

DEGENERATE CHARACTERS,

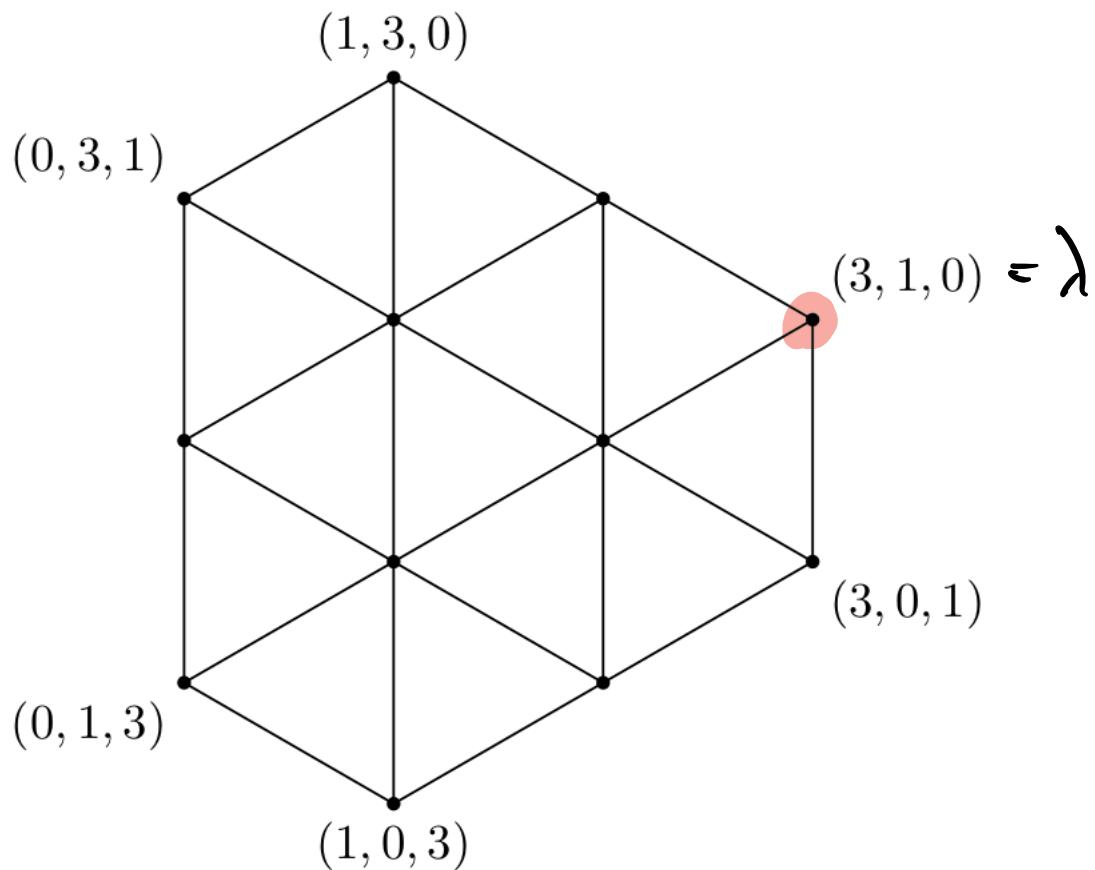
DEGENERATE CRYSTALS

LATTICE MODELS WHOSE PARTITION FUNCTIONS ARE
DEGENERATE CHARACTERS.

REVIEW:

$$\mathcal{D}_i = (1 - z^{-\alpha_i})^{-1} (1 - z^{-\alpha_i} \Delta_i)$$

Δ_i SYMMETRIZES IT PARALLEL TO α_i Root
so $\Delta_i \mathcal{D}_i = \mathcal{D}_i$



