

Yang-Baxter Equation.

"T-VERTEX"

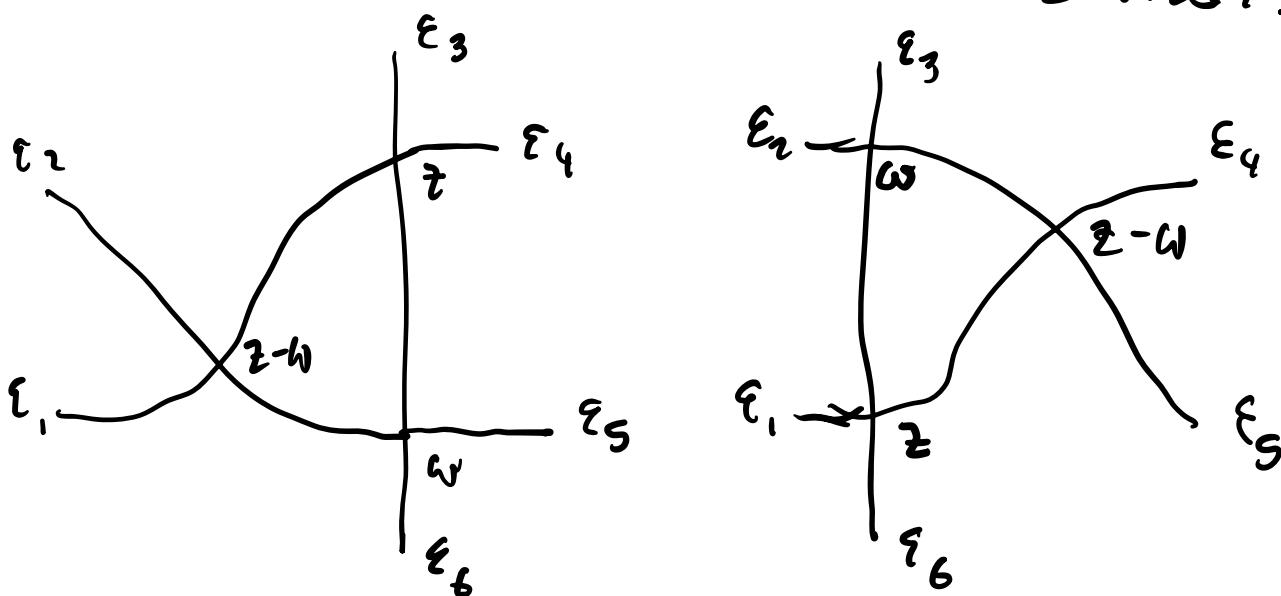
a_1	a_2	b_1	b_2	c_1	c_2
1	z	$-q$	z	$z(1-q)$	1

$\sum = \sum$
IN THE
ROW.

a_1	a_2	b_1	b_2	c_1	c_2
$w - qz$	$z - qw$	$q(z - w)$	$z - w$	$(1 - q)z$	$(1 - q)w$

