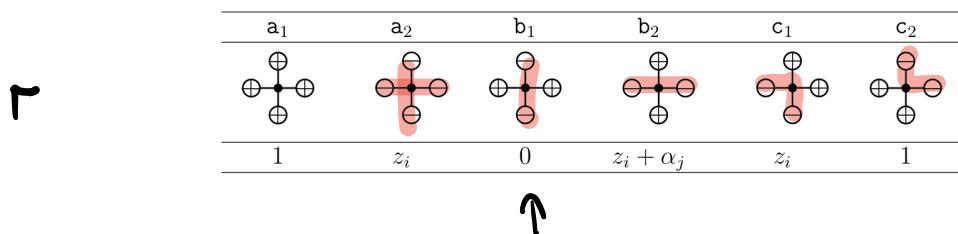


SOMETIMES TWO DIFFERENT SYSTEMS
CAN HAVE THE SAME PARTITION FUNCTION.

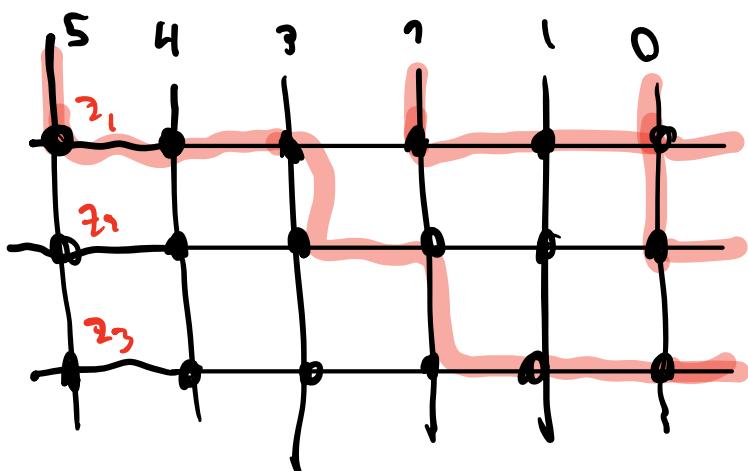
REF: NOTES CH. 4 SECTION 7.

A PRECISELY ANALOGOUS RELATIONSHIP IS
FOUND BETWEEN CLASSICAL AND BUMBLESS
PIPEDREAMS.



$q=0$ TAKAYAMA MODELS WITH α_j PARAM
INTRODUCED.

PUT \ominus IN COLUMNS λ_{i+n-i}
AND RIGHT EDGE



$$\lambda = (3, 1, 0)$$

$$\lambda^{\text{tp}} = (1, 2, 0)$$

a_1	a_2	b_1	b_2	d_1	d_2
$z_i + \alpha_j$	1	$-\alpha_j$	1	1	z_i

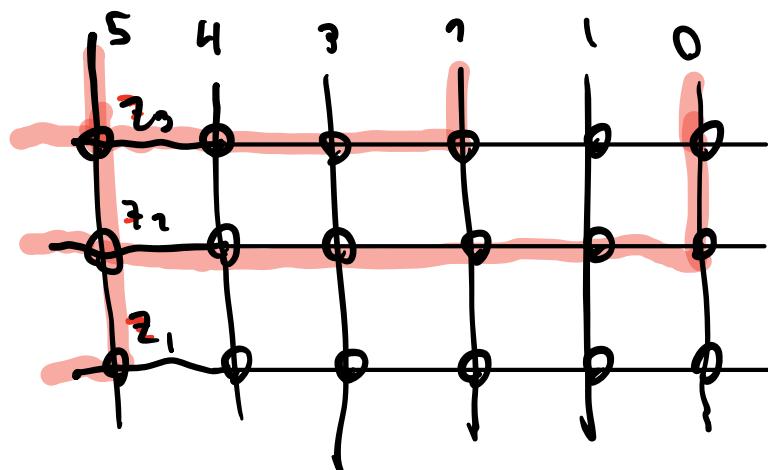
PATHS MOVE DOWN AND LEFT.

PUT \ominus IN COLUMNS $\lambda_1 + \dots + \lambda_n$

AND ~~RIGHT EDGE~~

LEFT

$n=3$.



