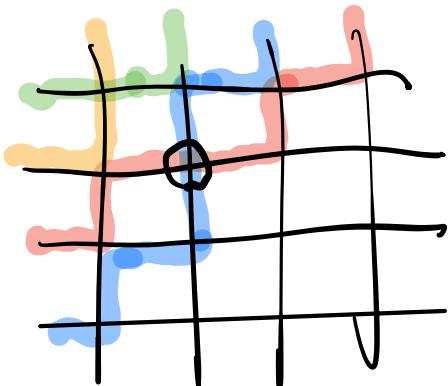
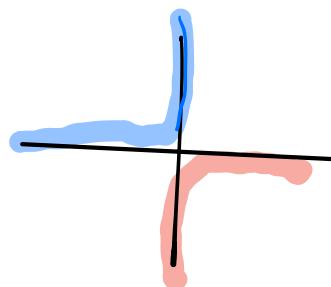


BUMPLESS PIPE DREAMS,

TWO DIFFERENT MODELS FOR DOUBLE SCHUBERT
POLYNOMIALS. BUMPLESS PIPE DREAMS WERE
INTRODUCED BY LEE, LAM, SHIMIZU.

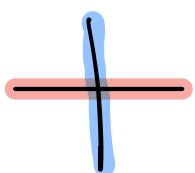
CLASSIC:



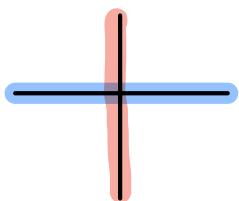
"Bump"

FORBIDDEN IN THE BUMPLESS
MODELS.

FOR CLASSIC PIPE DREAMS

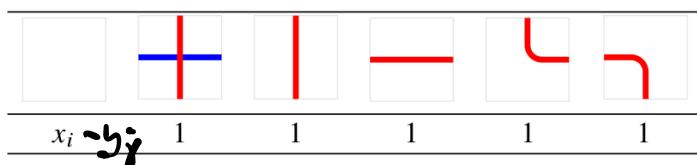


ALLOWED



FORBIDDEN

CROSSING CONVENTION
IS REVERSED IN
BPD.



BPD
WEIGHTS.

FOR CLASSIC WE GET A CONTRIBUTION
IF THERE IS A CROSSING

$$x_i - y_j \quad \text{if } x_i \text{ Row } j - y_i \text{ COL.}$$

FOR BPD CONTRIBUTION IF NO PATHS

FOR CLASSIC ROWS ARE LABELED

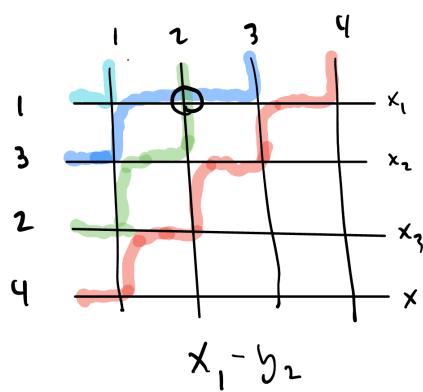
x_1, \dots, x_n TOP TO BOTTOM. FOR COLS

x_1, \dots, x_n BOTTOM TO TOP.

