

SCHUBERT POLYNOMIALS WERE
 INTRODUCED BY LASCAUX AND SCHÜTTENBERGER
 TO DESCRIBE COHOMOLOGY OF FLAG
 VARIETIES (LECTURE 1).

$$G = GL(n, \mathbb{C}) \quad B = \begin{pmatrix} * & & & \\ & \ddots & & \\ & & \ddots & \\ 0 & & & * \end{pmatrix}$$

$X = G/B$ IS A PROJECTIVE VARIETY
 OF $\text{DIM} = l(w_0) = \frac{1}{2}n(n-1) = |\Phi^+|$.

$$\text{IF } w \in W \quad BwB/B = X_w^0$$

$$B \cong \mathbb{C}^{l(w)} \quad (\text{AFFINE SPACE})$$

$$w = w_0 \quad X_w^0 \text{ OPEN}$$

$$\overline{X}_w = \text{CLOSURE of } X_w^0$$

$$= \bigcup_{y \leq w} X_y^0 \quad (\text{CELLULAR DECOMPOSITION})$$

BRUHAR
 ORDER

$$[x_\omega] = \text{COHOMOLOGIC CLASS OF DEGREE}$$

$$2(l(\omega_0) - l(\omega))$$

$$\frac{1}{2}n(n-1)$$

$$\text{REAL DIM } (x_\omega) = 2l(\omega)$$

THESE FORM A BASIS OF $H^*(X)$ AS A VECTOR SPACE.

$$H^*(X) = \mathbb{C}[x_1, \dots, x_n]$$

IDEAL
 GEN'D BY
 SYMMETRIC
 POLYNOMIALS.

FIND A SET S_ω OF POLYNOMIALS

SUCH THAT THE IMAGE IN $H^*(X)$ IS

$[x_\omega]$. THE SCHURER POLYNOMIALS ARE A GOOD CHOICE.

$$X^P = x_1^{n_1} x_2^{n_2} \cdots x_{n-1}^{n_{n-1}} x_n^{n_n} \quad (\text{DOESN'T INVOLVE } x_n)$$

PROPERTIES: $S_{w_0} = X^P$

IF $w \Delta_i < w$ THEN $S_{w \Delta_i} = D_i S_w$

WHERE

$$D_i = (x_i - x_{i+1})^{-1} (1 - \Delta_i),$$

LET US COMPUTE THESE FOR $GL(3)$.

$$S_{\Delta_1 \Delta_2 \Delta_1} = x_1^2 x_2 \quad w = w_0 = 1, \Delta_1, \Delta_1$$

