

Demazure Operators and Demazure Crystals

LET G BE A REDUCIVE COMPLEX ANALYTIC LIE GROUP

$T = \text{MAX}'(G)$ TORUS

$\Lambda = X^*(T)$ = GROUP OF RATIONAL CHARACTERS

WEIGHT LATTICE

$\Phi \subset \Lambda$ ROOT SYSTEM

EXAMPLE: $G = \text{GL}(n, \mathbb{C})$

$$T \subset \left\{ \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ & & & + \end{pmatrix} \right\} \quad z \in \left\{ \begin{pmatrix} z_1 & & & \\ & \ddots & & \\ & & z_n & \\ & & & \end{pmatrix} \right\}$$

$$\Lambda \cong \mathbb{Z}^n \ni \lambda$$

THIS IS INTERPRETED AS A CHAR. OF T

$$z \mapsto z^\lambda = z_1^{\lambda_1} \cdots z_n^{\lambda_n},$$

$e_i \in \mathbb{Z}^n$ ($i = 1, \dots, n$) STANDARD BASIS VECTS

$$\alpha = e_i - e_j \quad i \neq j \quad 1 \leq i, j \leq n$$

POSITIVE ROOTS: $e_i - e_j$ $i < j$

SIMPLY ROOTS $\alpha_i = e_i - e_{i+1}$ $1 \leq i \leq n-1$

SIMPLE ROOT $\leftrightarrow \Delta_i \in \text{AUT}(\Lambda) \text{ or } \text{AUT}(\mathbb{T})$

$$\Delta_i = (i, i+1)$$

AS AN AUTOMORPHISM OF Λ

$$\Delta_i(\lambda) = \lambda - \langle \alpha_i^\vee, \lambda \rangle \alpha_i$$

$$\alpha_i^\vee \in \text{Hom}(\Lambda, \mathbb{Q}) \quad \text{"SIMPLE ROOTS"}$$

α_i^\vee CAN BE IDENTIFIED WITH α FOR
 $GL(n)$ OR ANY SIMPLE-LACED GROUP

$$\langle \alpha_i^\vee, \lambda \rangle = \text{DOT PRODUCT}.$$

$$\Delta_i(\lambda_1, \dots, \lambda_n) = (\lambda_1, \dots, \lambda_{i+1}, \lambda_i, \dots)$$

$$= \lambda - (\lambda_i - \lambda_{i+1}) \cdot \alpha_i$$

$$\langle \overset{\parallel}{\alpha_i^\vee}, \lambda \rangle = \langle \alpha_i^\vee, \lambda \rangle$$

↑
USUAL DOT PRODUCT ON
 \mathbb{R}^n .

AS ON WEDNESDAY I CAN WORK
 IN A RING R CONTAINING $W = S_n$
 AND $\Theta(T) = \bigcup_{T'} \{[z_1, z_1^{-1}, \dots, z_n, z_n^{-1}]\}$
 RING OF FUNCTIONS
 ON T

$$w \circ w^{-1} = \omega$$

$$(w \circ f)(z) = f(w^{-1}z)$$

$$(w \circ w^{-1})(z) = (w \circ f)(w^{-1}z)$$

$$w(f(w^{-1}z)) = f(z)$$

$$\Delta_1 f(z) = z_2/z_3$$

$$\Delta_1 f \Delta_1^{-1}(z) = \Delta_1(f(z_2, z_1, z_3))$$

$$= \Delta_1(z_2/z_3) = z_2/z_3.$$

$$\Delta_1 f(z)$$

AS AN OPERATOR ON $\Theta(T)$
 $f =$ MULTIPLICATION BY ITSELF.

$$\partial_i = (1 - z^{-\alpha_i})^{-1} (1 - z^{-\alpha_i} \cdot \Delta_i)$$

$$\partial_i \circ f(z) = \frac{f(z) - z^{-\alpha_i} \cdot f(z \cdot z_i)}{1 - z^{-\alpha_i}}$$

"ISOBARIC DERIVATIVE OPERATORS".