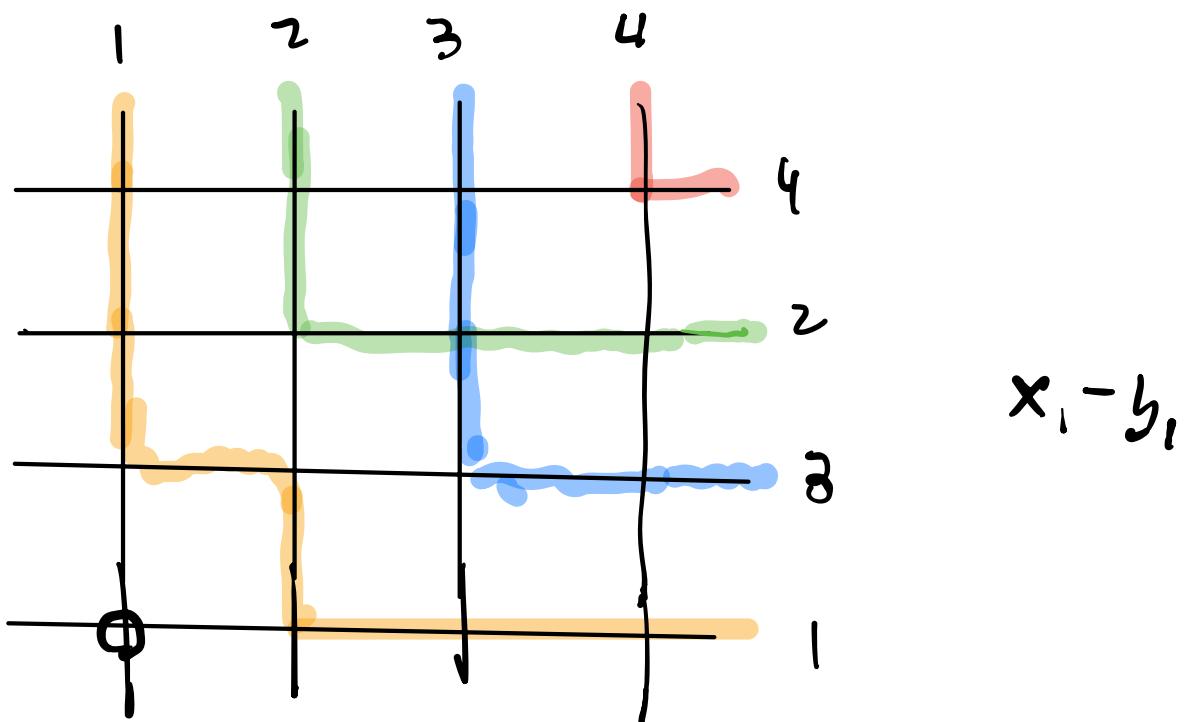
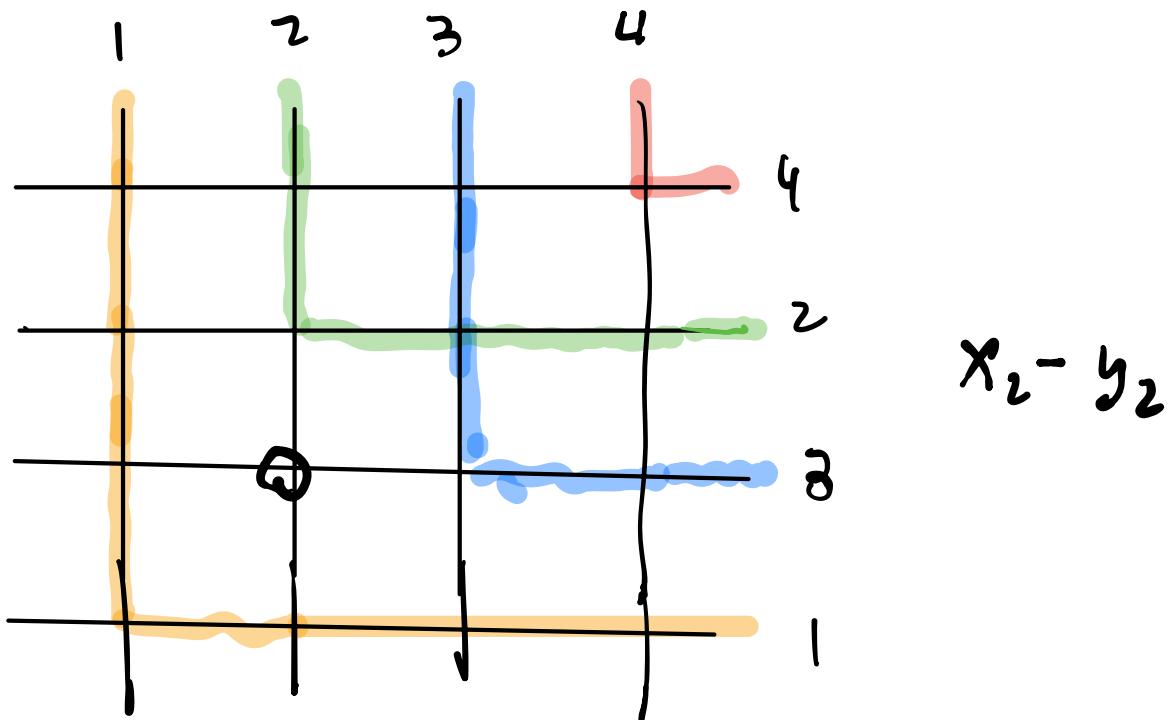


