

TOKUYAMA MODELS

INVOLVE A PARAMETER q

$q = 0$ INTERESTING

$q = 1$ INTERESTING

REF: "BOOK" CH. 4.

AGGARWAL

373 (T, t_H (0,30))
381 T

APPEARED IN AGGARWAL'S THURSDAY LECTURE

AS FERMIONIC MODELS FOR SCHUR POLYNOMIALS.

HISTORY: FREE-FERMIONIC 6-VERTEX MODEL

WAS STUDIED BY FELDERHOF, KOREPIN (1970 C.C.)

PARTICULAR MODELS IN FREE-FERMIONIC CASE

HAVE SCHUR POLYNOMIALS OR MORE GENERAL

$$(*) \prod_{\substack{i < j \\ \text{wavy}}} (z_i - q z_j) \Delta_\lambda(z_1, \dots, z_n)$$

DEFORMED WEYL DENOMINATOR

AS PARTITION FUNCTIONS.

THIS IS A COMBINATORIAL FACT EQUIVALENT TO
A FORMULA OF TOKUYAMA EXPRESSION

(*) AS A SUM OF GELFAND-ZEGLIN PATTERNS. 1983
IT WAS TRANSLATED INTO A STATEMENT

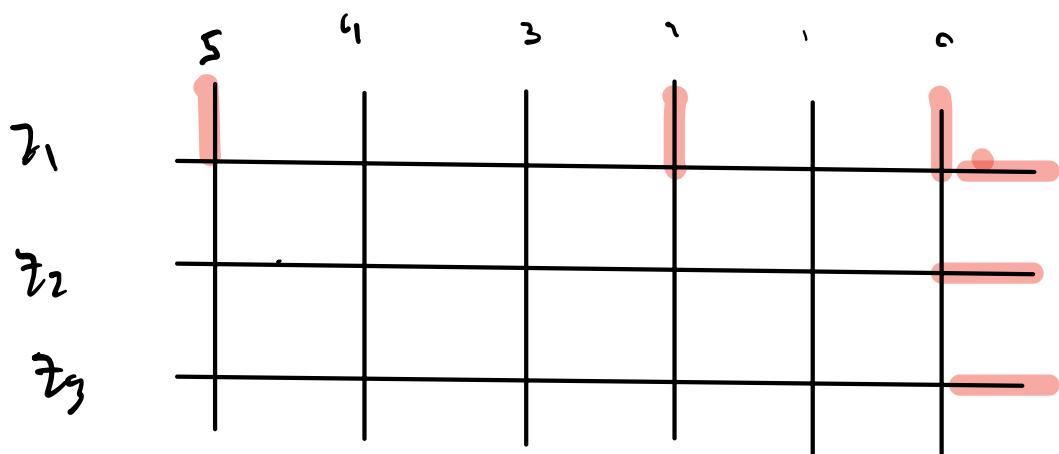
ABOUT LATICE MODELS BY HAMER AND KING,
BRUBAKER, BUMP FRIEDBERG INDEPENDENTLY
PAUL ZINN-JUSTIN INTRODUCE YANG-BAXTER
APPROACH TO TOKUYAMA'S FORMULA.

RELEVANT YBE IS IN EARLIER WORK OF
KOREPIN.

WHAT ARE THE MODELS?

GRID WITH n ROWS AND N COLUMNS

$$N \geq \lambda_1 + n - 1$$



ROWS ARE ASSOCIATED WITH PARAMETERS
 z_1, \dots, z_n

IN A STATE OF THE MODEL EVERY EDGE IS ASSIGNED A "SPIN" \oplus \ominus

SPINS ON BOUNDARY EDGES ARE FIXED

$$\lambda = (3, 1, 0)$$

$$\lambda + \rho = (5, 2, 0)$$

$$\alpha_i \cdot \rho = \rho - \alpha_i$$

$$\rho = (2, 1, 0) \text{ "WYL vector"}$$

$$\rho = (n-1, n-2, \dots, 0)$$

PUT \ominus SPINS ON RIGHT BOUNDARY

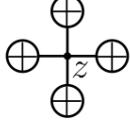
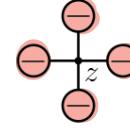
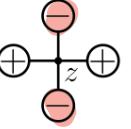
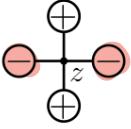
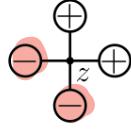
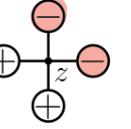
TOP BOUNDARY AT LOCATIONS