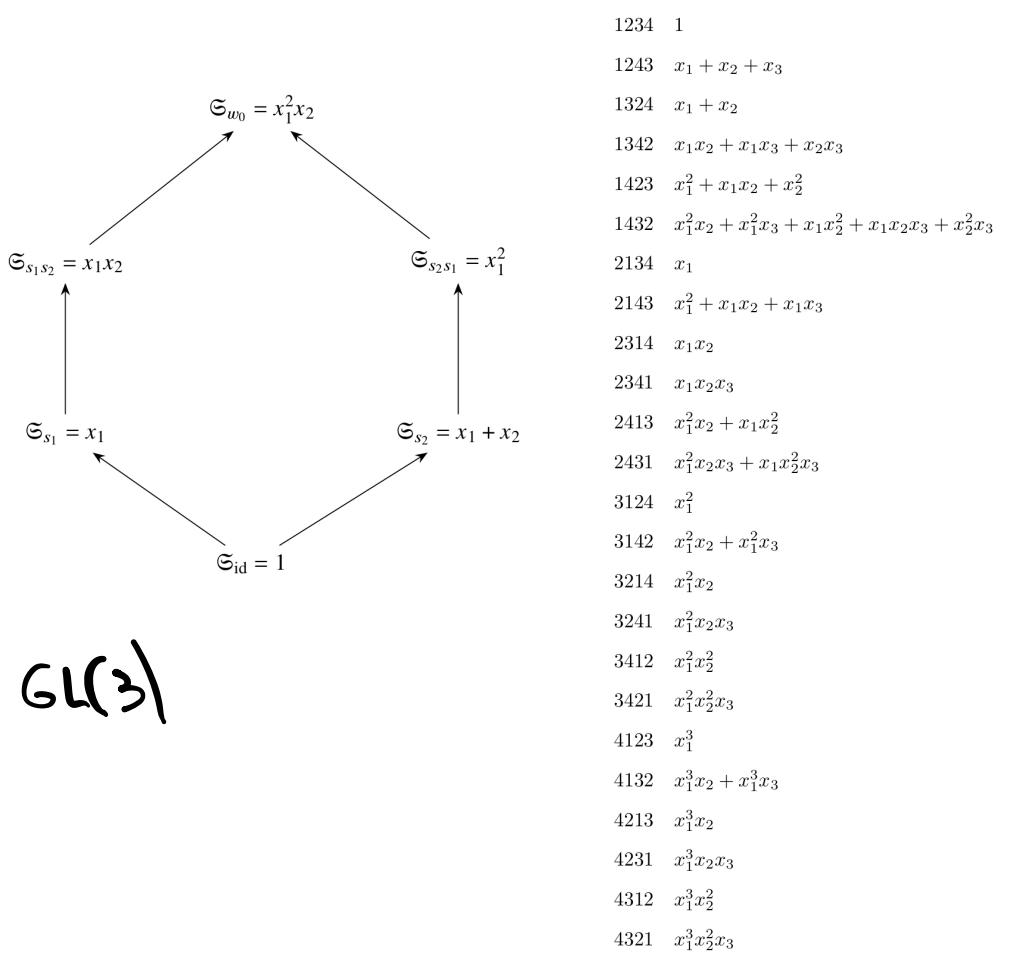
$$S_{\Delta_1 \Delta_2} = D_1 (x_1^2 x_2) \quad w \Delta_1 = D_1 \Delta_1$$

$$= (x_1 x_2)^T (x_1^2 x_2 - x_1 x_2^2) = x_1 x_2.$$

$$S_{\Delta_2 \Delta_1} = D_2 (x_1^2 x_2) = \quad w_0: 1, \Delta_2 \Delta_1 = D_2 \Delta_2 \Delta_2$$

$$(x_1 x_2)^T (x_1^2 x_2 - x_1^2 x_3) \\ = x_1^2,$$

$$w = w_0 \\ w \Delta_2 = \Delta_2 \Delta_1$$



$GL(3)$

COPIED FROM MACDONALD

MACDONALD VS LUNENBERG NOTATION

2341 $x_1x_2x_3$

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix} : (1234) = \Delta_1 \Delta_2 \Delta_3$$

$$S_{\Delta_1 \Delta_2 \Delta_3} = x_1 x_2 x_3 .$$

SYSTEMS WHOSE PARTITION FUNCTIONS
WERE INTRODUCED BY BILLEY AND N. BERGERON
CALLED RC-GRAPHS

RENAMED PIPEDREAMS BY MILLER-KNUSTON.

ANOTHER TYPE OF PIPEDREAMS WERE
INTRODUCED BY LEE-LAM-SHIMOZAWA,
CALLED "BUMPLESS" PIPEDREAMS.

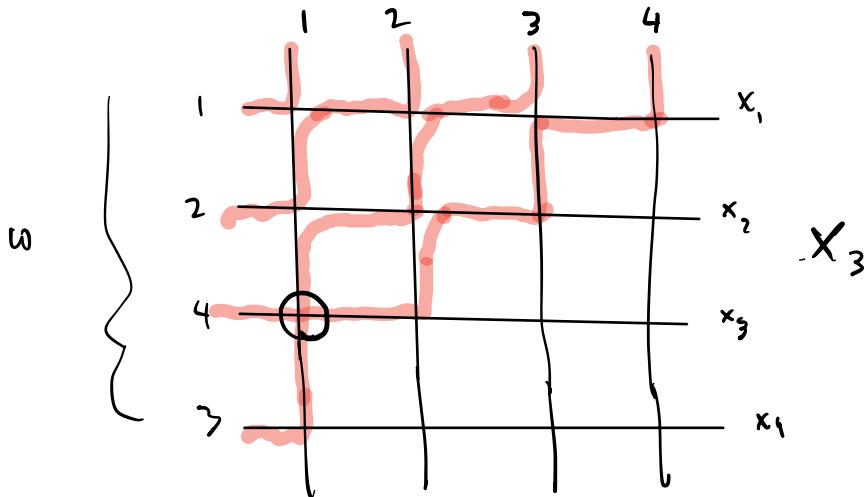
SIMILAR TO THE GAMMA/DETA HYBRID
MODELS, KNUSTON AND VODELL SHOWED
IT IS PROFITABLE TO COMBINE THE
TWO TYPES INTO HYBRID MODELS.

