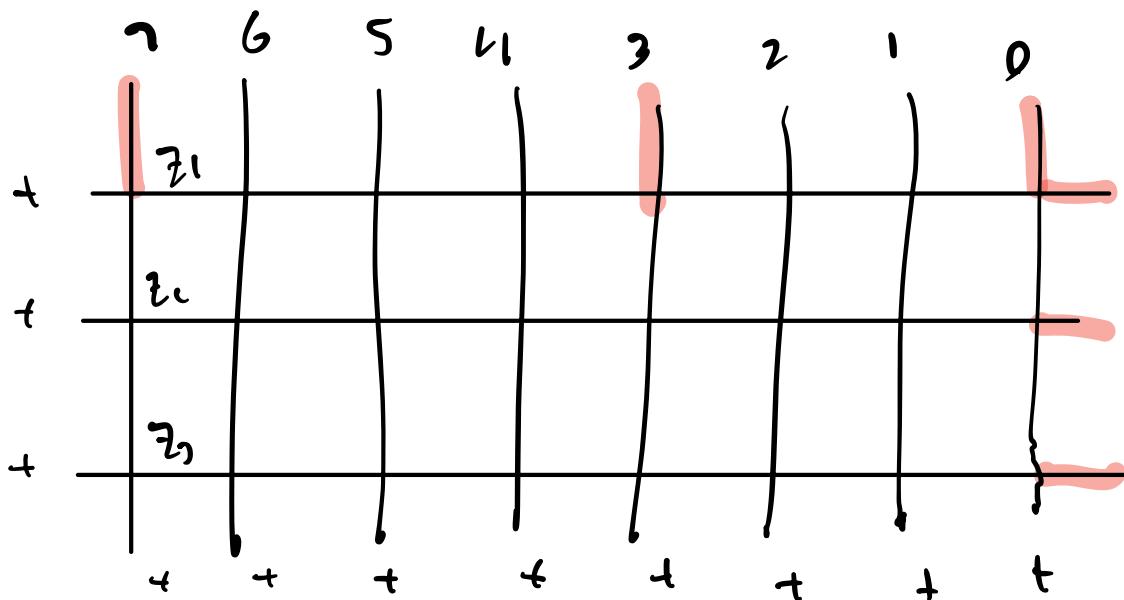


$$\lambda = (\lambda_1, \dots, \lambda_n)$$

$$\rho = (n-1, n-2, \dots, 0)$$

a_1	a_2	b_1	b_2	c_1	c_2
1	z	$-q$	z	$z(1-q)$	1

$z = z_i$ USE THESE WEIGHTS IN
n-TH RW



④ On top boundary columns $\lambda_i + n - i$

$$\lambda = (5, 2, 0) \quad \lambda + \rho = (7, 3, 0)$$

$$n = 3$$

$$Z(S_{\lambda}(t, q)) = \frac{S_{\lambda}(z_1, \dots, z_n)}{\prod_{i < j} (z_i - q z_j)}$$

WHERE S_{λ} IS A SYMMETRIC POLY (NOT INVOLVING q).

$q = 1$ LEADS TO $n! = (w)$ STATES

a_1	a_2	b_1	b_2	c_1	c_2
1	z	$-q$	z	$(1-q)$	1

$$S_\lambda(z) = \frac{\sum_w \prod_{i < j} z_i - z_j}{\prod_{i < j} (z_i - z_j)} = \frac{\sum_{\text{SSYT}} \omega(z^{\lambda + \rho})}{\prod_{i < j} (z_i - z_j)} = \Delta_\lambda(z_1, \dots, z_n)$$

USUAL SCHUR.

$q = 0$ THERE ARE NO b_i PATTERNS.

STATES ARE IN BIJECTION WITH GELFAND-IZETIN PATTERNS

AND SSYT (SEMI-STANDARD YOUNG TABLEAUX).

~) COMBINATORIAL DEF OF SCHUR FUNCTION.