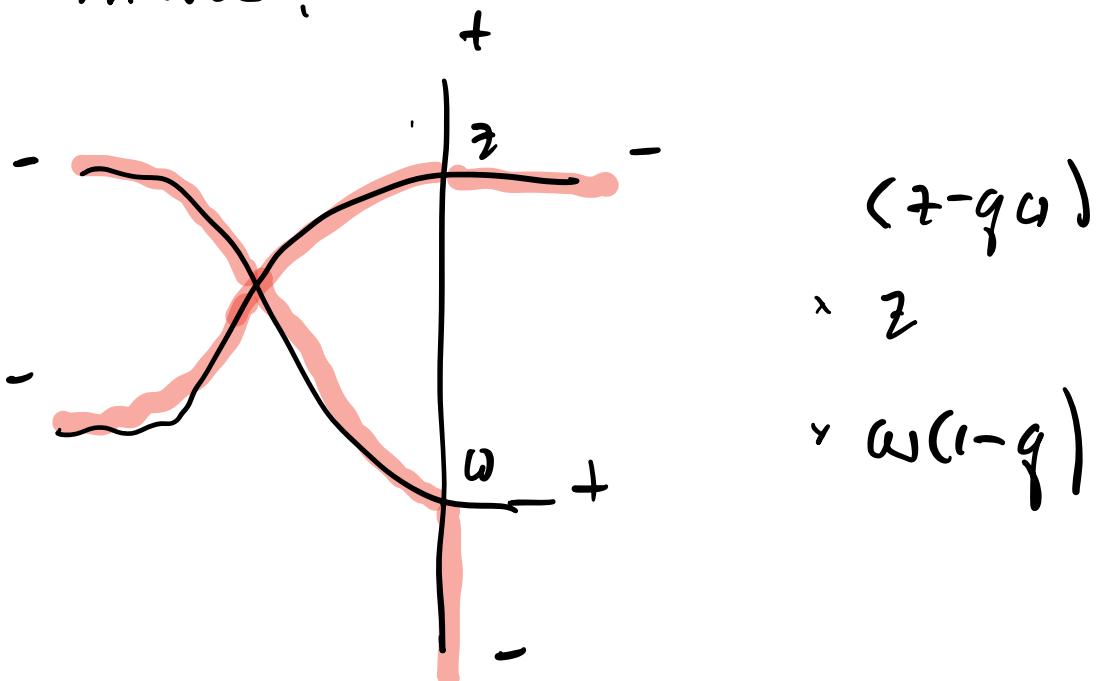
R-MATRIX.

THEOREM: FOR EVERY CHOICE OF SPINS
 $\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6 \in \{\oplus, \ominus\}$
 THE FOLLOWING SYSTEMS ARE EQUIVALENT.



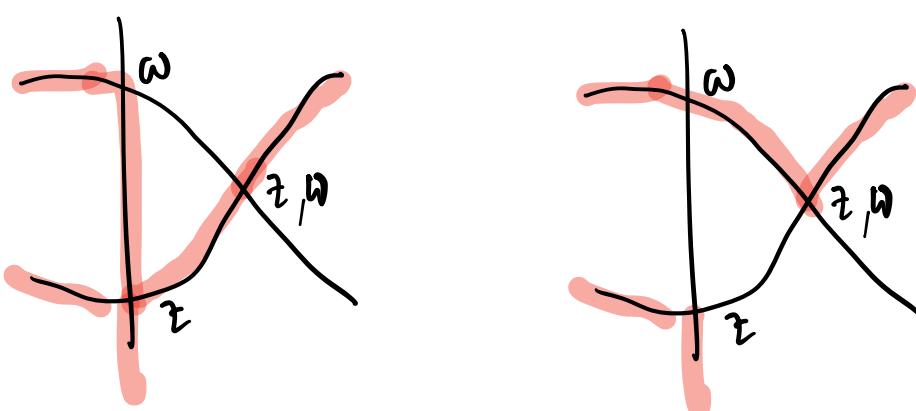
(SUM OVER SPINS ON INTERIOR EDGES)

EXAMPLE:



a_1	a_2	b_1	b_2	c_1	c_2
$w - qz$	$z - qw$	$q(z - w)$	$z - w$	$(1 - q)z$	$(1 - q)w$

a_1	a_2	b_1	b_2	c_1	c_2
1	z	$-q$	z	$z(1 - q)$	1



$$(1 - q)\omega$$

$$\frac{z}{z - \omega}$$

$$(z - \omega)$$

$$\omega$$

$$(1 - q)z$$

$$(1 - q)\omega$$

$$(1-q)w z \left((z-w) + (1-q)w \right)$$

$$= (1-q)w z (z - q w) = \begin{matrix} (z-qw) \\ \times z \\ \times w(1-q) \end{matrix}$$