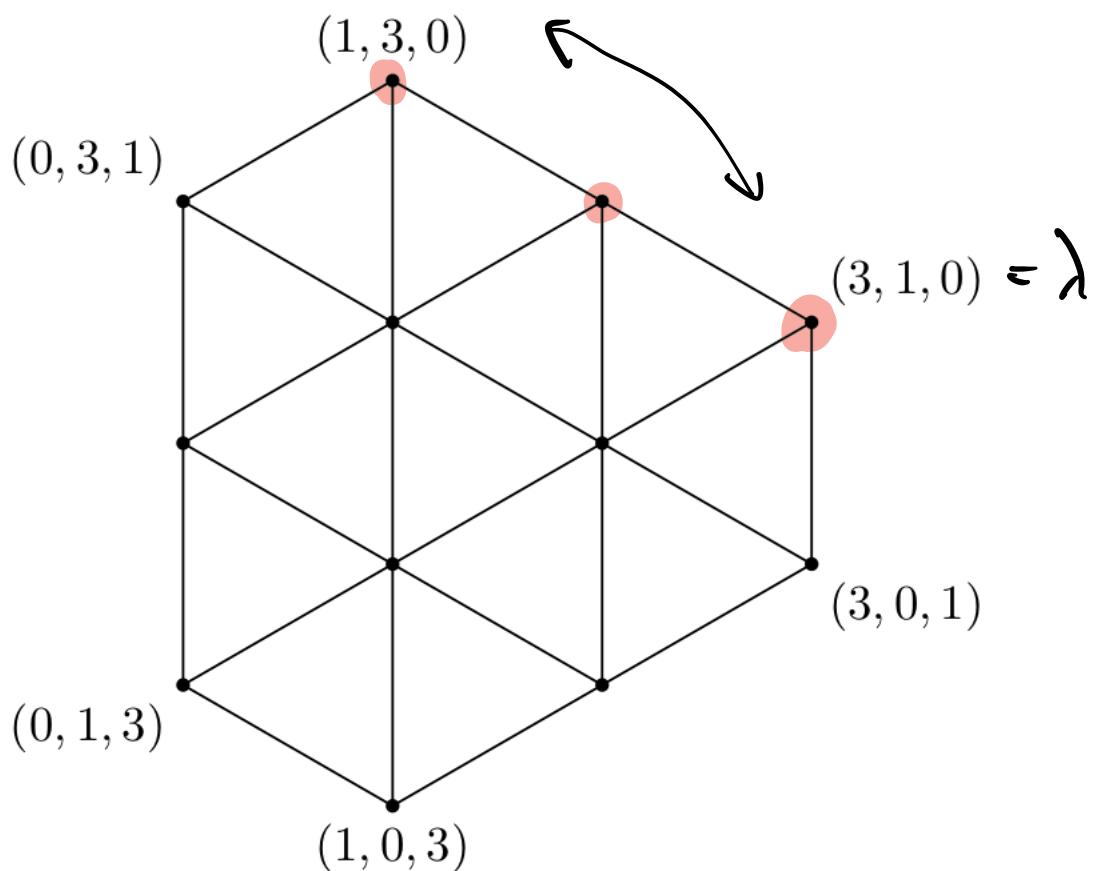
INSIDE $GL(3)$ WEIGHT LATTICE

$$z^\lambda = z_1^3 z_2$$

$$\alpha_1 = (1, -1, 0)$$

$$\Delta_1(x, y, z) = (y, x, z)$$

$$\partial_z z^\lambda = z_1^3 z_2 + z_1^2 z_2 + z_1 z_2^3$$



$$\partial_z z^\lambda$$

∂_w SATISFY BRAID RELATIONS SO BY

MATSUMOTO'S THM WE CAN DEFINE

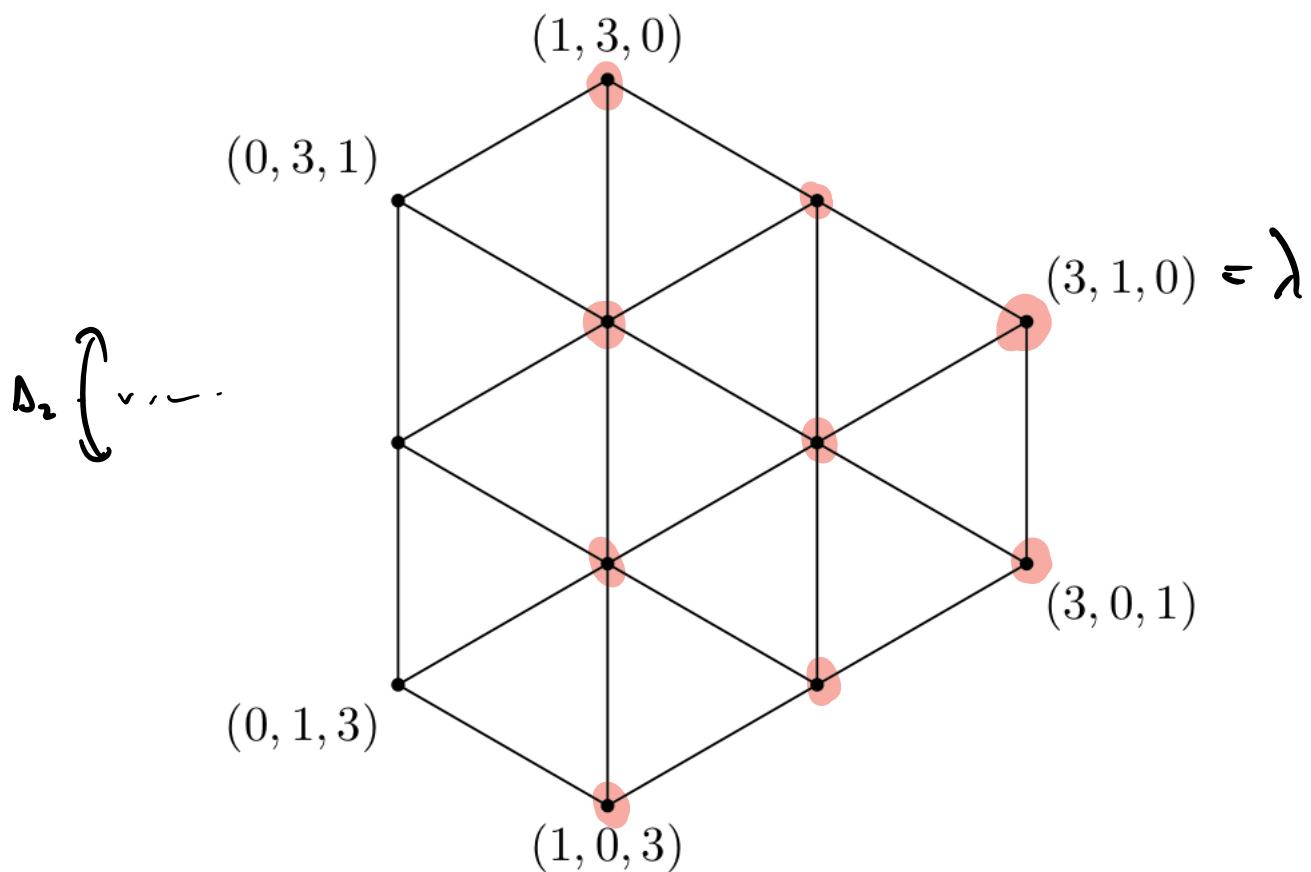
∂_w FOR $w \in W$

$w = \Delta_{i_1} \cdots \Delta_{i_k}$ (revers)