A GELFAND TSETUN PATTERN OF SIZE n AND SHAPE λ

ROWS INDEXED BY $0, 1, 2, \dots$

0-th ROW IS λ

EACH ROW IS A PARTITION $(a_{i,1}, \dots, a_{i,n-i})$

ROWS INTERLEAVE

$$\lambda = (\lambda_1, \dots, \lambda_n)$$

$$\mu = (\mu_1, \dots, \mu_{n-1})$$

$$\lambda_1 \geq \mu_1 \geq \lambda_2 \geq \mu_2 \geq \dots \geq \lambda_n$$

$$n = 3 \quad \lambda_1 \quad \lambda_2 \quad \lambda_3$$

$$a \quad b$$

$$c$$

$$\lambda_1 \geq a \geq \lambda_2 \geq b \geq \lambda_3$$

$$a \geq c \geq b$$

$GL(n) \rightsquigarrow GL(n-1)$ BRANCHING RULE.

$\lambda = (\lambda_1, \dots, \lambda_n)$ A PARTITION

$$\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$$

THERE IS A IRRED REP'N OF $GL(n)$ OF HIGHEST WEIGHT λ .

THEOREM: $\dim \Pi_{\lambda}^{GL(n)} = \# \text{ OF GTP WITH TOP ROW } \lambda$.

FOLLOWS FROM BRANCHING RULE

$GL(n-1) \rightsquigarrow GL(n)$

$$g \rightsquigarrow \begin{pmatrix} g & \\ & 1 \end{pmatrix}$$

$$\Pi_{\lambda}^{GL(n)} \Big|_{GL(n-1)} = \bigoplus_{\mu=(\mu_1, \dots, \mu_{n-1})} \Pi_{\mu}^{GL(n-1)}$$

λ, μ INTERLACE.

GTP FOR λ READ OFF μ FROM SECOND ROW.

$$\# \text{ GTP OF SHAPE } \lambda \text{ SIZE } n = \sum_{\substack{\mu \\ \lambda, \mu \text{ INTERLACE}}} \# \text{ GTP OF SHAPE } \mu$$

BISECTION GTP WITH TOP ROW λ
AND SSYT OF SHAPE λ .

IF WE DISCARD BOXES IN A SSYT
CONTAINING \sim OBTAIN A SSYT OF
SHAPE μ SOME μ INTERLEAVING λ .

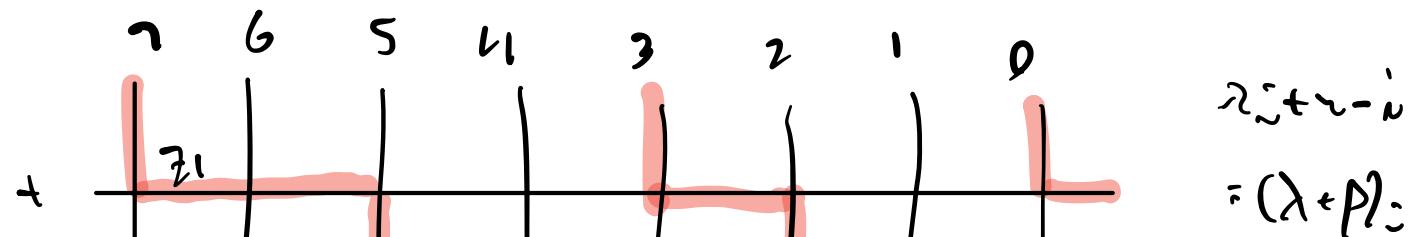
$\lambda = (6, 4, 2)$																					
$\mu = (5, 4)$																					
$T :$																					
<table border="1"> <tr> <td>1</td><td>1</td><td>2</td><td>3</td><td>3</td><td>5</td><td></td></tr> <tr> <td>2</td><td>3</td><td>3</td><td>4</td><td></td><td></td><td></td></tr> <tr> <td>6</td><td>5</td><td></td><td></td><td></td><td></td><td></td></tr> </table>	1	1	2	3	3	5		2	3	3	4				6	5					
1	1	2	3	3	5																
2	3	3	4																		
6	5																				