↑
RHS

↑
LHS

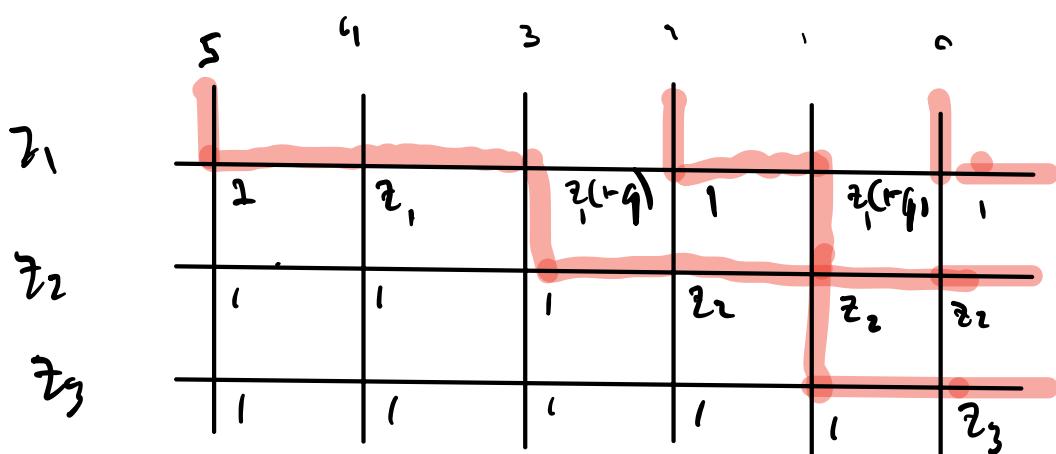
ALL 64 CASES CHECK.

λ A PARTITION

$$\lambda = (\lambda_1, \dots, \lambda_n)$$

PUT \ominus SPINS ON RIGHT BOUNDARY

\oplus OR LEFT AND BOTTOM AND AT top
 \ominus IN COLUMNS $\lambda_i + n - i$



$$n = 3$$

$$\lambda = (3, 1, 0)$$

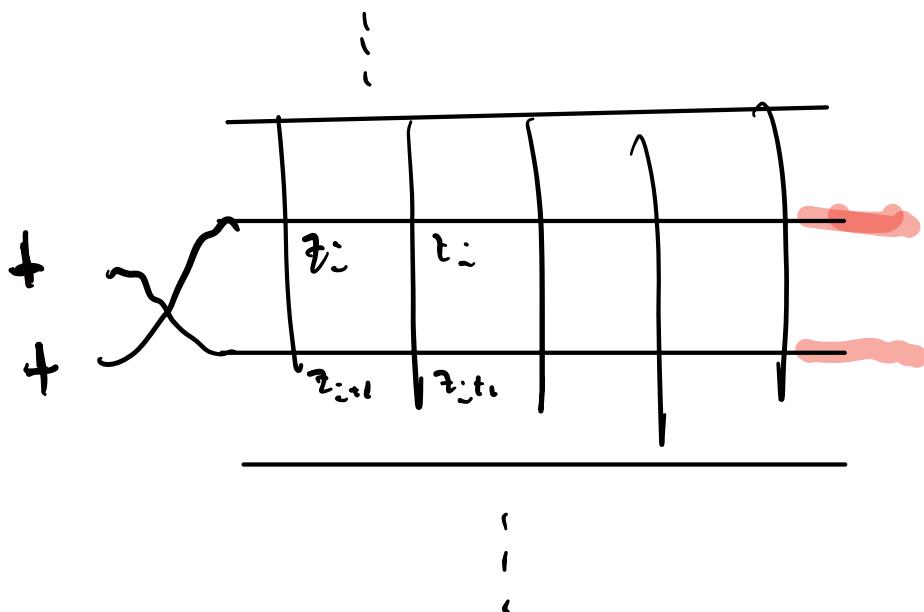
THEOREM: THERE IS A SYMMETRIC POLYNOMIAL $S_n(x_1, \dots, x_n)$ SUCH THAT

$$\mathcal{Z}(S_\lambda) = \prod_{i < j} (\tau_i - q \tau_j) S_\lambda(x_1, \dots, x_n)$$

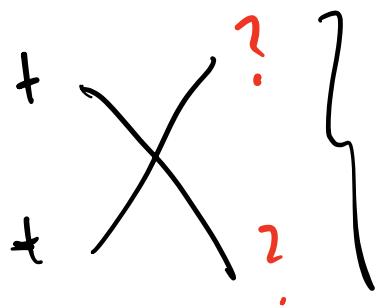
LEMMA

$$\begin{aligned}
 & (z_{i+1} - q z_i) \mathcal{Z}(z_1, \dots, z_n; q) = (z_{i+1} - q z_i) \mathcal{Z}(z; q) \\
 & = (z_n - q z_{i+1}) \mathcal{Z}(\Delta z; q)
 \end{aligned}$$