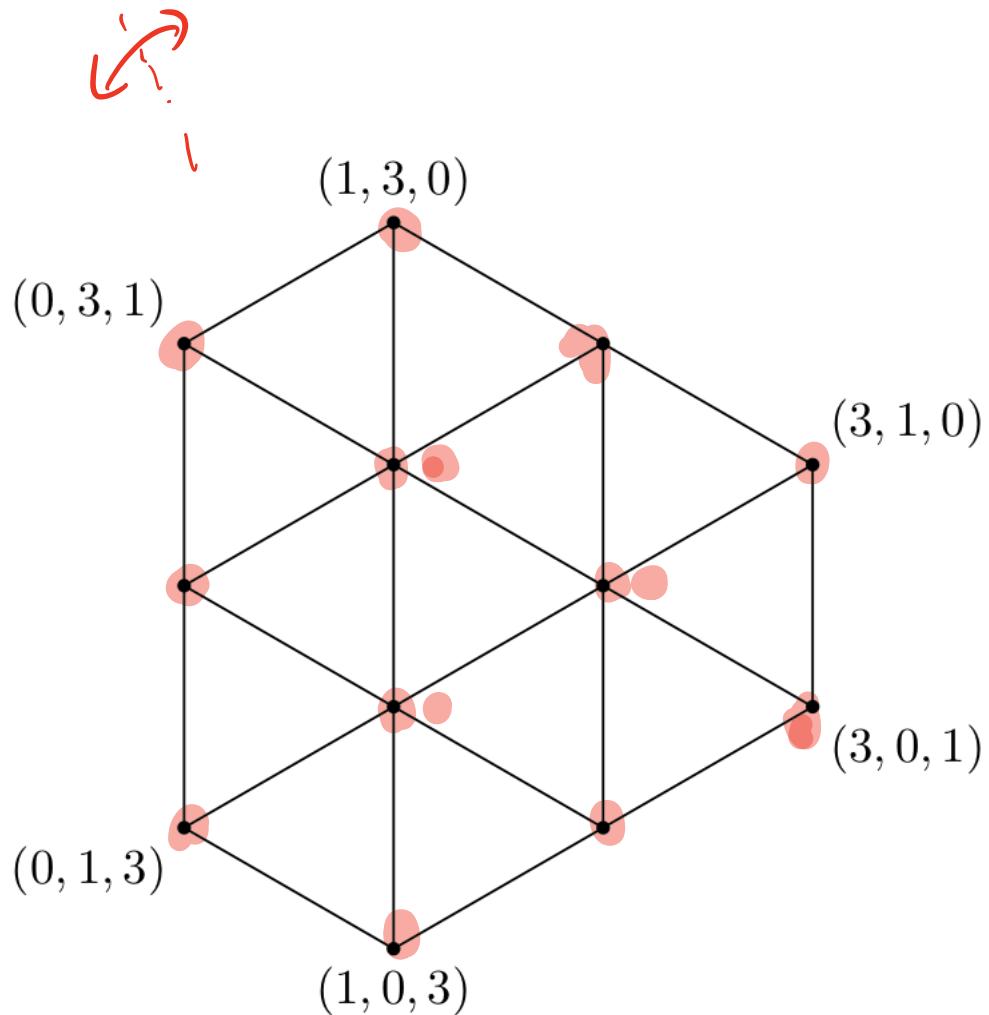
$$\partial_w = \partial_{i_1} \partial_{i_2} \dots \partial_{i_k}$$

IF $w = w_0$ AND λ IS DOMINANT

$\partial_{w_0} z^\lambda = \text{IRR CHAR WITH HW } \lambda$
 $= \Delta_\lambda(z)$ SCHUR FUNCTION,



$$\partial_z \partial_w t^\lambda$$



INNER WEIGHTS $(2, 1, 1), (1, 2, 1), (0, 1, 2)$

HAVE MULTIPLICITY 2.

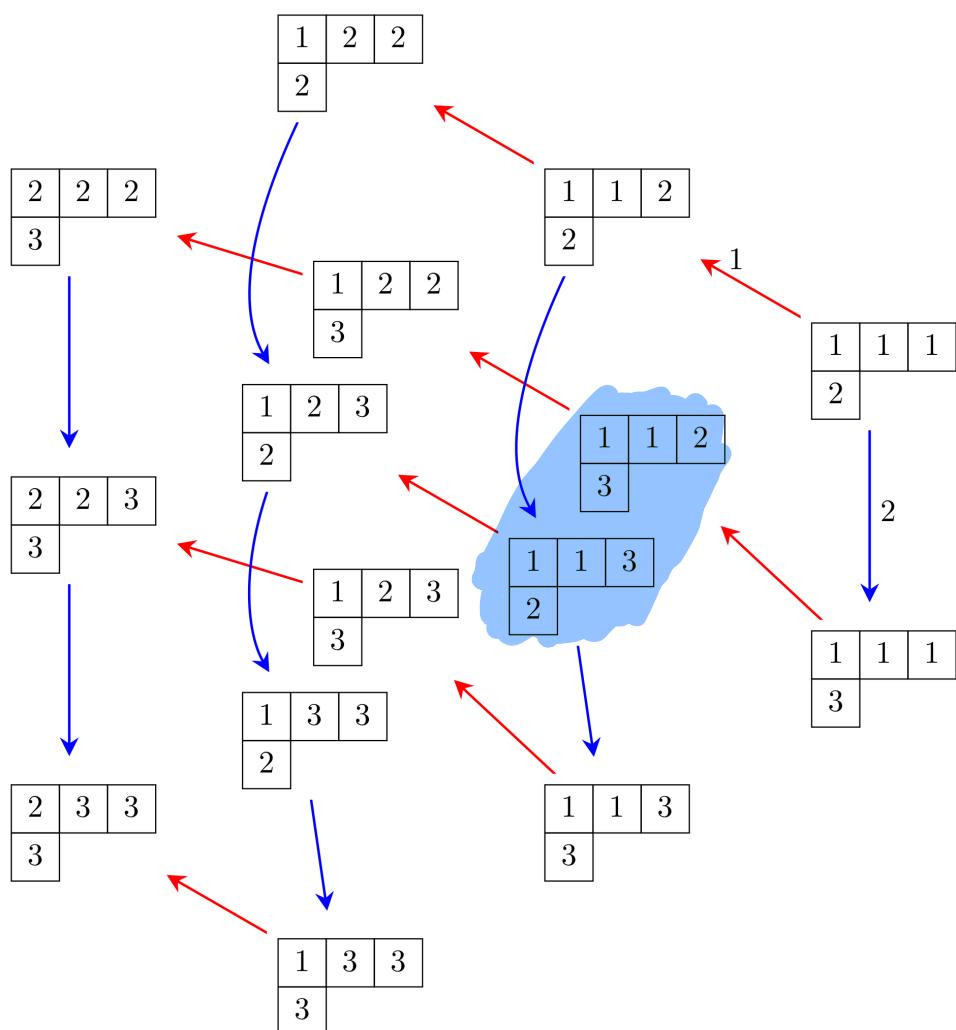
$$\partial_{w_0} \mathcal{Z}^\lambda = \Delta_\lambda(\mathcal{Z}).$$