CONTINUE : ELIMINATE BOXES LABELED $n-1$
OBTAIN A SEQUENCE OF PARTITIONS

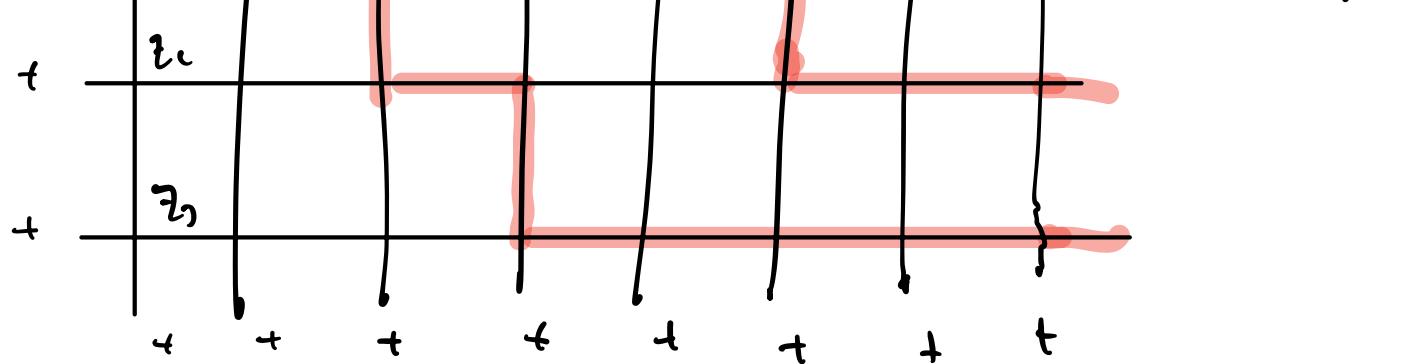
$\zeta =$	6	4	2	0	0
	5	4	0	0	
	5	3	0		
	3	1			
	2				

GIVEN A STAR OF SIX VERTEX MODEL
 THE VERTICAL EDGES CONTAINING SPINS

GIVE A GTP.