$$S_{(1324)} = S_{\Delta_2}$$

$$x_2 - y_1 + x_1 - y_2 .$$



CLASSIC PD.



DOUBLE SCAN CYCLE =

$$S_{(1324)} = x_1 - y_1 + x_2 - y_2$$

WE GET SAME ANSWER.

DEF: $S_{w_0}(x; y) = \prod_{i+j \leq n} (x_i - y_j)$

IF $0 \Delta_i < \omega$

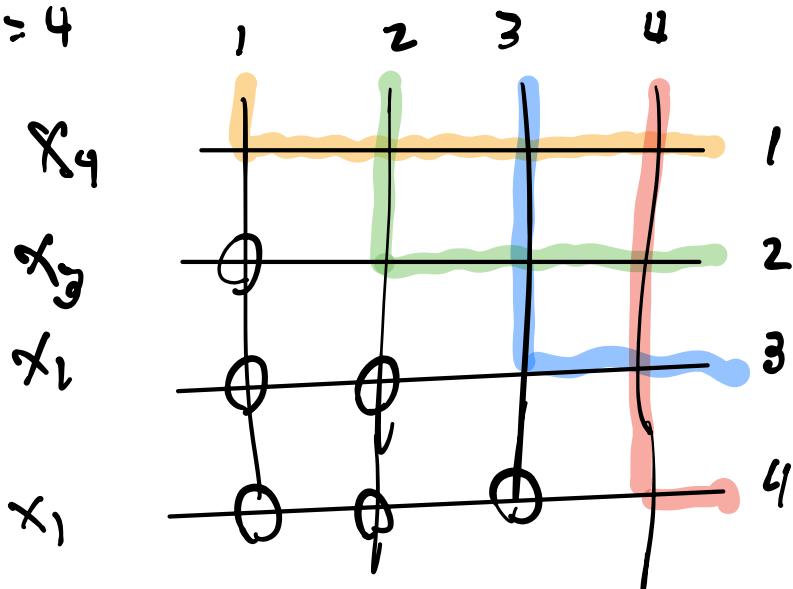
$$S_{w_{D_i}} = D_i S_w$$

$$D_i f(x) = \frac{f(x) - f(x_i)}{x_i - x_{i+1}}$$

APPLY THE OPERATOR TO X VARIABLES.

EVALUATION FOR w_0 IS STRAIGHTFORWARD.