λ_i ARE
ON $n-i$
ROW.

THEOREM: $Z(S_\lambda^r(z)) = Z(S_\lambda^d(z))$.

ONE APPROACH WOULD BE TO EVALUATE THEM

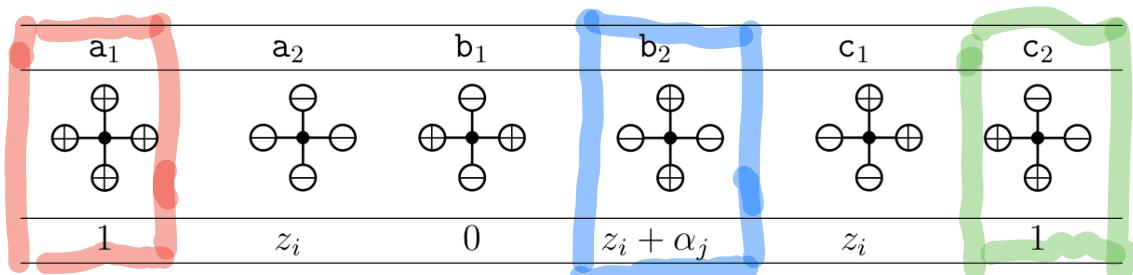
$$Z = Z^p \cdot D_\lambda(z; \alpha)$$

"FACTORIAL SCHUR FUNCTIONS",

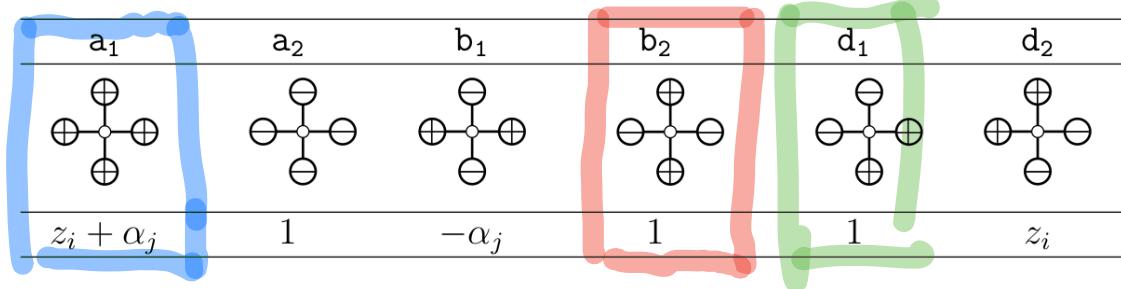
TODAY:

A DIRECT PROOF BASED ON YANG BAXTER
EQUATIONS

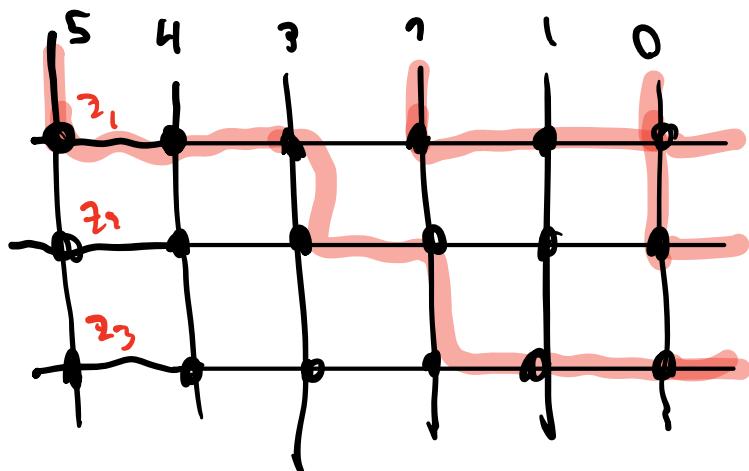
THIS LEADS TO HYBRID MODELS IN WHICH
LAYERS OF Γ AND Δ ICE ARE
MIXED TOGETHER.