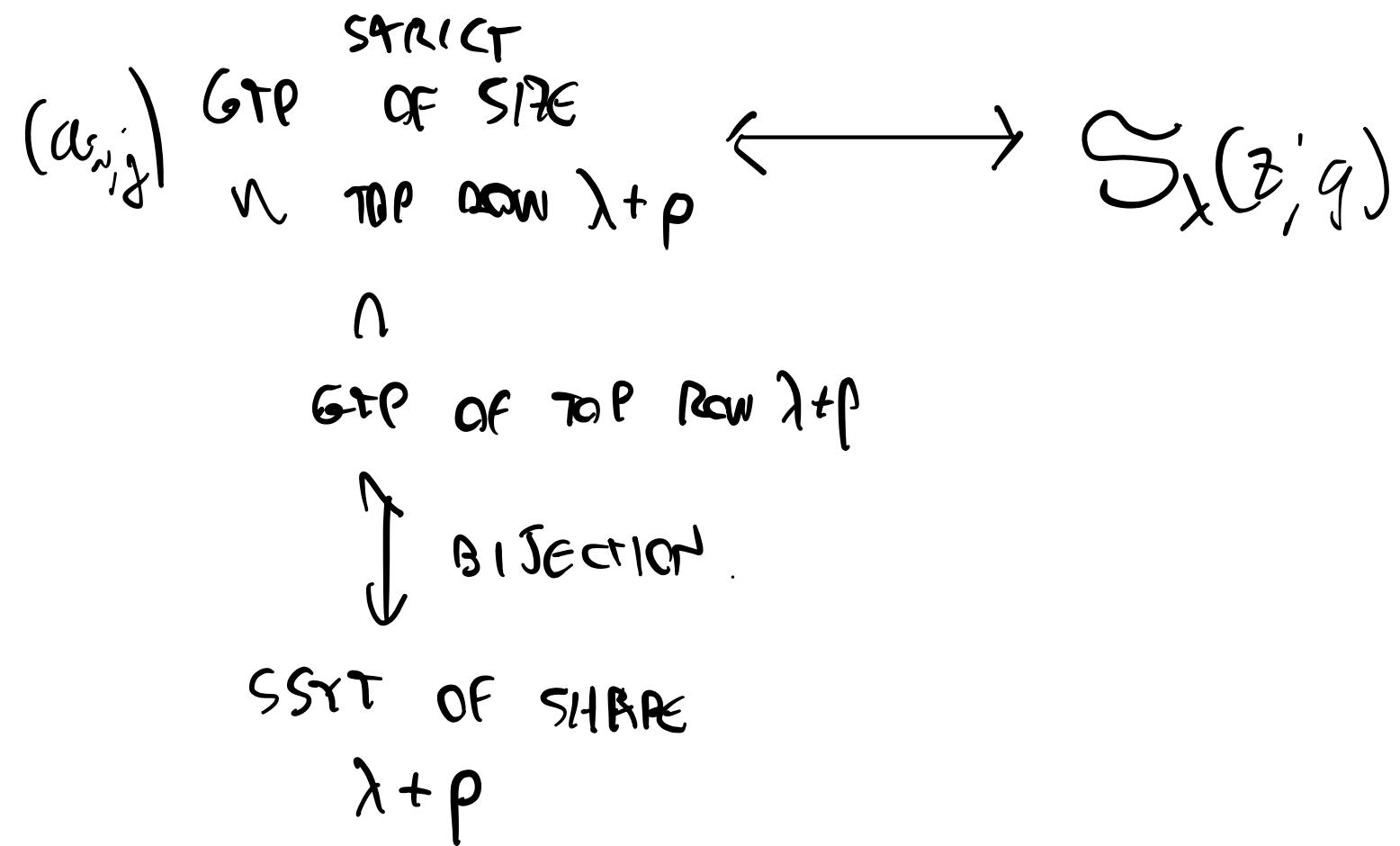
$$r_7 + r_6 - r_5 = (\lambda + p) -$$



$$r_7 + r_6 - r_5 = (\lambda + p) -$$

7 3 0
 5 2
 4

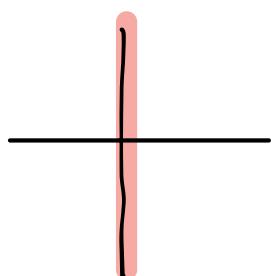
ENTRIES IN GTP ARE VS WHICH CFS
 HAVE SPINS.



STRICT MEANS

$$a_{i,n,1} > a_{i,n,2} > a_{i,n,3} > \dots$$

IF $q = 0$



THIS
CAN'T
HAPPEN

a_1	a_2	b_1	b_2	c_1	c_2
$\begin{array}{c} \oplus \\ \ominus \\ z \\ \oplus \end{array}$	$\begin{array}{c} \ominus \\ \oplus \\ z \\ \ominus \end{array}$	$\begin{array}{c} \oplus \\ z \\ \ominus \end{array}$	$\begin{array}{c} \oplus \\ z \\ \ominus \end{array}$	$\begin{array}{c} \oplus \\ \ominus \\ z \\ \oplus \end{array}$	$\begin{array}{c} \oplus \\ z \\ \ominus \\ \oplus \end{array}$
1	z	$-q$	z	$z(1-q)$	1

$$\begin{matrix}
 1 & 2 & 0 & 2 & 2 & 1 \\
 1 & 1 & 0 & 2 & 1 & 1
 \end{matrix}$$

AGGARWAL.