PROOF: ATTACH R -MATRIX BETWEEN i th and j th rows



CONSIDER THIS SYSTEM. FOR R-MATRIX



ONLY ONE POSSIBILITY

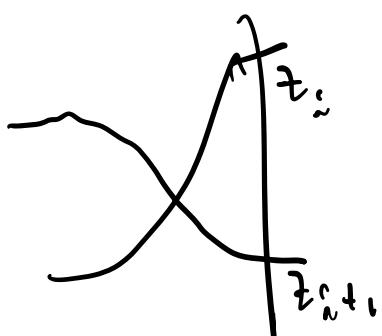
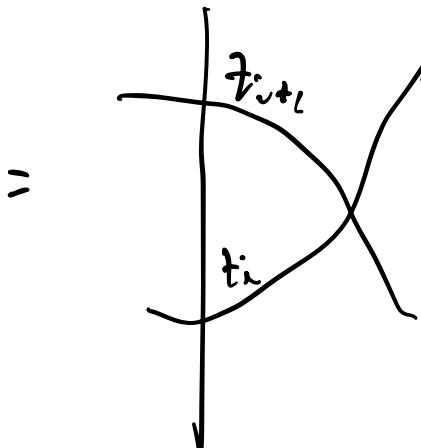
$$? = +$$

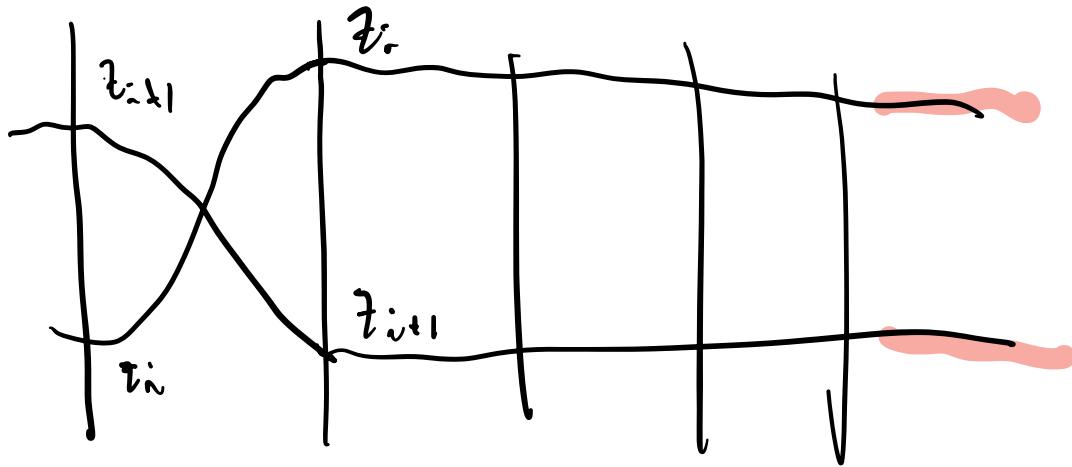
$$z_{i+1} - q z_i$$

THIS MODIFIED SYSTEM HAS PARTITION FN

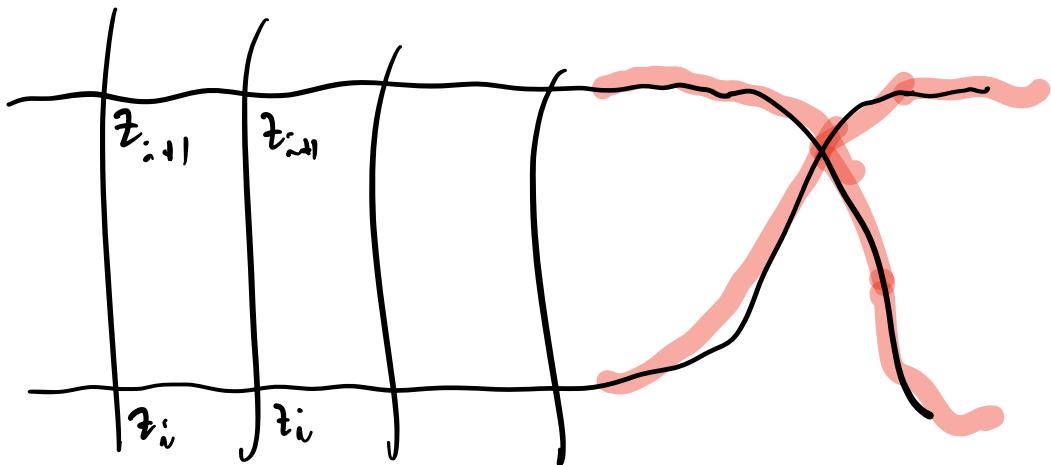
$$(z_{i+1} - q z_i) \times \mathcal{Z}(z; q) = \text{LHS in Lemma}$$