PROOF IN MY HE GROUPS BOOK

COMBINATORIAL DEF OF SCHUR POLYNOMIAL (D. E. LITTLEWOOD)

$$Q_\lambda(z) = \sum_{\tau} z^{\text{wt}(\tau)}$$

$\tau \in \text{SSYT}$ OF SHAPE λ



THERE ARE 2 SSYT OF SHAPE $(3, 1, 1)$ AND
WEIGHT $(2, 1, 1)$

THESE CONTRIBUTE

$$z_1^2, z_2^2, z_3^2 \text{ AND } \zeta_1^2, \zeta_2^2, \zeta_3^2$$

EXPLAINING WHY THIS WEIGHT HAS
MULTIPLICITY 2 IN THE SCHUR POLYNOMIAL.

COMBINATORIAL DEF OF Δ_λ IS MYSTERIOUS

SINCE IT DOES NOT MAKE CLEAR WHY

$\sum_T z^{\text{wt}(T)}$ IS SYMMETRICAL. KRUTI GAVE A

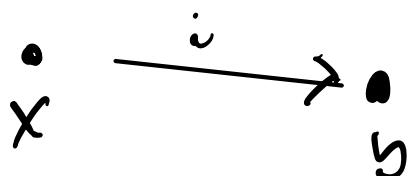
COMBINATORIAL PROOF BY CONSTRUCTING OPERATIONS
ON TABLEAUX MAKING THE Δ_λ -SYMMETRY CLEAR.

KASHIWARA AND NAKASHIMA SHOW THE
SET OF SSYT HAVE A STRUCTURE OF A
"CRYSTAL" WITH REMARKABLE COMBINATORIAL
PROPERTIES.

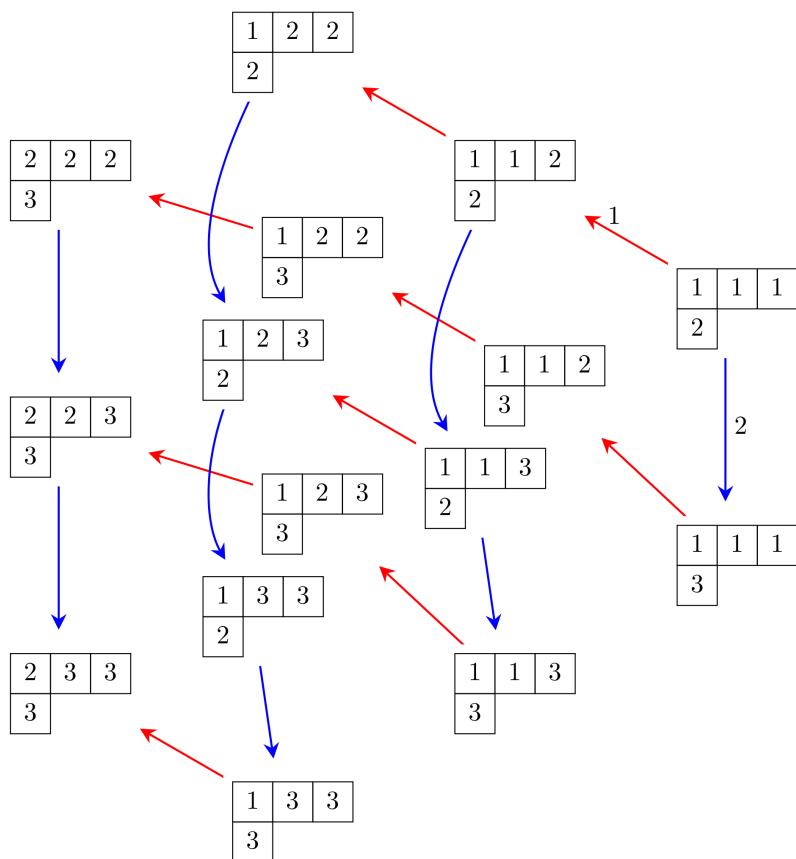
A KASHIWARA CRYSTAL \mathcal{C} IS A DIRECTED GRAPH.
IT COMES WITH A MAP $\text{wt} : \mathcal{C} \rightarrow \Lambda$ (WEIGHT LATTICE.)