$w = 4$



$w_Q = 4321$

$$(x_1 - b_1)(x_2 - b_1)(x_3 - b_1)$$

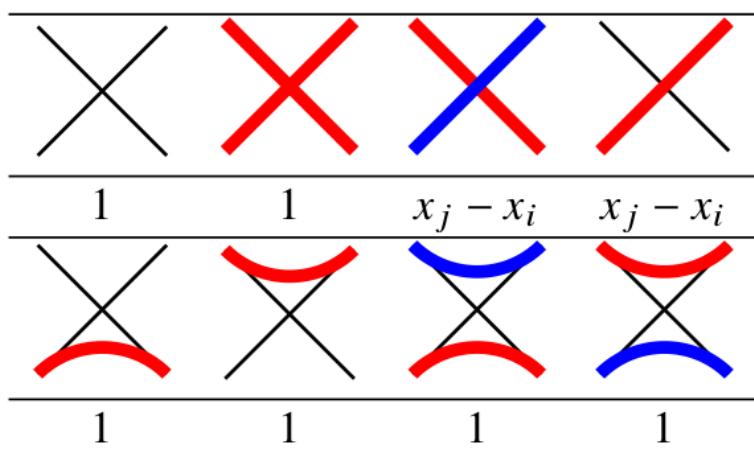
$$(x_4 - b_2)(x_2 - b_2)$$

$$(x_1 - b_3)$$

YOU CAN PROVE IF $Q_i < w$

THEN $S_{w Q_i} = D_i S_w$

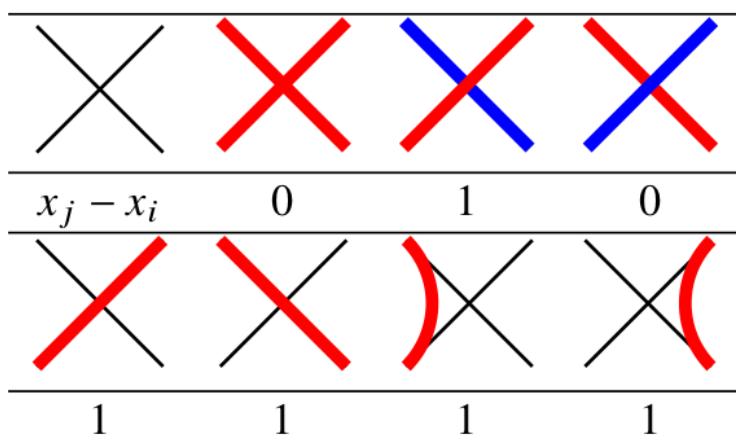
CAN BE PROVED USING YBE.



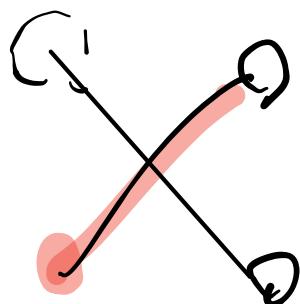
R-MATRIX
FOR BUMPS
PIPES.

SIMILAR TO LECTURE 13,
 KNUTSON AND UDELL (FPSAC PAPER)
 CONSIDERED HYBRID MODELS WITH LAYERS
 OF CLASSIC AND BUMKERS PIPE

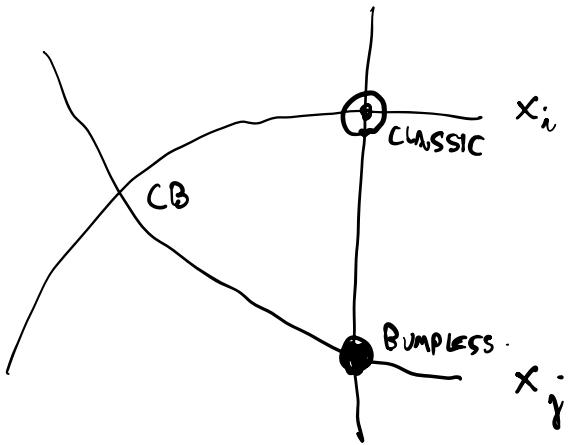
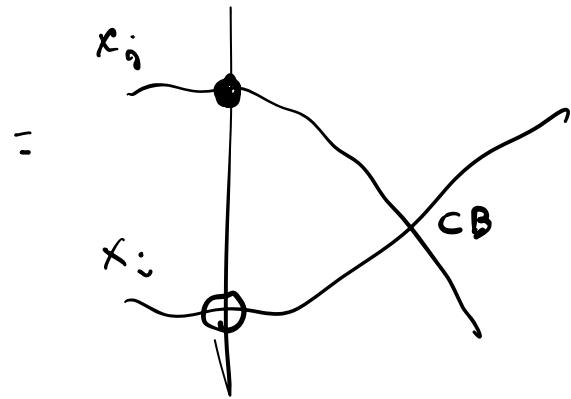
INSTEAD OF KV THEOREM 3 WILL USE
 ANOTHER YANG - BAXTER EQUATION.