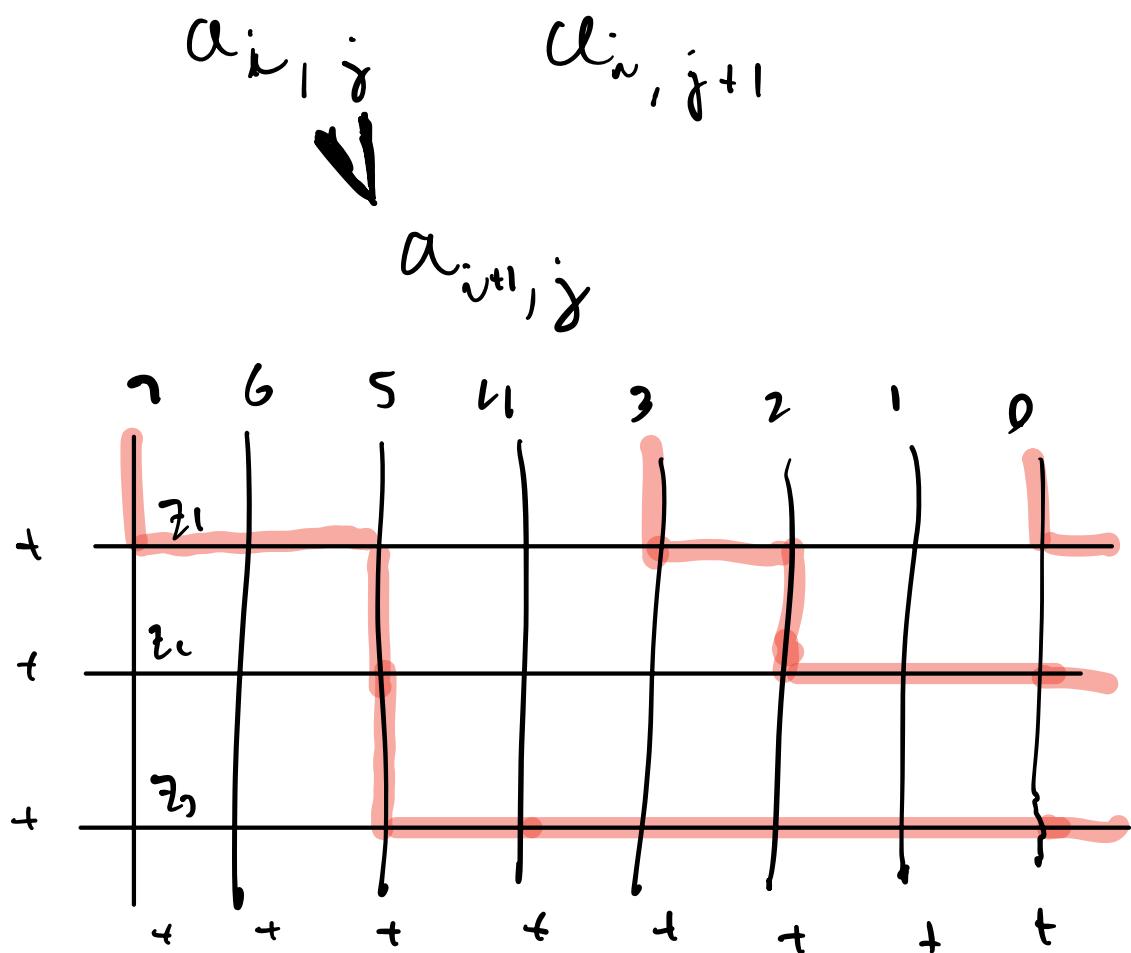
WEIGHTS ARE CALLED FREE-FERMIONIC IF

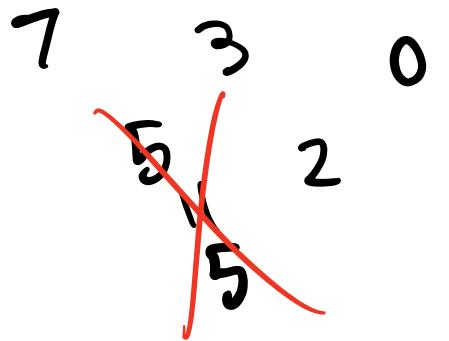
$$a_1 a_2 + b_1 b_2 = c_1 c_2$$

FOR FREE-FERMIONIC WEIGHTS

THERE IS A "LARGER" YANG BAXTER EQUATION MANY INTERESTING EXAMPLES.