THE EDGES ARE LABELED BY ROOTS

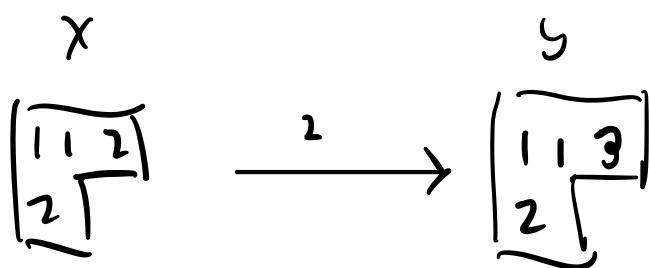
CONSIDER AN EDGE



IF THIS EDGE EXISTS $\text{wt}(y) = \text{wt}(x) - \alpha_i$



BLU : 2
RED : 1



$$\text{wt} = (2, 2, 0) \quad (2, 1, 1) = \text{wt}(X) - \alpha_2$$

$$\alpha_1 = (1, -1, 0)$$

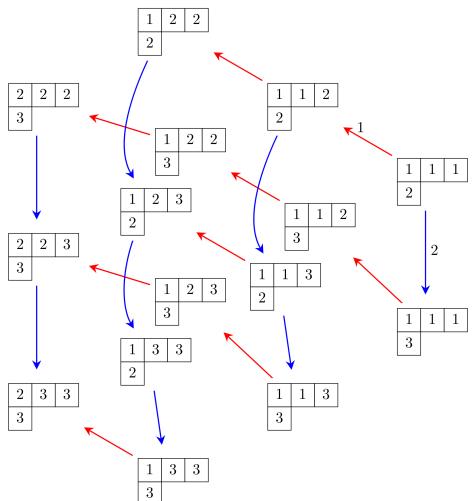
KASHIWARA OPERATORS $\ell_i, f_i : \mathcal{C} \rightarrow \mathcal{C} \cup \{\alpha\}$

α IS AN AUXILIARY SYMBOL CONNOTING FAILURE TO APPLY THE OPERATOR.

$e_i(x) =$ THE UNIQUE ELT $\in \mathbb{Z}$ such that
 AN EDGE $\xrightarrow{i} \bullet$
 $\exists \quad x$

EXISTS.

$e_i(x) = 0$ IF NO SUCH EDGE.



$$e_1\left(\begin{smallmatrix} 1 & 1 & 2 \\ 2 & & \end{smallmatrix}\right) = \begin{smallmatrix} 1 & 1 & 1 \\ 2 & & \end{smallmatrix}$$

$f_i(x) =$ UNIQUE y ST $\xrightarrow{i} y$

0 IF NO SUCH EDGE.

$\varepsilon_i, \phi_i: \mathcal{C} \rightarrow \mathbb{Z}$ (even N)

$$\varepsilon_i(x) = \max \{a \mid e_i^a(x) \neq 0\},$$

= # OF TIMES ϕ_i CAN BE APPLIED.

CRYSTALS WERE INVENTED INDEPENDENTLY BY
 KASHIWARA, LUSZTIG, P. LITTELMANN,
 LITTELMANN AND KASHIWARA PROVED A
 REFINED DEHAENE CHARACTER FORMULA,

THE OPERATORS $\partial_i : \underset{T}{\underset{\Omega(T)}{\text{Functions on}}} \rightarrow \Omega(T)$

T = TORUS WHOSE RING OF REGULAR
 FUNCTIONS IS Λ .

$\Omega(T) = \text{SPAN OF } \{x^\lambda \mid \lambda \in \Lambda\}$.

OR $\partial_i : \mathbb{R}[\Lambda] \rightarrow \mathbb{R}[\Lambda]$

(AN BE LIFTED TO $\mathbb{R}[B_\lambda] \rightarrow \mathbb{R}[B_\lambda]$)

B_λ = KASHIWARA CRYSTAL OF SSYT
 OF SHAPE λ .