TRAVN ARGUMENT:





REPEAT UNTIL TRAIN ARRIVES ON RSA



$$= (z_i - q z_{i+1}) \mathbb{E}(\Delta_i z; q)$$

a_1	a_2	b_1	b_2	c_1	c_2
$w - qz$	$z - qw$	$q(z - w)$	$z - w$	$(1 - q)z$	$(1 - q)w$

$$z_i - q z_{i+1}$$

$Z(z; q)$ is a prod in z_1, \dots, z_n, q
of deg

$Z(z; q)$

$$\prod_{i < j} (z_i - q z_j)$$

CLAIM THIS IS W-INVARIANT

$$W = S_n = \{\delta_1, \dots, \delta_{n-1}\}$$

ENOUGH TO CHECK UNCHANGED UNDER δ_i

$$= \frac{Z(z; q)}{z_n - q z_{n+1}} \prod_{i < j} (z_i - q z_j)^{-1}$$

$\underbrace{\hspace{10em}}$

$\underbrace{\hspace{10em}}$

$(i, j) \neq (n, n+1)$

$\underbrace{\hspace{10em}}$

UNCHANGED
BY LEMMA.

PERMUTED BY δ_n

$$= \frac{z(z_i, q)}{z_{i+1} - q z_i} \times \prod \text{OTHER FACTORS.}$$

$$= \Delta_{i,j} \left(\frac{z(z_i, q)}{\prod_{i < j} (z_i - q z_j)} \right)$$

$$\text{so } z(S_\lambda) = \prod_{i < j} (z_i - q z_{i+1}) S_\lambda(z; q)$$

WHERE $S_\lambda(z; q)$ IS SYMMETRIC IN z_i

WANT TO SHOW $S_\lambda(z; q)$ IS POLYNOMIAL
AND IND. OF q . FROM LEMMA:

$$(z_{i+1} - q z_i) z(z; q) = (z_i - q z_{i+1}) z(z; q)$$

$\Rightarrow z_i - q z_{i+1}$ DIVIDES $z(z; q)$

IN $\mathbb{C}[z_1, \dots, z_n; q]$ UFD.

$z_i - q z_{i+1}$ $z_{i+1} - q z_i$ COPRIME

$$S(z, q) = \frac{Z(z)}{\prod_{i < j} (z_i - q z_j)}$$

DIVISIBLE BY $z_i - q z_{i+1}$.

AND IT IS SYMMETRIC IN

FACT
OF
FRACTIONS OF $\mathbb{C}[z_1, \dots, z_n, q]$

SO IT IS DIVISIBLE BY 11.

THE FACTORS IN DENOM ARE COPRIME

$Z(z)$ IS DIVISIBLE BY

EACH SO IT IS DIVISIBLE BY THE
PRODUCT. SO

$\frac{Z(z, q)}{\prod (z_i - q z_j)}$ IS A POLYNOMIAL.

IT IS INDEPENDENT OF q SINCE
NUMERATOR, DENOM ARE POLYNOMIALS

OF DEGREE

$\frac{1}{2} n(n-1)$ IN q .

\uparrow

OF FACTORS IN DENOM

OF \ominus SPINS OR
VERTICAL EDGES IN ANT STATE.

$U_q(\mathfrak{sl}(1|1))$

$U_q(\mathfrak{sl}_n)$

$q = e^{2\pi i / 3}$