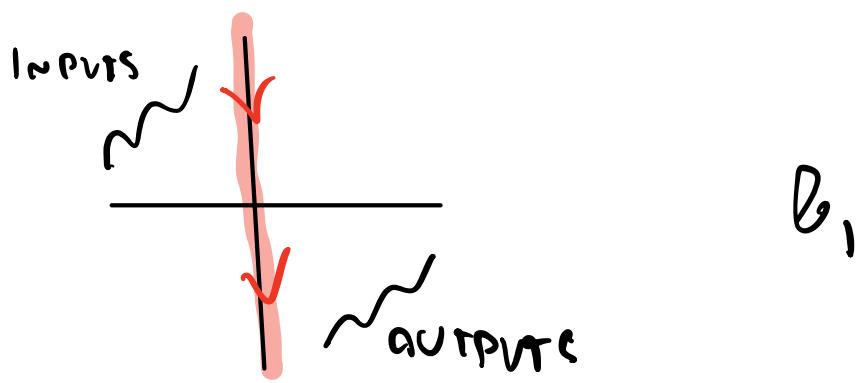
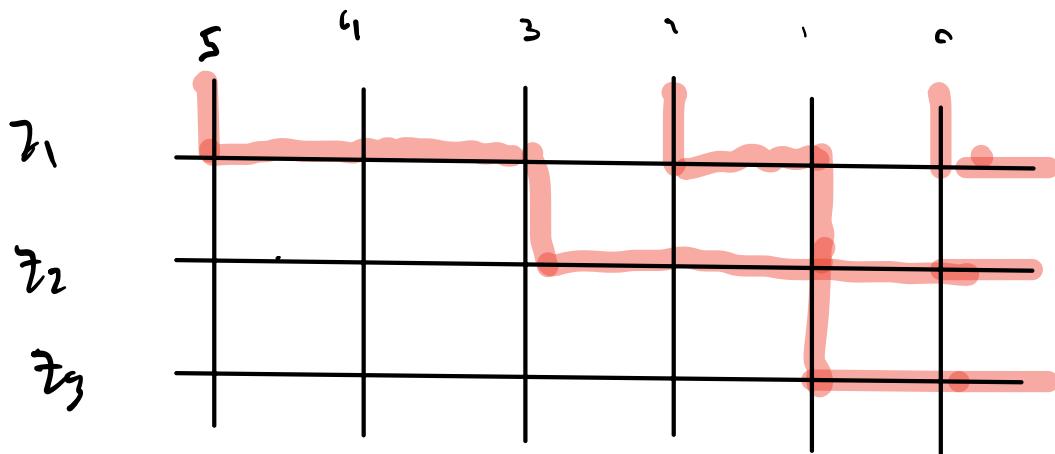
$$\lambda_i + n - N$$

$$\lambda = (\lambda_1, \dots, \lambda_n)$$

A PARTITION

IN A STATE OF THE MODEL ONLY THE FOLLOWING CONFIGURATIONS ARE ALLOWED

a_1	a_2	b_1	b_2	c_1	c_2
					
1	z	$-q$	z	$z(1-q)$	1



Typical state. Δ

Δ is assigned a Boltzmann weight

$$Z(S) = \sum_{\substack{\uparrow \\ \text{MODEL}}} \beta(\Delta) \sum_{\substack{\uparrow \\ \text{STATES}}} \beta(\Delta) \uparrow \text{PARTITION FUNCTION}$$

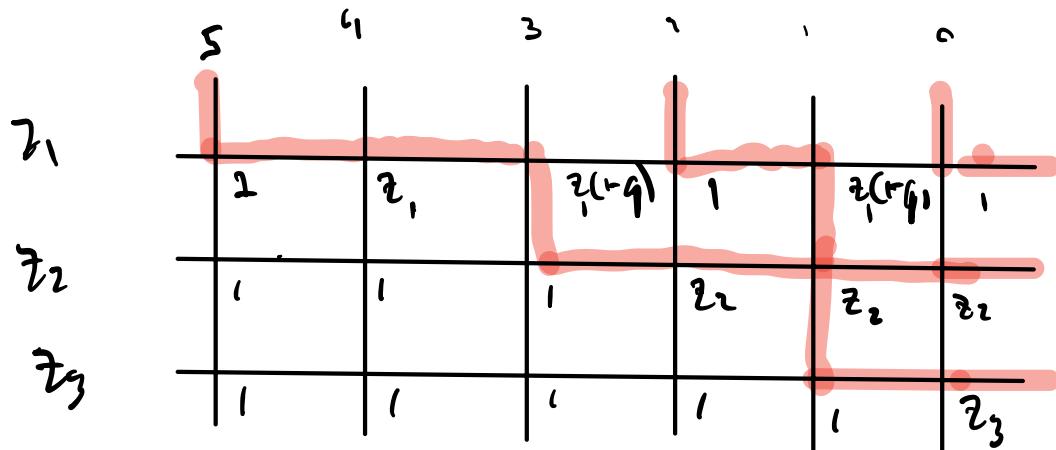
Δ

\uparrow
B. W.