42
11

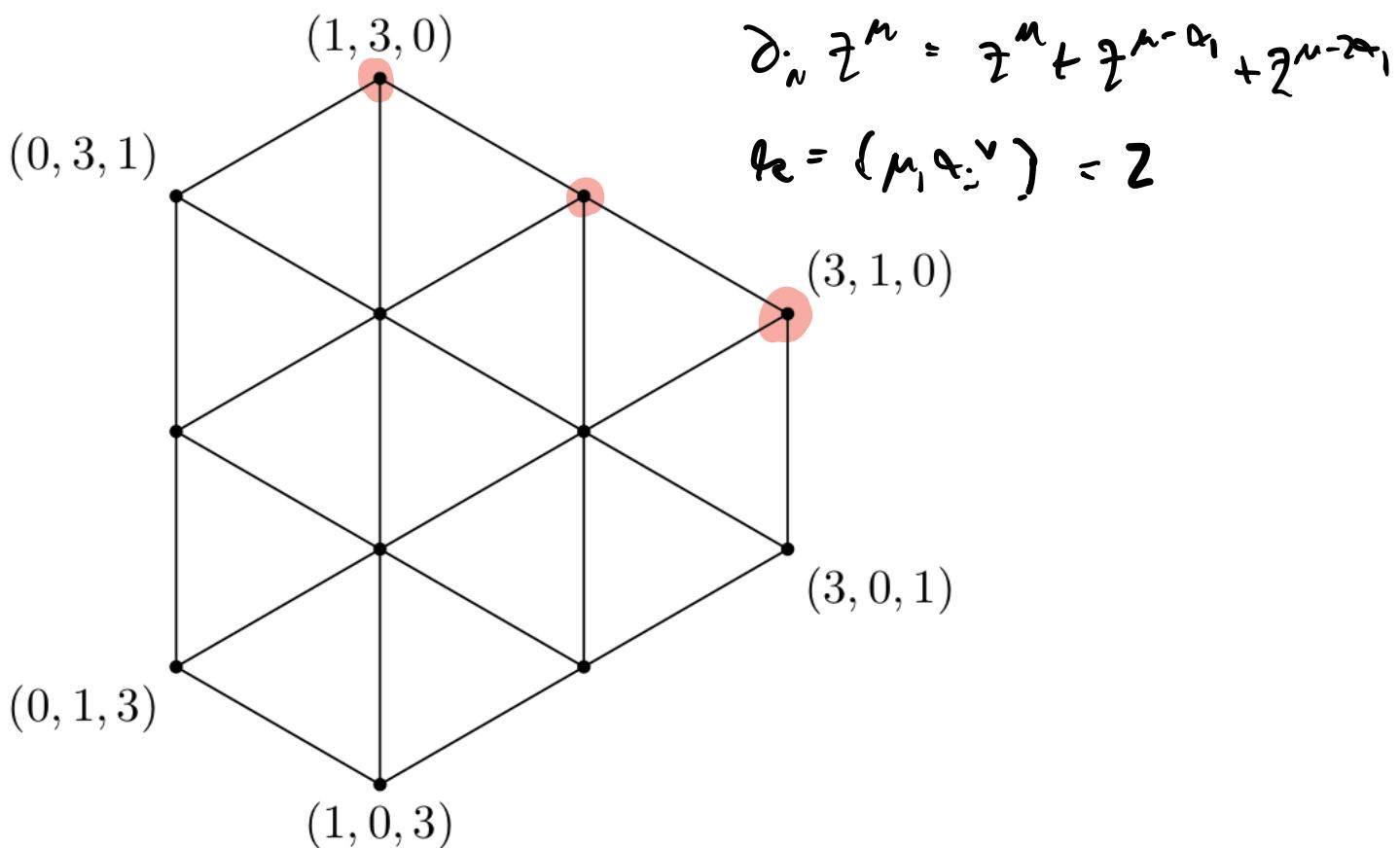
IF $T \in \mathcal{B}_\lambda$ SUPPOSE $\langle \text{wt}(T), \alpha_i^\vee \rangle \geq 0$

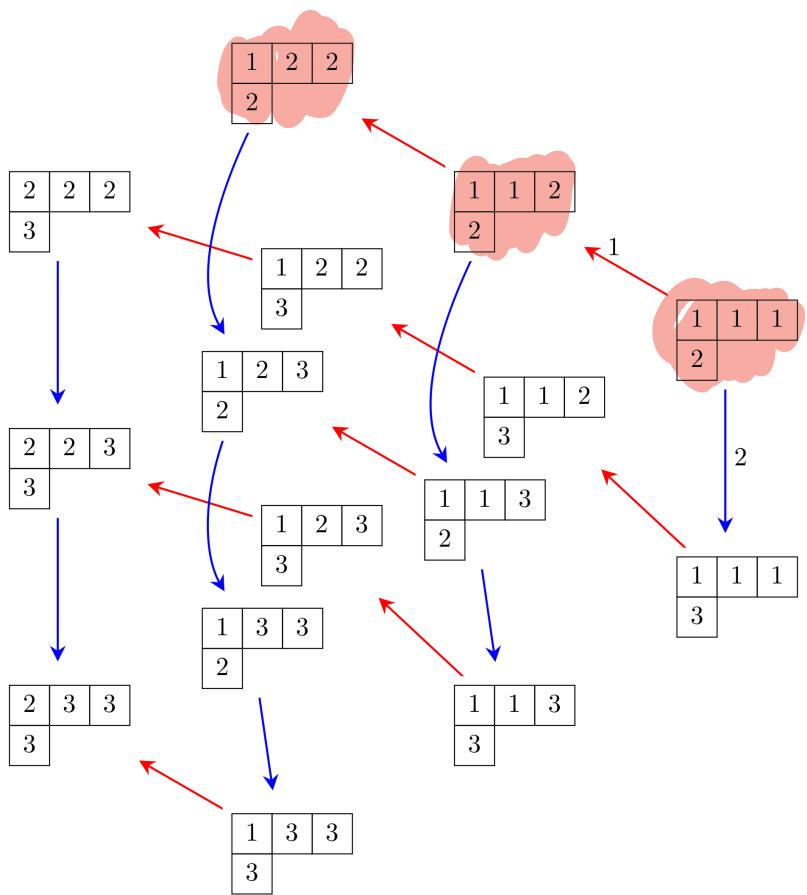
$$\partial_i z^\mu = z^\mu + z^{\mu-\alpha_i} + z^{\mu-2\alpha_i} + \dots + z^{\mu-n\alpha_i}$$

$$n = \text{wt}(T)$$

$$\partial_i z^\mu = \sum_{j=0}^n z^{\mu-j\alpha_i}$$

$$\mu = (3, 1, 0)$$





DEFINITION: (LITTERMANN)

$$\partial_i \tau = \sum_{j=0}^n f_i^j(\tau) \quad \text{IN} \quad \mathbb{R}[B_\lambda]$$

$$\partial_i \begin{bmatrix} 1 & 1 & 1 \\ 2 & \Gamma \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & \Gamma \end{bmatrix} + \begin{bmatrix} 1 & 1 & 2 \\ 2 & \Gamma \end{bmatrix} + \begin{bmatrix} 1 & 2 & 2 \\ 2 & \Gamma \end{bmatrix}$$