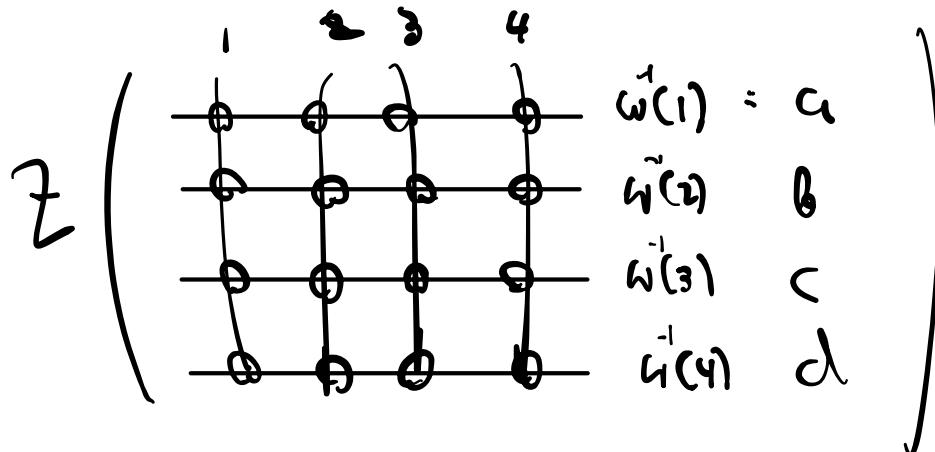
CB R-MATRIX.



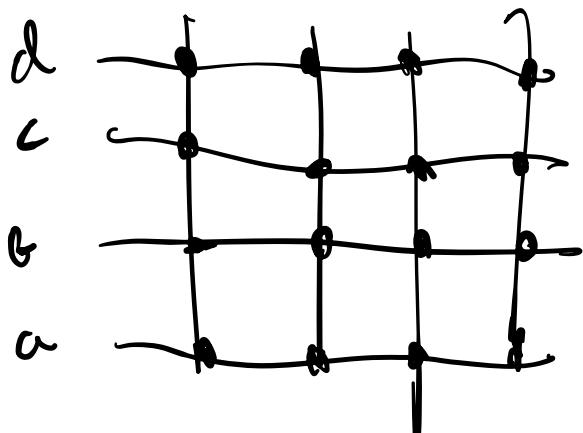
OTHER HYBRID MODELS OF
 KNUTSON - PZJ (PAUL ZINN-JUSTIN)



WE CAN USE THIS AS FOLLOWS



ALL CLASSIC



ALL BUMPLESS

ALL
CLASSIC
OF
HYBRID
MODELS.

STATES

$$S_w((1, \dots, 1); (0, \dots, 0))$$

EXPLICIT. BIJECTION BETWEEN STATES

FOUND BY HUANG, GAO.

IF y VARIABLES ARE ZERO.

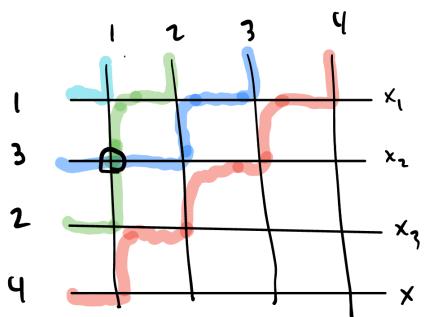
THE STATES HAVE SAME VALUE.

