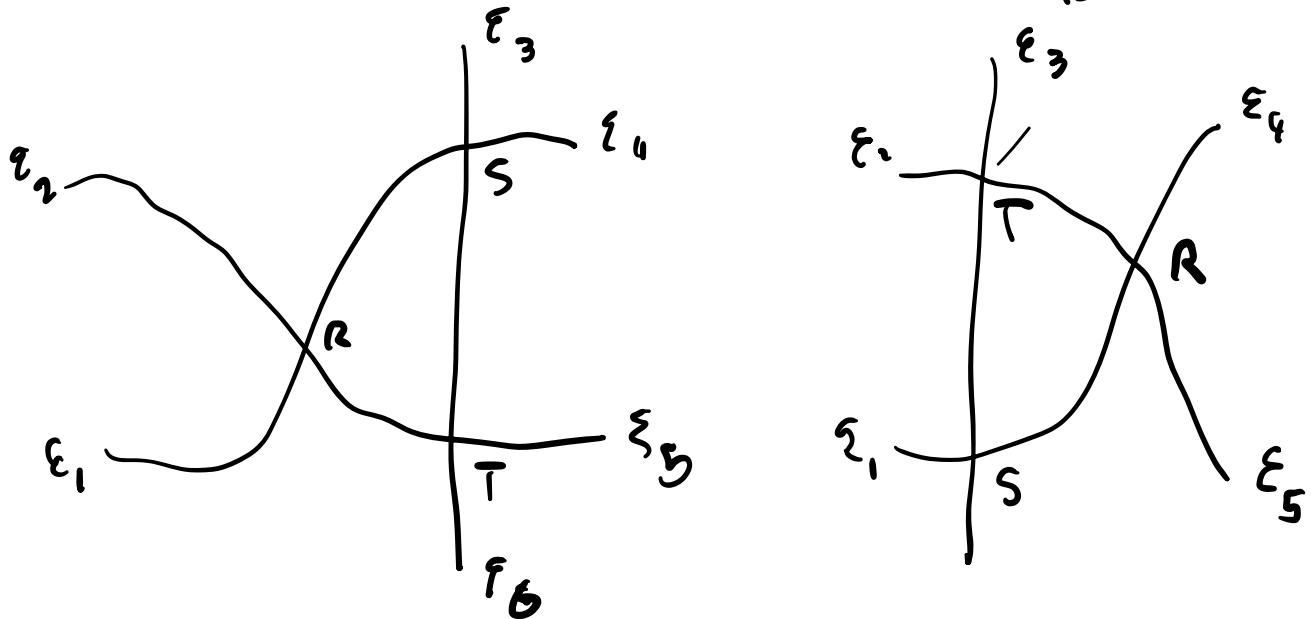


PARAMETRIZED YANG-BAXTER EQUATIONS.

(1) EQUIVALENCE OF TWO SYSTEMS

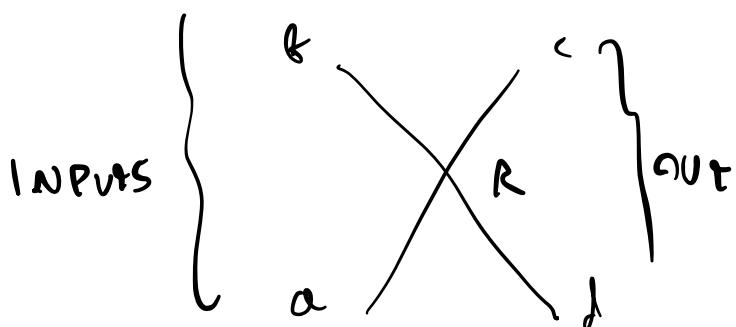
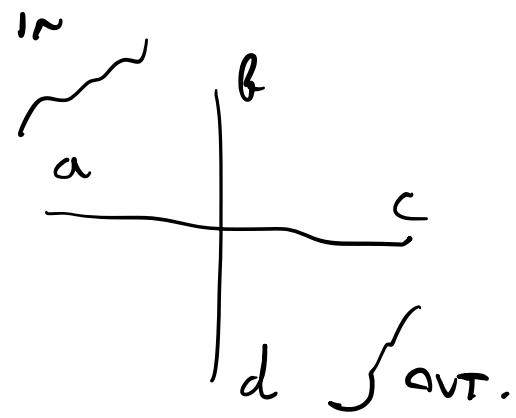


MOVING R ACROSS THE S, T VERTICES
SWITCHES THEN USED IN TRAIN ARGUMENT.