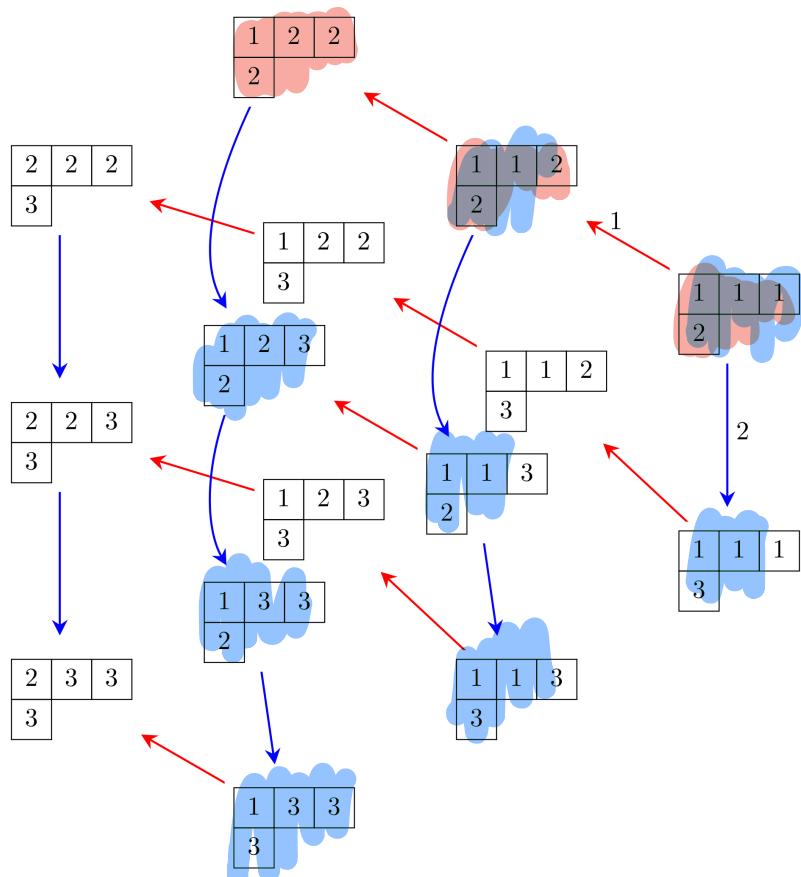
THEOREM (LIMELMANN) APPLIED TO THE
HIGHEST WEIGHT ELEMENT THESE OPERATORS
BRAID SO

$$\partial_{\omega} T_{\lambda} = \partial_{i_1} \cdots \partial_{i_r} T_{\lambda}$$

↑
 HIGHEST
 WEIGHT
 ELT.

$$\omega = \Delta_{i_1} \cdots \Delta_{i_r}$$

IS INDEPENDENT OF THE REDUCED EXPRESSION.

