Proposition 13.10. Let H = H+(z; q). We have

(13.11) eHψ∗(x)e−H =
1− qxz

1− xz
ψ∗(x).

Proof. This follows from our Proposition 13.8 by exponentiating (using Lemma 13.9). □

Now the key point is to show that the row transfer matrices T∆(z; q) satisfy the same
identity. Let us introduce the operator ρk(z) : Fm −→ Fm+1 defined by

ρk(z) = ψ∗
k − zψ∗

k−1.

Lemma 13.11. Granted the invertibility of eH , the identity (13.11) is equivalent to

(13.12) eHρk(z) = ρk(qz)e
H .

for k ∈ Z.

Proof. We rewrite (13.11) in the form

(1− xz)eHψ∗(x) = (1− qxz)ψ∗(x)eH .

This is a formal identity that can be expanded in powers of x. Comparing the coefficient of
xk gives exactly the identity (13.12). □

Our goal is to show that the row T = T∆(z; q) satisfies the same identity Tρk(z) = ρk(qz)T
as eH . Let us represent ρk graphically as a “gate” that can be attached to the lattice model.
Remembering that ψk creates a particle in the k-th column, and that + denotes the absence
of a particle, − its presence, we see that we have the following Boltzmann weights:

z

+ −

− −

z

+ +

− +

z

− +

− −

z

+ +

+ −

1 1 −z −z
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For reference, here are the Delta Boltzmann weights:

a1 a2 b1 b2 c1 c2

∆-ice +++

+++

+++

+++

z,q −−−

−−−

−−−

−−−

z,q
+++

−−−

+++

−−−

z,q −−−

+++

−−−

+++

z,q −−−

+++

+++

−−−

z,q
+++

−−−

−−−

+++

z,q

1 −qz 1 z (1− q)z 1

Proposition 13.12. The row transfer matrix

Tρk(z) = ρk(qz)T.

Proof. Graphically this means that we must show the equivalence of the two following
partition functions:

z

ik+2 ik+1

ik ik−1

ik−2 ik−3

jk+2 jk+1 jk jk−1 jk−2 jk−3

z,q z,q z,q z,q z,q z,q· · · · · ·

and

qz

ik+2 ik+1 ik ik−1 ik−2 ik−3

jk+2 jk+1

jk jk−1

jk−2 jk−3

z,q z,q z,q z,q z,q z,q· · · · · ·
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We can clip out the middle part and just prove the equivalence of these systems:

z

a

b c

d

ef

z,q z,q

qz

a

b c

d

ef

z,q z,q

This can be thought of as a kind of a Yang–Baxter equation, but of the sort mentioned
in Chapter 11 Section 7, where the R-matrix changes as it moves past the vertices. This
verification is now subject to case by case verification. Let us check just one case. Suppose
that the boundary values are (a, b, c, d, e, f) = (+,+,+,+,−,+). On the left-hand side there
are two admissible states:

z

+

+ +

+

−+

−

−

+

z

+

+ +

+

−+

+

+

−
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Their Boltzmann weights are, respectively (1 − q)z and −z, for a total of −qz. On the
right-hand side there is only one admissible state:

qz

+

+ +

+

−+

+

+

+

The Boltzmann weight is −qz. Since (1−q)z+(−z) = −qz, the required identity is satisfied
in this case, and the remaining cases are similar. □

7. Proof of Theorem 13.3

We will only prove that eH+(z;q) = T∆(z; q). The identity eH−(z;q) = TΓ(z; q) can be
deduced using adjointness considerations, as in Brubaker, Buciumas, Bump, and Gustafsson
2020b.

As in the last section, we abbreviate H = H+(z; q) and T = T∆(z; q). We have proved
that both operators eH and T both satisfy the same identities

eHρk(z) = ρk(qz)e
H , Tρk(z) = ρk(qz)T.

We need to show that there is enough information in this fact to deduce that T |j⟩ = eH |j⟩
for every semi-infinite monomial |j⟩ ∈ F.

Recall that the energy of |j⟩, with j = (jm, jm−1, . . .) ∈ Fm is
∑

k(jk−k). This is actually
a finite sum. The unique basis vector in Fm of energy 0 is the vacuum

|∅⟩m = um ∧ um−1 ∧ · · · .
The identity

eH−(z;q)|∅⟩m = T∆(z; q)|∅⟩m
is clear since both sides are |∅⟩m.