IN STATISTICAL MECHANICS

$$\frac{\beta(\Delta)}{Z(S)} = \text{PROBABILITY OF } \Delta.$$

a_1	a_2	b_1	b_2	c_1	c_2
1	z	$-q$	z	$z(1-q)$	1



$$\beta(\Delta) = \prod_{v \in \text{VERTICES}} \beta_v(\Delta)$$

AT A VERTEX v IN n -TH ROW TAKE
 $z = z_v$. FOR THIS STATE

$$\beta_v = z_1^3 (1-q)^2 z_2^3 \cdot z_3$$

\uparrow \uparrow \uparrow
 FIRST ROW 2-ND 3RD .

THEOREM: $Z(S) = \prod_{i < j} (z_i - q z_j) \Delta_\lambda(z)$

SCHUR POLYNOMIALS ARE CHARS OF
IRREPS OF $GL(n, \mathbb{C})$

$$\chi_\lambda^{GL(n)}(g) = \Delta_\lambda(z_1, \dots, z_n)$$

z_1, \dots, z_n EIGENVALUES OF g .

THERE ARE TWO FORMULAS FOR Δ_λ .

$$\Delta_\lambda(z_1, \dots, z_n) = \frac{\det(z_i^{n+i-\lambda_i})}{\det(z_i^{n-i})}$$

DETERMATOR

$$\begin{vmatrix} z_1^n & z_2^n & z_3^n \\ z_1^2 & z_2^2 & z_3^2 \\ 1 & 1 & 1 \end{vmatrix} = \prod_{i < j} z_i - z_j$$

$n = 3$

VANDERMONDE DETERMINANT.

NUMERATOR IS AN ALTERNATING POLYNOMIAL.

$$\begin{vmatrix} z_1^{\lambda_1+2} & z_1^{\lambda_1+2} & z_3^{\lambda_1+2} \\ z_1 & z_1 & z_3 \\ z_1^{\lambda_2+1} & z_2^{\lambda_2+1} & z_3^{\lambda_2+1} \\ z_1^{\lambda_3} & z_1^{\lambda_3} & z_3^{\lambda_3} \end{vmatrix}$$

$$\text{NUM}(\Delta_n z) = -\text{NUM}(z)$$

$\Rightarrow z_i - z_{i+1}$ DIVIDES NUMERATOR.

SO ALL FACTORS $z_i - z_j$ DIVIDE
NUMERATOR SO

$$\frac{\det(z_i^{n+i-\lambda_i})}{\det(z_i^{n-i})}$$

IS A SYMMETRIC POLYNOMIAL.

JACOBI'S DEFINITION OF SCHUR POLYNOMIAL

THE OTHER DEFINITION:

LET T BE A SEMISTANDARD YOUNG TABLEAU OF SHAPE λ .

$$\text{YD}(\lambda) = \begin{array}{|c|c|c|} \hline 1 & 1 & 2 \\ \hline 3 & & \\ \hline \end{array}$$

$$\lambda = (3, 1, 0)$$

$$\text{YD}(\lambda) = \lambda_i \text{ BOXES IN ROW } i.$$

SSYT IS A FILLING $\text{YD}(\lambda)$ WITH $1, 2, \dots, n$ ROWS WEAKLY INCREASING COLUMNS STRICTLY INCREASING.

$$\text{wt}(T) = (\mu_1, \mu_2, \dots)$$

$$\mu_i = \# \text{ of } i's \text{ in } T.$$

$$\text{wt} \left(\begin{array}{|c|c|c|} \hline 1 & 1 & 2 \\ \hline 3 & & \\ \hline \end{array} \right) = (2, 1, 1)$$

$$z^{\text{wt}(T)} = z_1^2 z_2 z_3$$

COMBINATORIAL D.E.
DEFINITION: (LITTLEWOOD)

$$D_\lambda(z_1, \dots, z_n) = \sum_T z^{\text{wt}(T)}$$

QUESTIONS: WHY IS THIS SYMMETRIC?

WHY IS THIS EQUIV. TO JACOBI'S
DEF?

BOTH QUESTIONS ANSWERED BY TOKUYAMA
MODEL.

AFTER PROVING

$$\frac{z(S_{\lambda, q})}{\prod_{i < j} (z_i - q z_j)} \text{ IS A SYMMETRIC POLYNOMIAL}$$

INDEPENDENT OF q .

SPECIALIZE: $q = 1$ IN JACOBI
DEFINITION

$q = 0$ COMBINATORIAL
DEFINITION