(2) "LINEAR ALGEBRA STATEMENT"

Σ A SET OF ALLOWED SPINS.

IF V = FREE VECTOR SPACE ON Σ , WE
CAN REGARD A VERTEX AS AN ENDOOMORPHISM
OF $V \otimes V$ AS FOLLOWS.



$$a, b, c, d \in \Sigma$$

$$a \otimes b \in V \otimes V$$

$$d \otimes c$$

$R: V \otimes V \rightarrow V \otimes V$ is the linear transformation

$$\beta \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{matrix} \text{coeff} \text{ in } R(a \otimes b) \\ \text{of} \\ d \otimes c \end{matrix}$$

$$\left\{ \begin{matrix} d \otimes c \\ a \otimes b \end{matrix} \right\} R \left\{ \begin{matrix} a \otimes b \\ d \otimes c \end{matrix} \right\} = \beta \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

$$T: V \otimes V \rightarrow V \otimes V \quad x \otimes y \rightarrow y \otimes x$$

$T \circ R$ is often considered the R -matrix.

Both conventions are used.

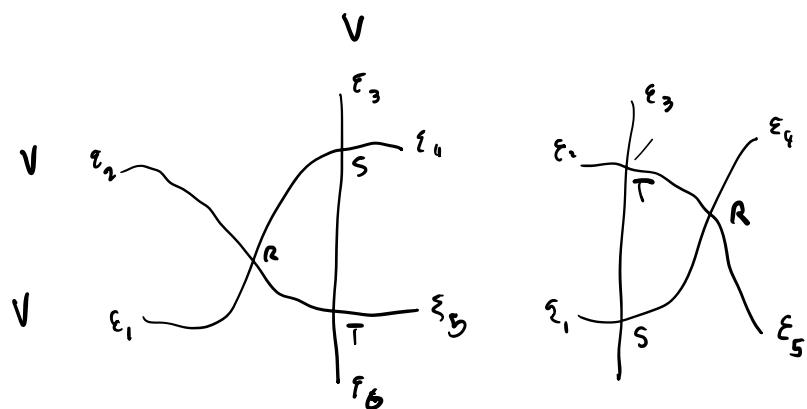
YANG BAXTER EQUATION IS AN IDENTITY IN
 $V \otimes V \otimes V$

$$(T \otimes I) (I \otimes S) (R \otimes I)$$

$$= (I \otimes R) (S \otimes I) (I \otimes T)$$

THIS IS EQUIVALENT TO OTHER FORMULATION.

REF: SECTION 6 OF CH. I.



$[R, S, T]$

$R, S, T \in \text{End}(V \otimes V)$

$$= (T \otimes I)(I \otimes S)(R \otimes I)$$

$$- (I \otimes R)(S \otimes I)(I \otimes T)$$

"YANG BAXTER COMMUTATOR"