So assume that |j⟩m is not the vacuum. Then it has positive energy. This means jm > m.
We will show

(13.13) eH−(z;q)|j⟩m = T∆(z; q)|j⟩m.
We are assuming inductively that the identity is known for states of lower energy.

Let |j′⟩ = ujm−1 ∧ ujm−2 ∧ · · · ∈ Fm, so |j⟩m = ψ∗
jm |j

′⟩m−1. We have

(13.14) |j⟩m = ρjm(z)|j′⟩m−1 + zξ,

where
ξ = ujm−1 ∧ |j′⟩.
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Now both terms on the right-hand side of (13.14) have lower energy than |j⟩m. It is
possible that ξ = 0 (if jm−1 = jm − 1) but if ξ ̸= 0 it has lower energy than |j⟩m. So by our
induction hypothesis

(13.15) eH |j′⟩m−1 = T |j′⟩m−1, eHξ = ξ.

Now we have

eH |j⟩m = eHρjm(z)|j′⟩m−1 + zeHξ = ρjm(qz)e
H |j′⟩m−1 + zeHξ,

T |j⟩m = Tρjm(z)|j′⟩m−1 + zTξ = ρjm(qz)T |j′⟩m−1 + zTξ,

and using (13.15) we obtain (13.13). So the theorem is proved.

Exercises

Exercise 13.1. Prove the claim in Section 3 that for Γ-ice with finitely many horizontal spins equal to −,
the row transfer matrix is a finite product.

Exercise 13.2. Show that Jk and Jl commute for k ̸= −l in the proof of Theorem 13.5.

Exercise 13.3. Argue as stated in Section 5 that

⟨i|Jk|j⟩
is well-defined despite the fact that J−k on a basis vector gives an infinite sum of basis vectors.

Exercise 13.4. Prove that
eH−(z;q) = TΓ(z; q)

in Theorem 13.6 by using adjoints.

Exercise 13.5. Check the remaining cases in the proof of Proposition 13.12.
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Gold, Sarah, Elizabeth Milićević, and Yuxuan Sun (2024b). “Crystal chute moves on pipe
dreams”. in: Sém. Lothar. Combin. 91B, Art. 91, 12.



BIBLIOGRAPHY 197

Gray, Nathan (2017). Metaplectic Ice for Cartan Type C.
Gustafsson, Henrik P. A. and Carl Westerlund (2025). The Schützenberger involution and

colored lattice models.
Haines, Thomas J., Robert E. Kottwitz, and Amritanshu Prasad (2010). “Iwahori-Hecke

algebras”. in: J. Ramanujan Math. Soc. 25.2, pp. 113–145.
Hamel, A. M. and R. C. King (2007). “Bijective proofs of shifted tableau and alternating

sign matrix identities”. in: J. Algebraic Combin. 25.4, pp. 417–458.
Heisenberg, W. (1928). “Zur Theorie des Ferromagnetismus”. in: Z. Physik 49, pp. 619–636.
Hong, Jin and Seok-Jin Kang (2002). Introduction to quantum groups and crystal bases.

vol. 42. Graduate Studies in Mathematics. American Mathematical Society, Providence,
RI, pp. xviii+307.

Howe, Roger (2002). “Affine-like Hecke algebras and p-adic representation theory”.
in: Iwahori-Hecke algebras and their representation theory (Martina-Franca, 1999).
vol. 1804. Lecture Notes in Math.. Springer, Berlin, pp. 27–69.

Humphreys, James E. (1978). Introduction to Lie algebras and representation theory. vol. 9.
Graduate Texts in Mathematics. Second printing, revised. Springer-Verlag, New York-
Berlin, pp. xii+171.

Humphreys, James E. (1990). Reflection groups and Coxeter groups. vol. 29. Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, pp. xii+204.

Humphreys, James E. (2008). Representations of semisimple Lie algebras in the BGG cat-
egory O. vol. 94. Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, pp. xvi+289.

Ivanov, Dmitriy (2012). “Symplectic ice”. in: Multiple Dirichlet series, L-functions and au-
tomorphic forms. vol. 300. Progr. Math.. Birkhäuser/Springer, New York, pp. 205–222.
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