BIJECTION APPROACH WON'T WORK
FOR DOUBLE SCHUBERTS.

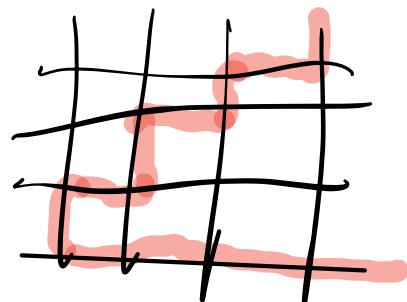
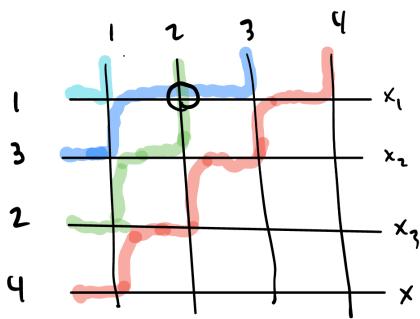
HOW IT WORKS;

AT BOTTOM WE CAN SIMPLY CHANGE

THE STATE FROM CLASSIC TO BUMPLESS



$$x_2 - y_1$$



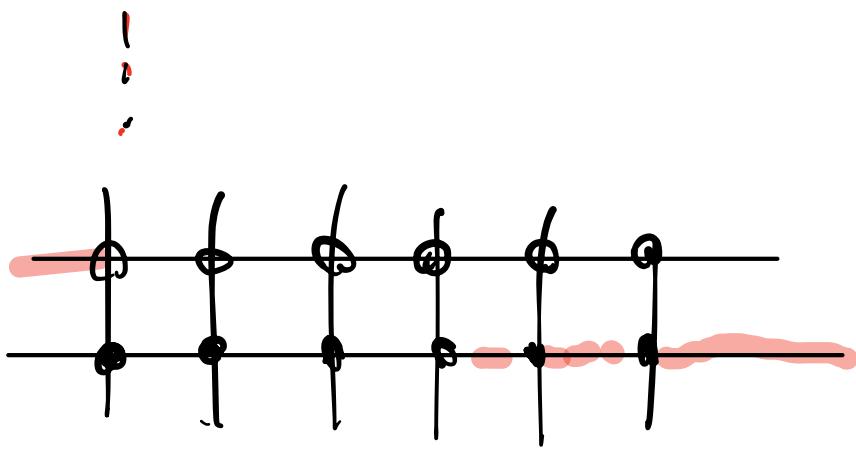
$$x_1 - y_2$$

THERE
CAN BE
NO CROSSING
ON BOTTOM

NO
EMPT.

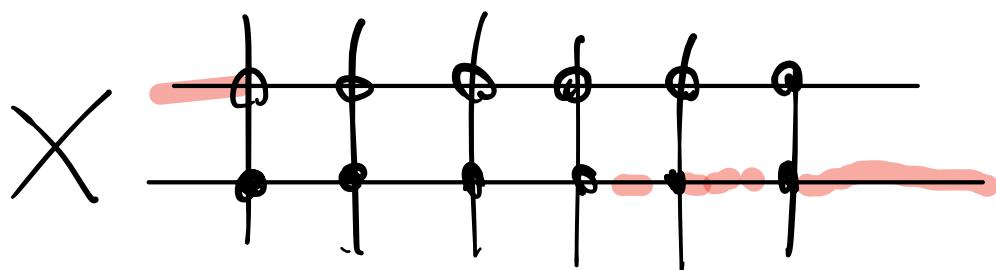
ON BOTTOM.

THIS BRANE FORCE CHANGE OF BOTTOM
ROW FROM CLASSIC TO BULKLESS
DOESN'T CHANGE THE WEIGHT ^{OF} STATE.



BOTTOM.

ATTACH R-MATRIX



BOTTOM

TO BE CONTINUED.