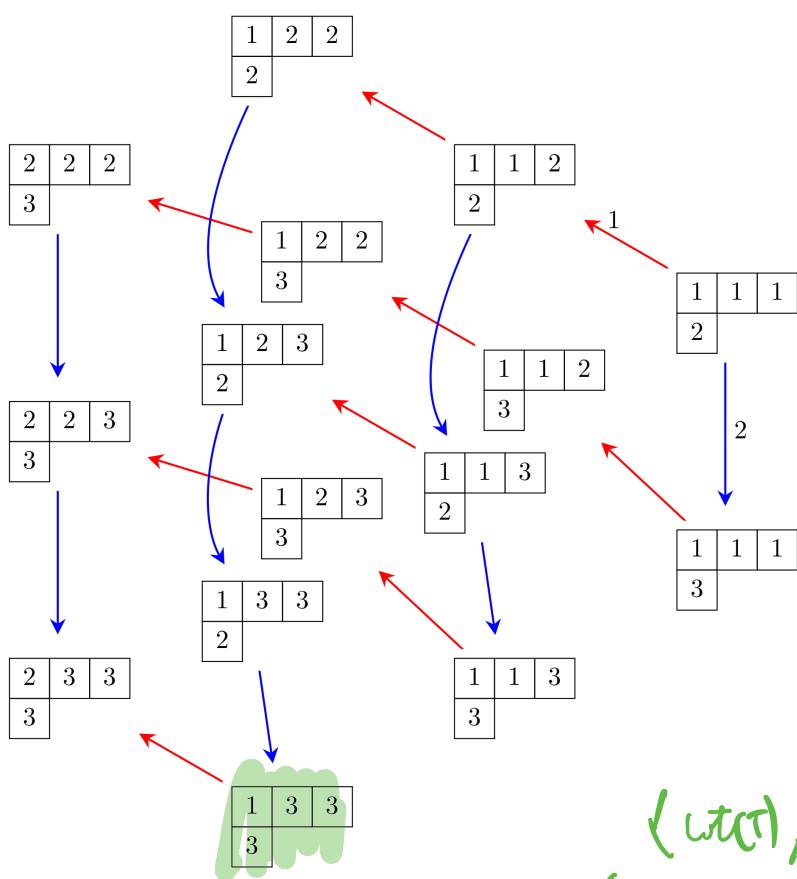


IF $\langle \text{wt}(\tau), \alpha_i^\vee \rangle < 0$

$$\partial_i \tau = -e_i(\tau) - e_i^2(\tau) \dots$$

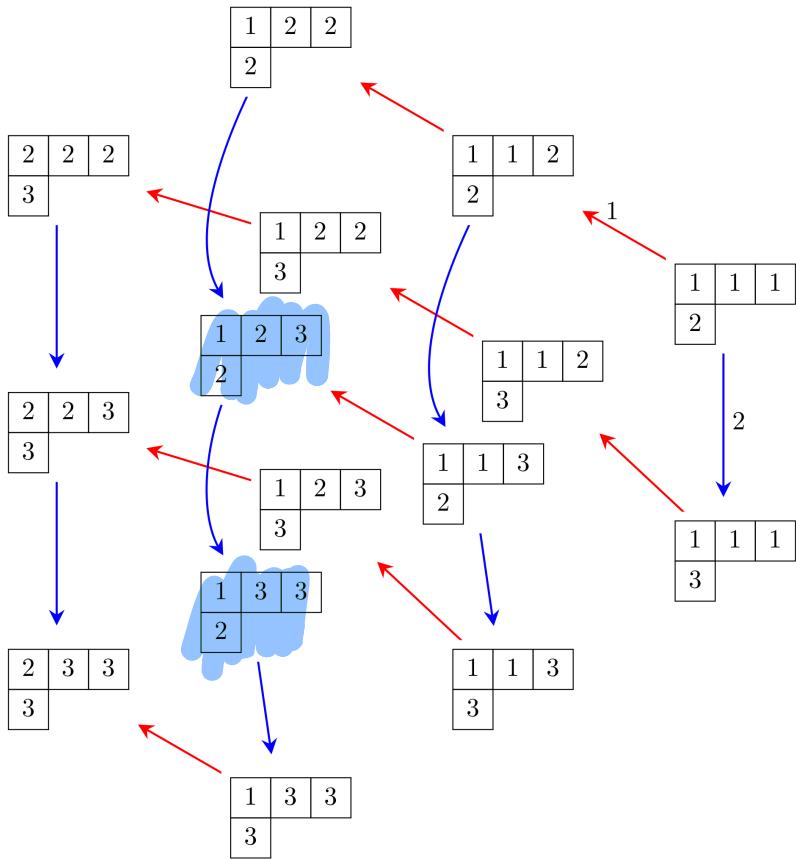
OF APPLICATIONS IS

- $\langle \text{wt}(\tau), \alpha_i^\vee \rangle - 1$. (I think)



$$\langle \text{wt}(\tau), \alpha_i^\vee \rangle$$

$$\langle (1,0,3), (0,1,-1) \rangle = -2$$



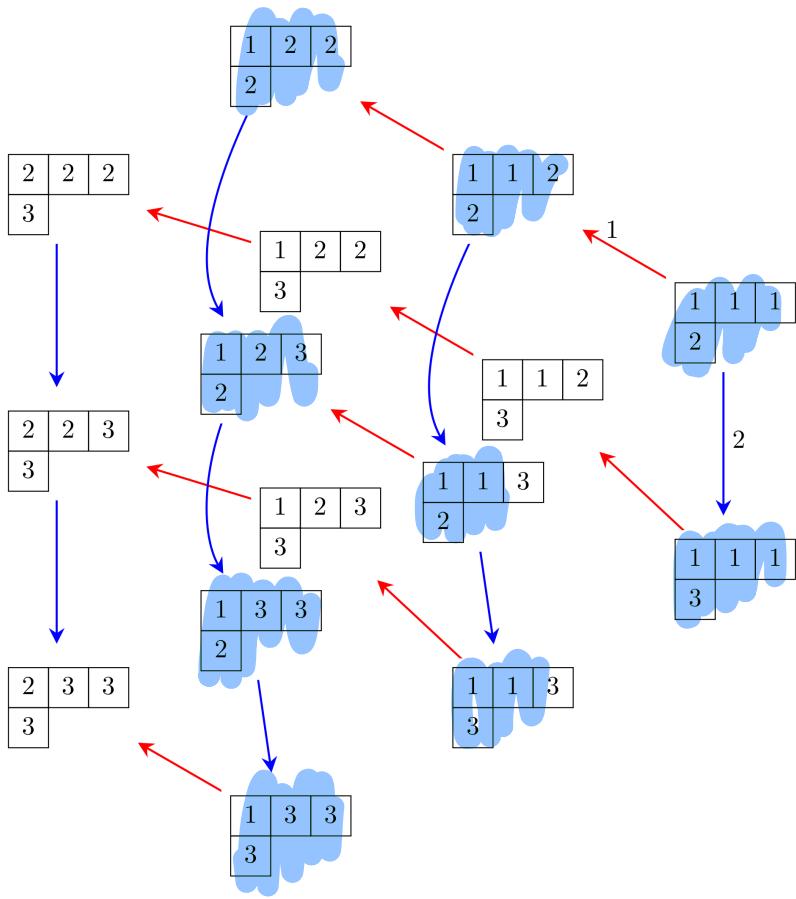
$$\partial_w \begin{bmatrix} 1 & 3 & 3 \\ 3 & 2 & 1 \end{bmatrix} = - \begin{bmatrix} 1 & 3 & 3 \\ 2 & 2 & 1 \end{bmatrix} - \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \end{bmatrix}$$

$$e_2(\cdots)$$

THEOREM: THERE IS A SUBSET OF B_λ , $B_\lambda(\omega)$ SUCH THAT IN $\mathbb{Z}[\lambda]$

$$\partial_w T_{\text{hw.}} = \sum_{v \in B_\lambda(\omega)} v$$

THIS IS CALLED A DEMAZURE CRYSTAL.



$w = \Delta_2 \Delta_1$ THIS IS THE DEMAZURE CRYSTAL $\mathbb{B}(s_2, s_1)$.

$\mathbb{B}(w_0) = \mathbb{B}$.