LET US COMPUTE $\partial_i z^\lambda$

$$\partial_i z^\lambda = \frac{z^\lambda - z^{-\alpha_i} z^{\lambda - \langle \alpha_i^\vee, \lambda \rangle \alpha_i}}{1 - z^{-\alpha_i}}$$

$$z^\lambda \frac{1 - z^{-\alpha_i(\langle \alpha_i^\vee, \lambda \rangle + 1)}}{1 - z^{-\alpha_i}}$$

THIS IS A FINITE GEOMETRIC SERIES.

IF $\langle \alpha_i^\vee, \lambda \rangle = k \geq 0$ THIS EQUALS

$$z^\lambda \cdot (1 + z^{-\alpha_i} + z^{-2\alpha_i} + \dots + z^{-\langle \lambda, \alpha_i^\vee \rangle \alpha_i})$$

^

SYMMETRIC I.E. Δ_i -INVARIANT.

$$t^\lambda + z^{\lambda - \alpha_i} + \dots + z^{\Delta_i \lambda}$$

IF $\langle \alpha_i^\vee, \lambda \rangle = -1$, $\partial_i z^\lambda = 0$

IF $\langle \alpha_i^\vee, \lambda \rangle < -1$ THIS IS

$$- (z^{\lambda + \alpha_i} + z^{\lambda + 2\alpha_i} + \dots + z^{\Delta_i \lambda - \alpha_i})$$

STILL Δ_i INVARIANT.

FAQ GL(2).

$$\Delta_i \lambda \quad \lambda - \alpha_i \quad \lambda - \alpha_i \quad \dots \quad \lambda - \alpha_i \quad \dots \quad \lambda - \alpha_i$$

DESYMMETRIES. WE CAN SEE
THIS DIRECTLY;

$$D_i \circ D_i = D_i$$

PROOF IN R

$$\Delta_i \delta_{ij} = \Delta_{ij} \left(1 - e^{-\alpha_i}\right)^{-1} \left(1 - e^{-\alpha_i} \Delta_{ij}\right) \\ \left(1 - e^{-\alpha_i}\right)^{-1} \left(\Delta_{ij} - e^{-\alpha_i} \mathbf{1}_w\right)$$

$$\Delta_i \mathcal{E}^{-\alpha_i} \Delta_n = \mathcal{E}^{\alpha_n}$$

MULTIPLY NUM & DENOM BY $-z^{-\alpha_i}$

$$= (-z^{-\alpha_i} + 1)^{-1} (z^{-\alpha_i} \Delta_i - 1) = \Delta_i$$

$$\text{so } \Delta_i(\delta_i(f)) = \delta_i(f)$$

so $\delta_i f$ is Δ_i -SYMMETRIC.

THEOREM: $\delta_i^2 = \delta_i$ AND THEY
SATISFY BRAID RELATIONS.

(PROVED SIMILAR FACT FOR $D_i = (x_i - x_{i+1})^{-1} (1 - \delta_i)$
ON WEDNESDAY. FOR THIS I won't PROVE)

THEREFORE WE MAY APPLY MATSUMOTO'S
THEOREM AND DEFINE

$$\delta_w = \delta_{i_1} \cdots \delta_{i_n}$$

$$\Delta_{i_1} \cdots \Delta_{i_n} = w \text{ (REDUCED)},$$

FOR
REFERENCE

$$\partial_i = (1 - z^{-\alpha_i})^{-1} (1 - z^{-\alpha_i} \cdot \Delta_i)$$
$$\partial_{i,1}(z) = \frac{(z) - z^{-\alpha_i} \cdot \rho(z, z)}{1 - z^{-\alpha_i}}$$

THEOREM: LET λ BE DOMINANT.

$$\langle \lambda, \alpha_i^\vee \rangle \geq 0 \quad \text{ALL } i$$

THEN $\partial_{w_0} z^\lambda$ = CHARACTER OF THE REP'N
OF HIGHEST WEIGHT λ .