ORIGINALLY, PIPEDREAMS WERE NOT
CALLED BUT COLOR IS IMPORTANT.

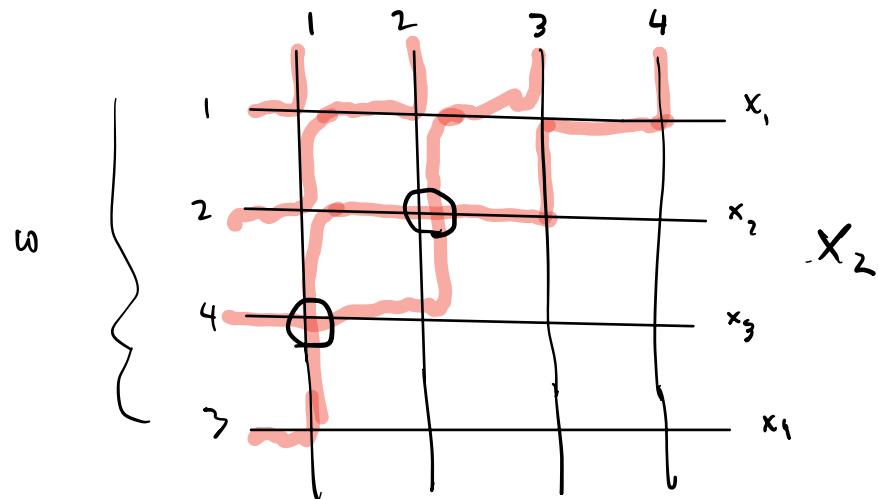
$$\omega = \Delta_3 \text{ IN } S_4.$$

$\Delta_3 = (1243)$ IN 1-LINE NOTATION

$$S_{\Delta_3} = x_1 + x_2 + x_3$$

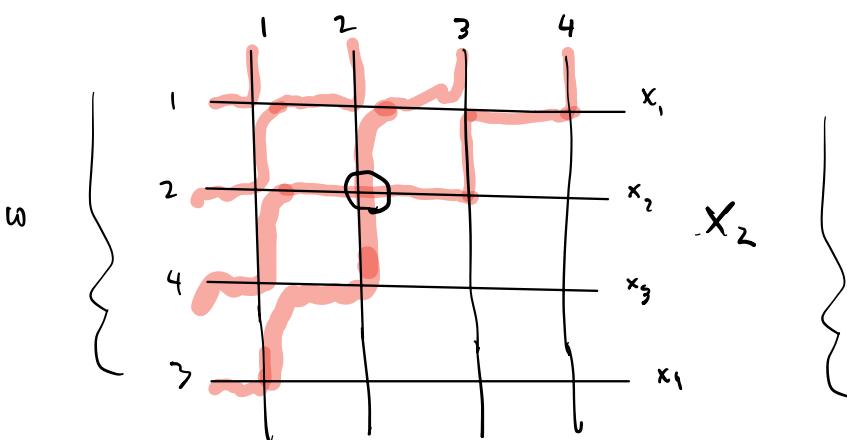
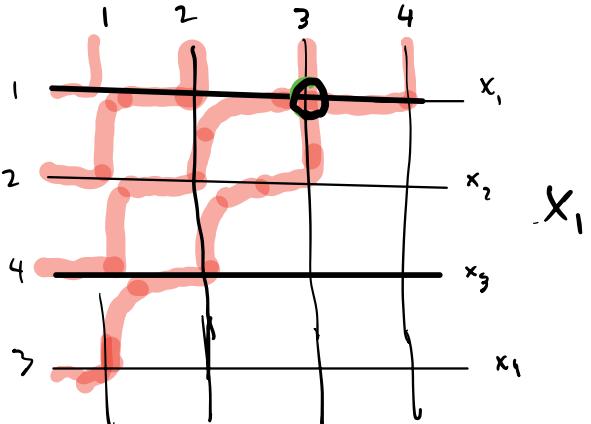


CONNECT THE LABELED EDGES
BY "PIECES."



