

Demazure operators and Demazure characters

DEMazure ops were introduced independently by BERNSTEIN, GELAND & GELFAND and DEMazure (early 1970's) in connection with SCHUBERT geometry.

LET S_n ACT ON $\overset{R}{\mathbb{C}}[x_1, \dots, x_n]$ BY PERMUTING VARIABLES $f \in R$ THEN f ACTS BY MULTIPLICATION.

S_n, R BOTH ARE IN $\text{END}(R)$

$$\omega f \omega^{-1} = {}^{\omega}f$$

LEMMA: IF $f \in R$ THEN $\frac{f - {}^{\Delta_{i,n}}f}{x_i - x_{i+1}} \in R$

$$\Delta_{i,n} = (i, i+1)$$

PROOF: NUMERATOR VANISHES WHERE $x_i > x_{i+1}$
SO ZEROS OF NUMERATOR AND DENOMINATOR CANCEL.

THE OPERATOR $D_i = (x_i * x_i^{-1})(1 - \Delta_i)$
 MAPS $f \mapsto \frac{f - \Delta_i f}{x_i - x_{i+1}}$

THESE DIVIDED DIFFERENCE OPS ARE ONE
 KIND OF DEMAZURE OPERATOR.

$g : D_i f$ SATISFIES $\Delta_i g = g$

(SYMMETRIC IN $x_i \leftrightarrow x_{i+1}$.)

IF f IS SYMMETRIC IN $x_i \leftrightarrow x_{i+1}$

THEN $D_i f = 0$ THEREFORE

$$D_i^2 = 0$$

ALSO D_i SATISFY BRAID RELATIONS;

$$D_i D_j = D_j D_i \quad \text{IF } |i-j| > 1$$

$$D_i D_{i+1} D_i = D_{i+1} D_i D_{i+1}$$

PROOF OF SECOND RELATION:

$$D_1 D_2 D_3 = D_2 D_1 D_2 \quad \text{LEFT SIDE} =$$

$$(x_1 - x_2)^{-1} (1 - \Delta_1) (x_2 - x_3)^{-1} (1 - \Delta_2) (1_1 - x_2)^{-1} (1 - \Delta_1)$$

$$= (x_1 - x_2)^{-1} (x_1 - x_3)^{-1} (x_2 - x_3) \sum_{w \in S_3} \text{SEN}(w) \cdot w$$

EXPAND AND COLLECT COEFS TO WRITE

$$\sum_{w \in W} f_w \cdot w \quad \text{ALL TERMS EXCEPT } f_1, f_{\sigma_1} \text{ ARE EASY TO COMPUTE.}$$

LET'S COMPUTE f_1 : EXPAND $1 - \Delta_1$

INTO TWO TERMS. EITHER TAKE

$$1, 1, 1 \quad \text{OR} \quad \Delta_1, 1, \Delta_1$$

FIRST CONTRIBUTES $(x_1 - x_2)^{-1} (x_2 - x_3)^{-1} (x_1 - x_2)^{-1}$

SECOND CONTRIBUTES

$$(x_1 - x_2)^{-1} (-\Delta_1) (x_2 - x_3)^{-1} (1) (x_1 - x_2)^{-1} (-\Delta_1)$$

$$= (x_1 - x_2)^{-1} (x_1 - x_3)^{-1} (x_2 - x_1)^{-1} (-\alpha)^2$$

so

$$\begin{aligned} J_1 &= (x_1 - x_2)^{-1} (x_2 - x_3)^{-1} (x_1 - x_2)^{-1} \\ &\quad - (x_1 - x_2)^{-1} (x_1 - x_3)^{-1} (x_1 - x_2)^{-1} \\ &\approx (x_1 - x_2)^{-1} (x_1 - x_3)^{-1} (x_2 - x_3)^{-1}, \end{aligned}$$

$D_1 D_2 D_1$ HAS SAME EVALUATION

PROVES BRAID RELATION

$$D_1 D_2 D_1 = D_2 D_1 D_2.$$

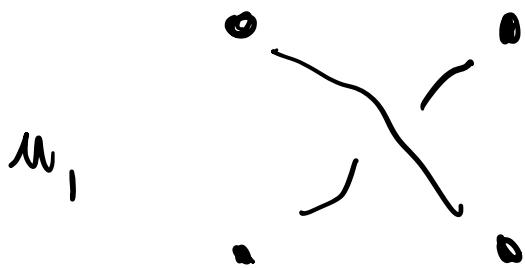
THE BRAID RELATION IS SOME CLOSE
RELATIVE OF YANG-BAXTER EQUATION.