∂_{w_0} = LONGEST DOMINANT OPERATOR.

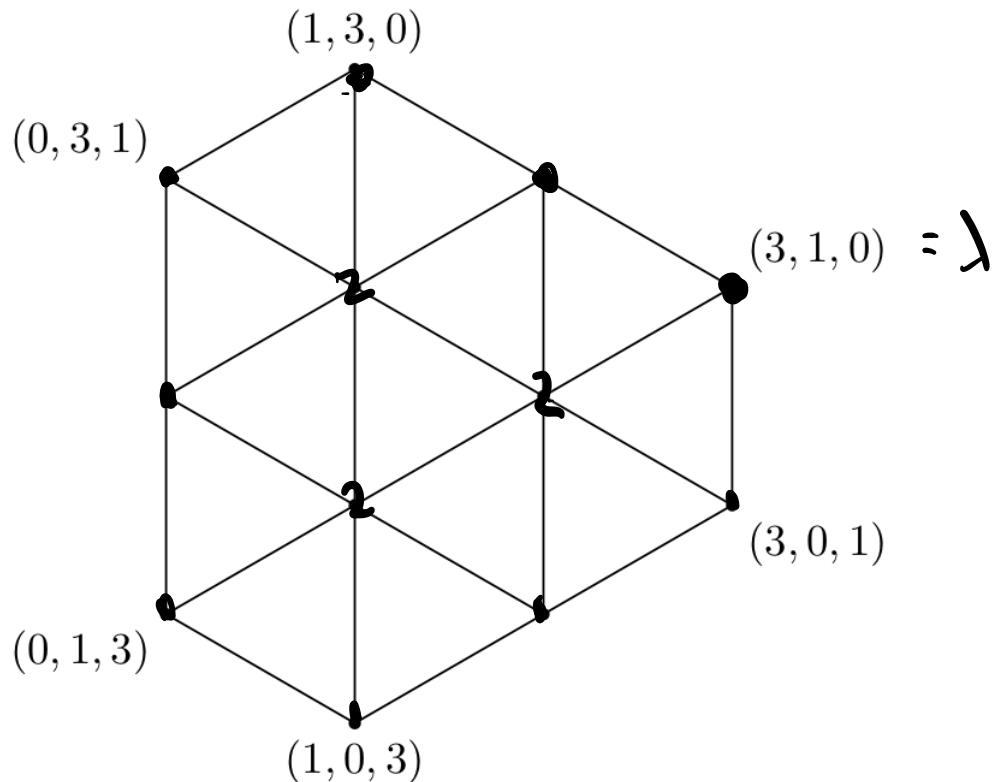
FOR $GL(n)$ $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n$

FOR EXAMPLE A PARTITION IS A DOMINANT WEIGHT

TO ILLUSTRATE THIS FOR $\lambda = (3, 1, 0)$

$G = GL(3)$.