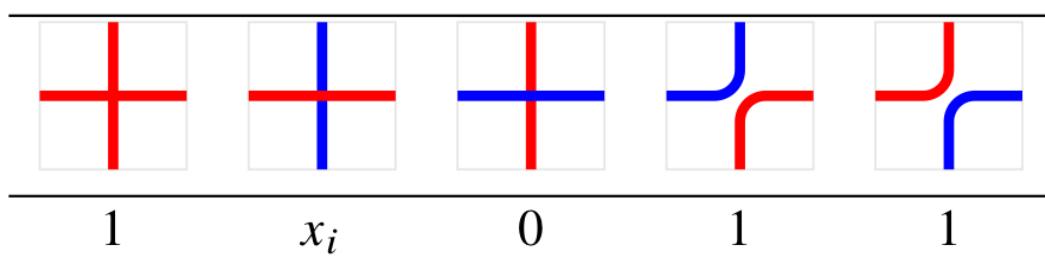
NO!

PIECES ARE
NOT ALLOWED
TO CROSS
THREE!



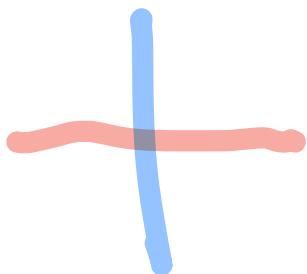
THE TERM "RESUED" IS USED TO MEAN A PIPED REAM IN WHICH NO ROWS CROSS TWICE.

THIS UNFORTUNATELY A GLOBAL CONDITION

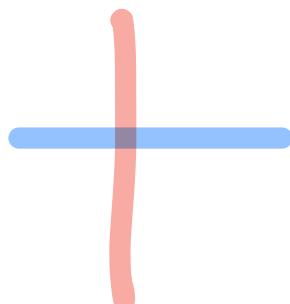


ABSENCE OF A COLOR \rightarrow \oplus IN THE PREVIOUS LECTURES IS ANOTHER COLOR $\oplus < B < R$

SOLUTION: WE COLOR THE PIPES AND ORDER THEM SO IF $R > B$

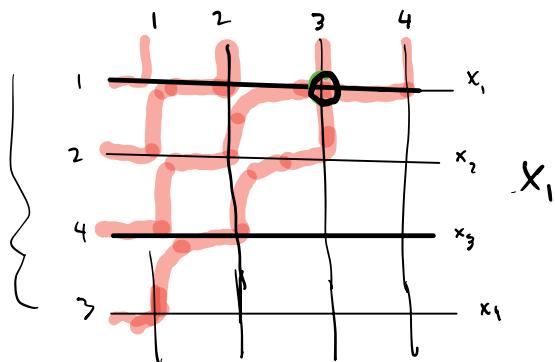
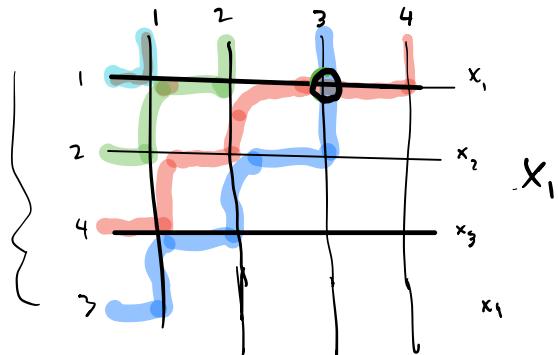


LEGAL



Not
LEGAL.

THE COLORING IS ALSO HELPFUL
BECAUSE COLORS REFLECT THE
PERMUTATION.



CONCLUSION: PIPEDREAMS SHOULD BE
COLORED. THE "UNCOLORED" \oplus IS ANOTHER
COLOR.

WE CAN USE THE YBG TO VERIFY
THE DEFINING PROPERTY.