ARTIN BRAID GROUP \hat{B}_{n-1}

m_1, \dots, m_{n-1} SUBJECT TO BRAID RELNS.

$$m_i m_{i+1} m_i = m_{i+1} m_i m_{i+1}$$

$$m_i m_j = m_j m_i \text{ IF } |i-j| \geq 1.$$



GENERATORS
OF BRAID GROUP



BRAIDS ARE COMPOSED BY STACKING

THESE BRAIDS
ARE ISOTOPIC.

WE WILL RETURN TO THIS POINT LATER.

SYMMETRIC GROUP IS A COXETER GROUP.

Δ ALSO SATISFY BRAID RELATIONS
AND ALSO A "QUADRATIC RELATION"

$$\Delta_i^2 = 1.$$

OTHER USEFUL QUADRATIC RELATIONS.

NILHECKE ALGEBRA (DEMAZURE OPS)

BRAID REL'NS

$$\Delta_i^2 = 0$$

IF q IS AN INDETERMINATE CONS T_i

BRAID REL'N

$$T_i^2 = (q-1)T_i + q.$$

THIS IS THE $GL(n)$ "AFFINE HECKE ALGEBRA."

UBIQUITOUS TWO PLACES IT ARISES:

INAIKAWA-MAESUMA: THE AFFINE HECKE ALGEBRA ARISES AS A CONVOLUTION RING OF FUNCTIONS ON $GL(n, F)$

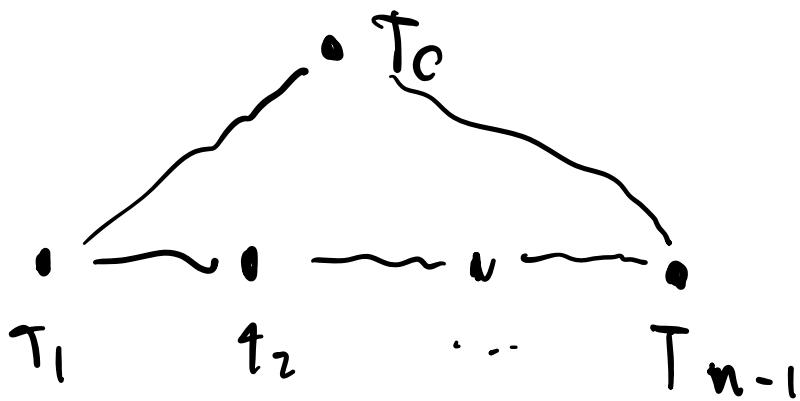
$F = \mathbb{Q}_p$, $g = p$ (RESIDUE CARDINATE)

T_j = CHARACTERISTIC FUNCTION OF $J \triangleleft J$

$J = \{g \in GL(n, \mathbb{Z}_p) \mid g = \begin{matrix} \text{UPPER} \\ \text{MAJOR} \end{matrix} \Delta \}$

THIS RING HAS 2^n ELEMENTS

T_1, \dots, T_{n-1} (QUADRATIC BRAID RING)
AND ONE MORE T_0



$$T_0 T_1 T_0 = T_1 T_0 T_1$$

$$T_0 T_{n-1} T_0 = T_{n-1} T_0 T_{n-1}$$

$T_i T_j = T_j T_i$ IF i, j NOT
ADJACENT IN THIS GRAPH.

T_0, T_1, \dots, T_n SATISFY BRAID, QUADRATIC
RELATIONS.

WZHW PROVES (1978):

THE SAME HECKE ALGEBRA CAN BE
REALIZED AS A RING ACTING ON EQUIVARIANT
K-THEORY OF COMPLEX FLAG VARIETY.

MATSUMOTO'S THEOREM.

RELATION BETWEEN DIFFERENT REDUCED WORDS FOR ELTS OF S_n (OR COXETER GROUPS)

$$w = \Delta_{i_1} \cdots \Delta_{i_k} \quad \text{REDUCED IF } i_2 \text{ IS MINIMAL.}$$

THEOREM: IF

$\Delta_{i_1} \cdots \Delta_{i_n} = \Delta_{j_1} \cdots \Delta_{j_n}$ ARE TWO REDUCED EXPRESSIONS THEIR EQUALITY CAN BE PROVED USING ONLY BRAID RELATIONS.