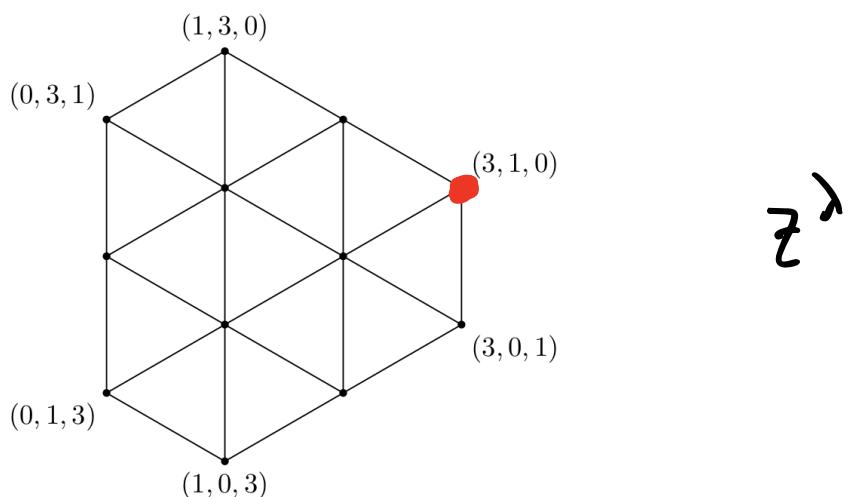
$$z^\lambda = z_1^3 \cdot z_2$$

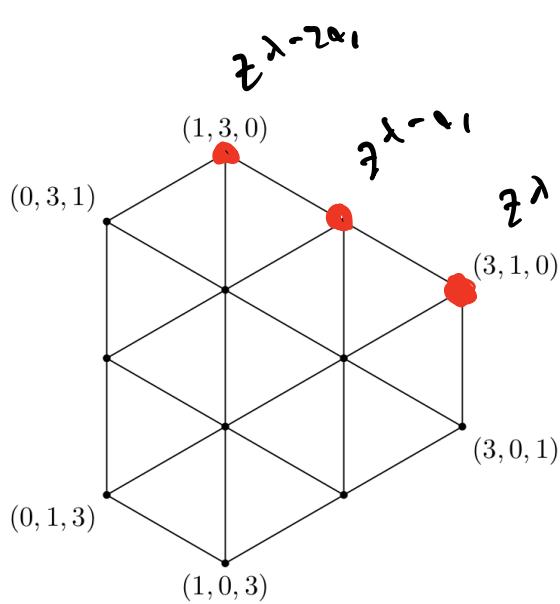


CHARACTER OF IRREP $\pi_\lambda^{GL(3)}$

$$\Delta_\lambda(z) = z_1^3 z_2 + z_1^2 z_2^2 + z_1 z_2^3$$

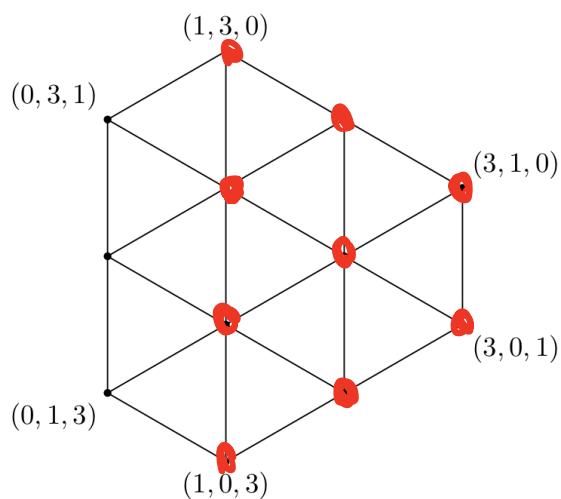
$$+ z_1^3 z_3 + 2 z_1^2 z_2 z_3 + 2 z_1 z_2^2 z_3 + \dots$$





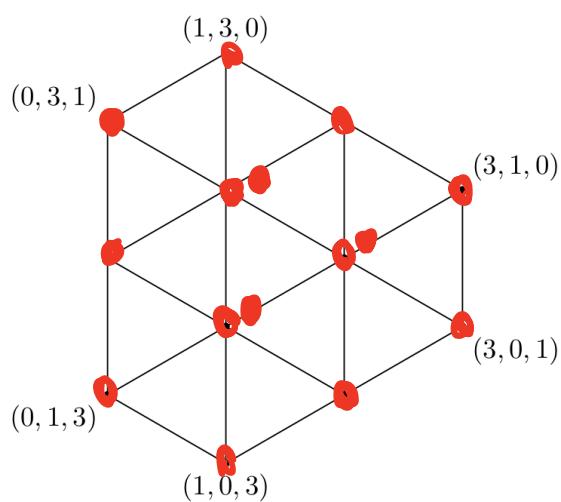
$$\partial_1 z^\lambda$$

$$\langle \alpha_1^\vee, \lambda \rangle = 2$$



$$\partial_2 \partial_1 z^\lambda$$

"DEGENERATE CHARACTER".