$$[R, S, T] = 0 \quad \text{SUFFICIENT YBE.}$$

PARAMETERIZED YBE

LET Γ BE A GROUP

VS VAIK : \mathbb{C}^* , \mathbb{C} , ELLIPTIC CURVE

ONE EXOTIC EXAMPLE : $GL(2) \times GL(1)$

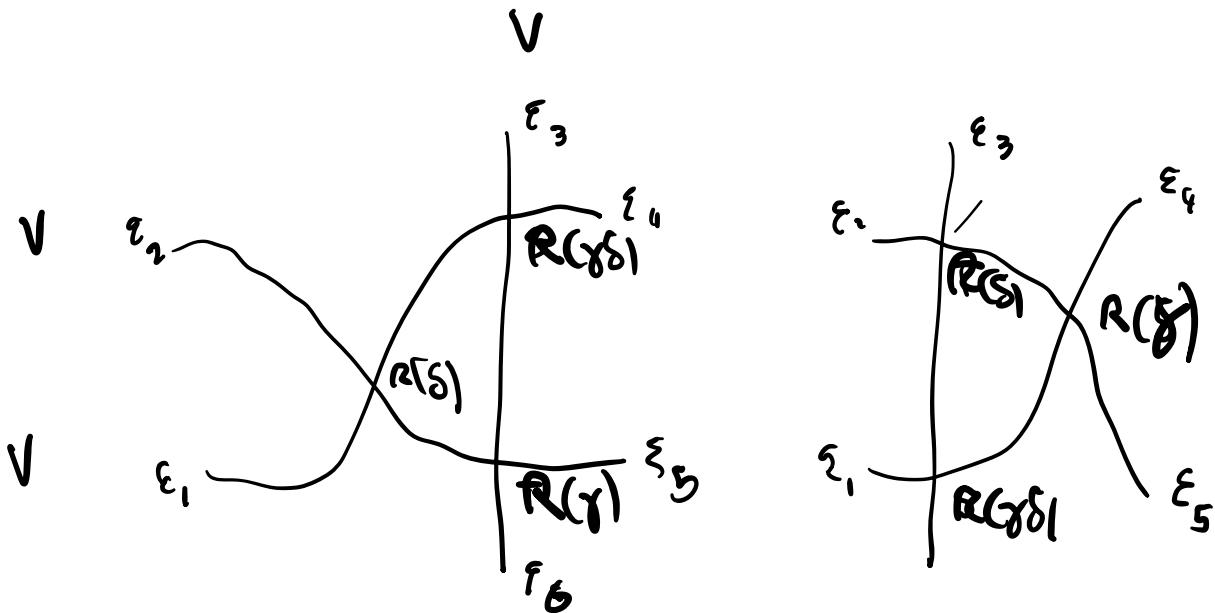
"FREE-FERMIONIC SIX
VERTEX MODEL"

(TOKUYAMA).

V SOME VS.

$R: \Gamma \rightarrow \text{End}(V \otimes V)$ SOME MAP

$$[[R(\gamma), R(\gamma\delta), R(\delta)]] = 0$$



PARAMETRIZED YBE

VARIANT: HOMOGENEOUS PARAMETRIZED YBE

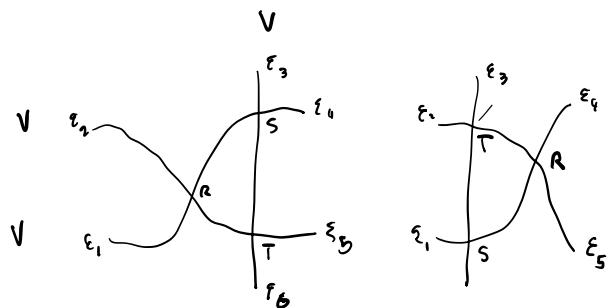
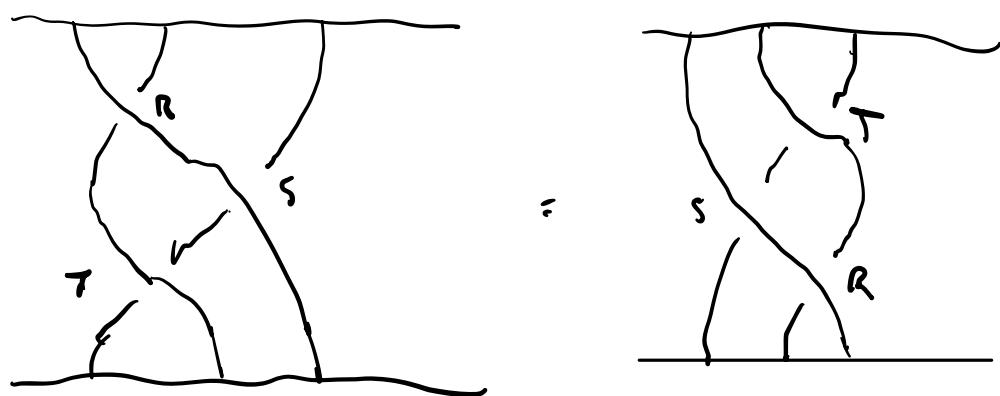
$$\gamma_1, \gamma_2 \in \mathbb{C}^*$$

$$R(\gamma_1, \gamma_2)$$

$$[[R(\gamma_1, \gamma_2), R(\gamma_1, \gamma_3), R(\gamma_2, \gamma_3)]] = 0$$

MANY EXAMPLES.

NEXT LECTURE WE WILL CONNECT HOMOGENEOUS
 PARAMETERIZED YBE TO DEMAZURE OPS
 EXPLAINED IN CHAPTER 6 OF THE TEXT.



YBE \Rightarrow BRAID RELATIONS
 FOR DEMAZURE OPERATORS.