EXAMPLE IN S_4

$$w_0 = \Delta_1 \Delta_2 \Delta_1 \Delta_3 \Delta_2 \Delta_1 = \Delta_3 \Delta_2 \Delta_3 \Delta_1 \Delta_2 \Delta_3$$

↑ 1 2 1 3 2 1 3 2 3 1 2 3

LONGEST ELT.

$$(1,4)(2,3) \quad l(w_0) = 6$$

$$1 \ 2 \ 1 \ 3 \ 2 \ 1$$

$$\Delta_1 \Delta_3 = \Delta_3 \Delta_1$$

$$1 \ 2 \ 3 \ 1 \ 2 \ 1$$

$$\Delta_1 \Delta_2 \Delta_1 = \Delta_2 \Delta_1 \Delta_2$$

$$1 \ 2 \ 3 \ 2 \ 1 \ 2$$

$$1 \ 3 \ 2 \ 3 \ 1 \ 2$$

$$3 \ 1 \ 2 \ 1 \ 3 \ 2$$

$$3 \ 2 \ 1 \ 2 \ 3 \ 2$$

$$3 \ 2 \ 1 \ 3 \ 2 \ 3$$

$$3 \ 2 \ 3 \ 1 \ 2 \ 3$$

THEOREM : IF

$$\Delta_{i_1} \dots \Delta_{i_n} = \Delta_{j_1} \dots \Delta_{j_n} \text{ ARE}$$

TWO REDUCED EXPRESSIONS THEIR EQUALITY
CAN BE PROVED USING ONLY BRAID
RELATIONS. CONCLUSION REALLY MEANS

$$m_{i_1} \dots m_{i_n} = m_{j_1} \dots m_{j_n}$$

IN \mathfrak{B}_{n-1} .

APPLICATION TO NIL HECKE ALG

GENS D_i S.T. BRAID REL'N AND
 $D_i^2 = 0$.

IF $w \in S_n$ LET $w = D_{i_1} \cdots D_{i_k}$. (REDUCED)

THEN WE CAN DEFINE

$$D_w = D_{i_1} \cdots D_{i_k}$$

DEMAZURE OPERATORS. WELL-DEF'D

BY MATSUMOTO'S THEOREM SINCE D_i

SATISFY BRAID RELATIONS.

SCHUBERT POLYNOMIALS.

$\Lambda = \mathbb{Z}^n$ (THINK OF $GL(n)$ WEIGHT LATTICE)

IF $\lambda = (\lambda_1, \dots, \lambda_n) \in \Lambda$

$$x^\lambda = x_1^{\lambda_1} \cdots x_n^{\lambda_n}$$

$$p = (n-1, n-2, \dots, 0) \quad \text{"Weyl vector"}$$

A Weyl vector satisfies

$$D_i p = p - \alpha_i$$

$$\alpha_i = (0, \dots, 0, \overset{\uparrow}{1}, -1, 0, \dots)$$

↓
i-th position

Simple roots.

DEFINITION:

$$S_w(x) = D_{w^{-1}w_0} \cdot x^p$$

Schubert polynomials

w	\mathfrak{S}_w
1234	1
1243	$x_1 + x_2 + x_3$
1324	$x_1 + x_2$
1342	$x_1 x_2 + x_1 x_3 + x_2 x_3$
1423	$x_1^2 + x_1 x_2 + x_2^2$
1432	$x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_2^2 x_3$
2134	x_1
2143	$x_1^2 + x_1 x_2 + x_1 x_3$
2314	$x_1 x_2$
2341	$x_1 x_2 x_3$
2413	$x_1^2 x_2 + x_1 x_2^2$
2431	$x_1^2 x_2 x_3 + x_1 x_2^2 x_3$
3124	x_1^2
3142	$x_1^2 x_2 + x_1^2 x_3$
3214	$x_1^2 x_2$
3241	$x_1^2 x_2 x_3$
3412	$x_1^2 x_2^2$
3421	$x_1^2 x_2^2 x_3$
4123	x_1^3
4132	$x_1^3 x_2 + x_1^3 x_3$
4213	$x_1^3 x_2$
4231	$x_1^3 x_2 x_3$
4312	$x_1^3 x_2^2$
4321	$x_1^3 x_2^2 x_3$

Macdonald uses 1-line notation for permutations

$$(1324) = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix} = \Delta_2.$$