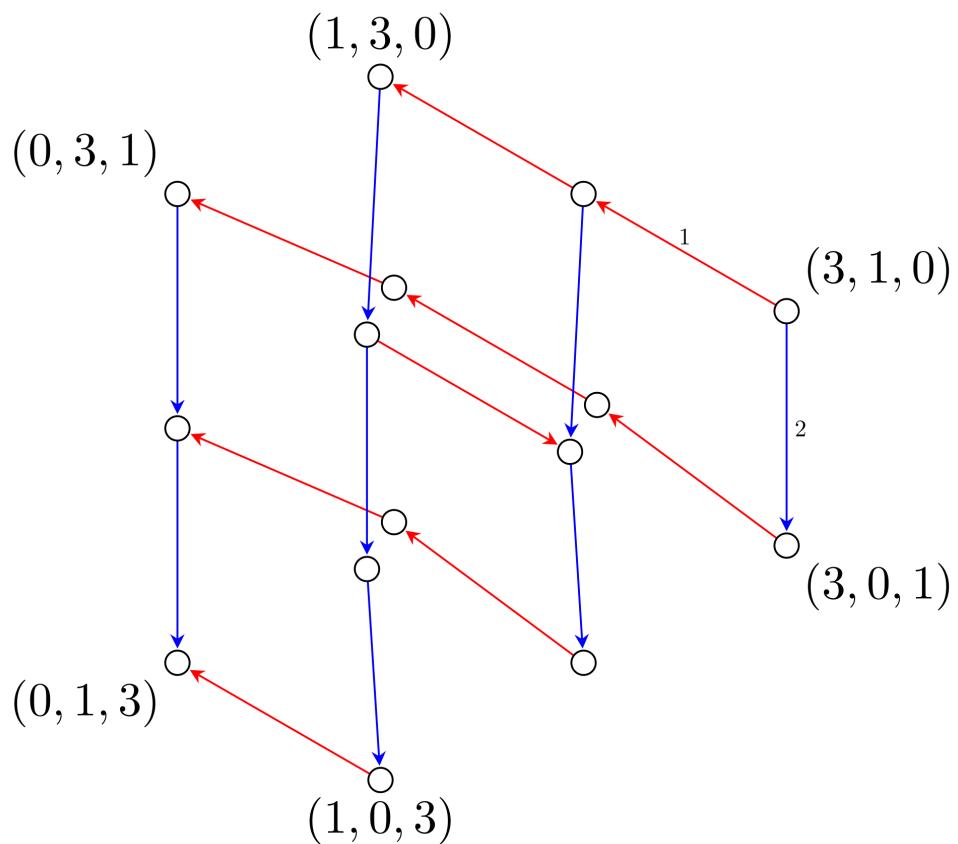


$$\partial_1 \partial_2 \partial_1 z^\lambda$$

$$= \partial_w z^\lambda$$

$$= D_\lambda(z^\lambda).$$

$\partial_2 \partial_1 \partial_2 \mathbb{Z}^\lambda = \text{SAME RESULT.}$



THE $\partial_w \mathbb{Z}^\lambda$ (λ DOMINANT)
 ARE CALLED DEGENERATION CHARACTERS
 OR KEY POLYNOMIALS

THERE IS A REFINEMENT
 (LITTLEMAN, KASHIWARA) OF $\partial_{w_0} \mathbb{Z}^\lambda = \mathbb{Q}_\lambda$
 INVOLVING CRYSTALS.

$$\Delta_n \partial_{w_0} z^\lambda = \partial_{w_0} z^\lambda$$

Choose $w_0 = \Delta_{n_1} \cdots \Delta_{n_k}$
with $n_1 = n$.

$$\partial_{w_0} = \prod_{i=1}^k (1 - z^{-n_i})^{-1} \sum_{\rho} (-1)^{\ell(\rho)} z^{\rho - w(\rho)}$$

↑
APPEARS IN WCF

$$\Delta_n = \prod_{i=1}^{n-1} (\partial_i - 1)$$