THE GRP IS LEFT STRUCT



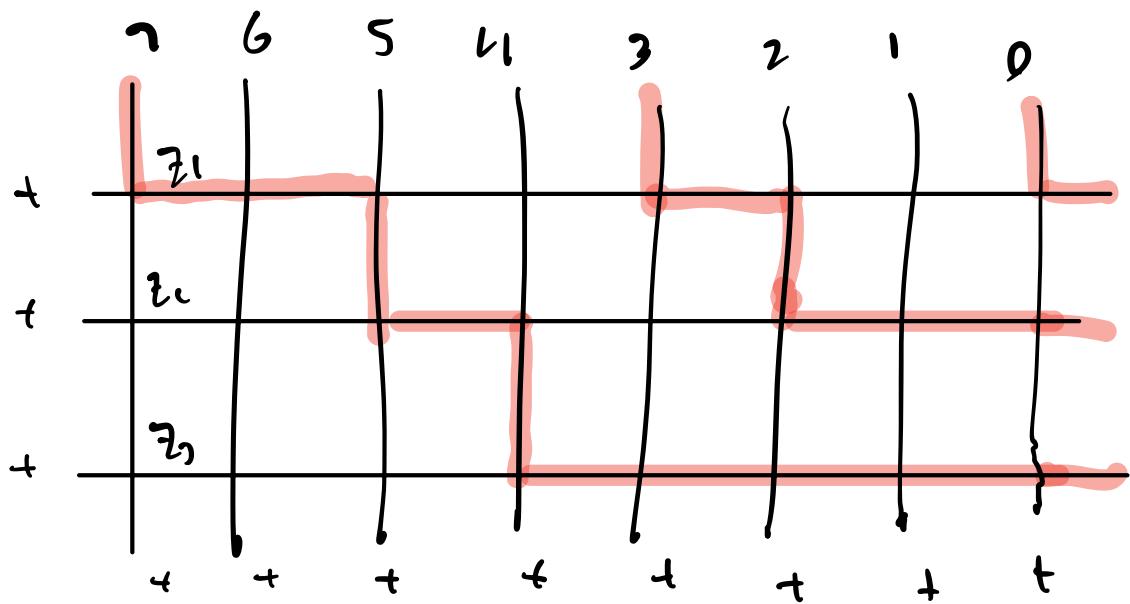


NOT
LEFT
SYNCT.

LEFT STRICT MEANS WE CAN SUBTRACT

$$\begin{matrix} n & n-1 & n-2 & \dots & 0 \\ n-1 & n-2 & \dots & 0 \end{matrix}$$

$$P = \begin{matrix} n-2 \\ \vdots & \vdots & \vdots \\ 0 \end{matrix}$$



$$\begin{array}{r}
 7 \quad 3 \quad 0 \\
 5 \quad 2 \\
 4 \\
 \hline
 \end{array}
 \quad -
 \quad
 \begin{array}{r}
 2 \quad 1 \quad 0 \\
 1 \quad 0 \\
 0 \\
 \hline
 \end{array}$$

$$GTP^o(\alpha) = GTP(\alpha) - P$$

$$\begin{array}{r}
 5 \quad 2 \quad 0 \\
 4 \quad 2 \\
 4 \\
 \hline
 \end{array}$$

USING THESE Reduce GTP

STATES $\xrightarrow{\sim}$ GTP TO P $\xrightarrow{\sim}$ SSRT
 $\alpha = 0$ $\xrightarrow{\sim}$ Row λ $\xrightarrow{\sim}$ OF STATE λ .

$$\beta(\alpha) = z^P \cdot z^{\omega_0 \cdot wt(\tau)}$$

$$Z(S_\lambda(\tau; \omega)) = \underbrace{\prod_{i,j} (\tau_i - q\tau_j)}_{Z^P} S_\lambda(\tau_0, \dots, \tau_n)$$

$$\text{so } S_\lambda(\tau) = \sum_{\text{SYT}} \tau^{\omega_0 \text{wt}(\tau)}$$

$$(\omega_0 \tau)^{\text{wt}(\tau)}$$

But we proved S_λ is symmetric

$$\text{so } S_\lambda(\tau) = \sum \tau^{\omega_0 \text{wt}(\tau)} = \sum \tau^{\text{wt}(\tau)} =$$

COMBINATORIAL DEF of A_λ .