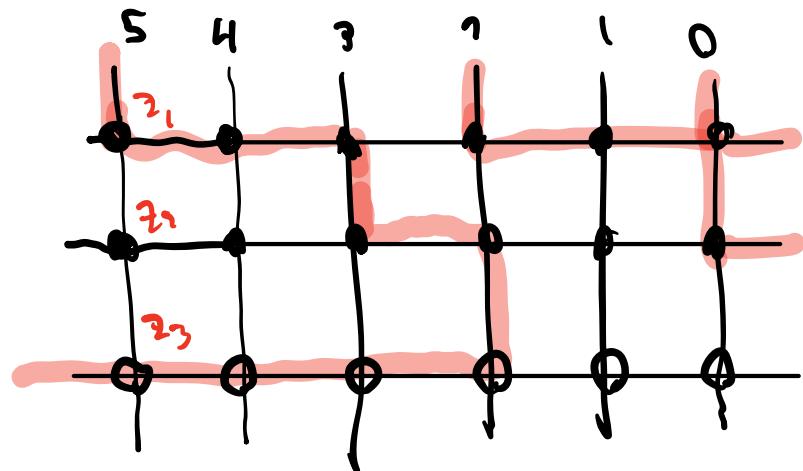
The Boltzmann weights for the *Delta model* are given as follows.



OBSERVATION: WE MAY TRANSFORM THE
BOTTOM ROW FROM Γ TYPE TO Δ

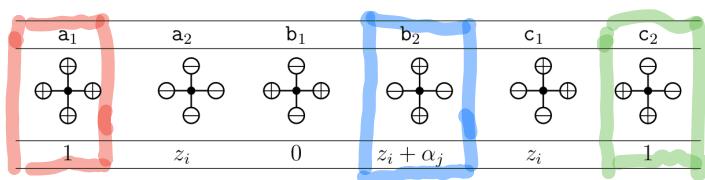


TAKE A STATE

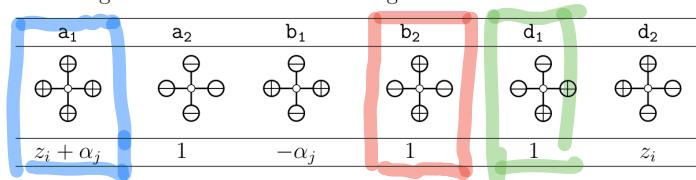


SWITCH \oplus TO
- IN BOTTOM
ROW.

Γ AND Δ WEIGHTS ARE DIFFERENT
BUT WE ARE NOT CONCERNED WITH A
SITUATION WHERE \oplus IS BELOW THE VERTEX.



The Boltzmann weights for the Delta model are given as follows.



ONLY a_1, b_1, c_2 CAN OCCUR IN BOTTOM ROW

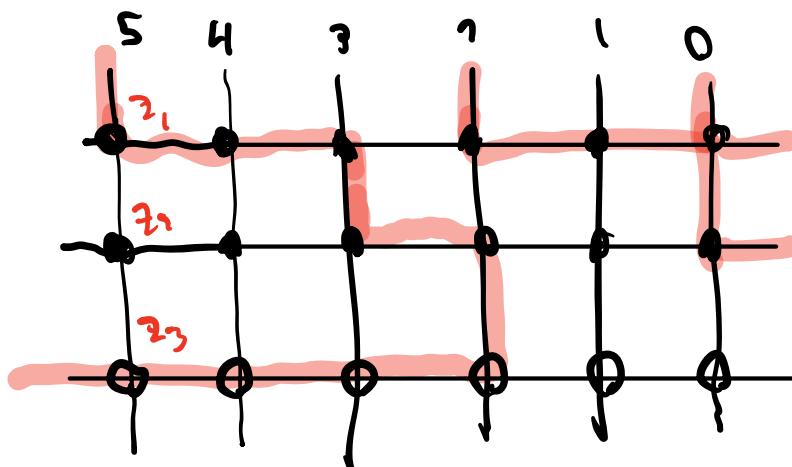
REVERSING SPINS ON HORIZONTAL EDGES

TURN THESE INTO Q_2, a_1, d_1

WITHOUT CHANGING THE WEIGHTS,

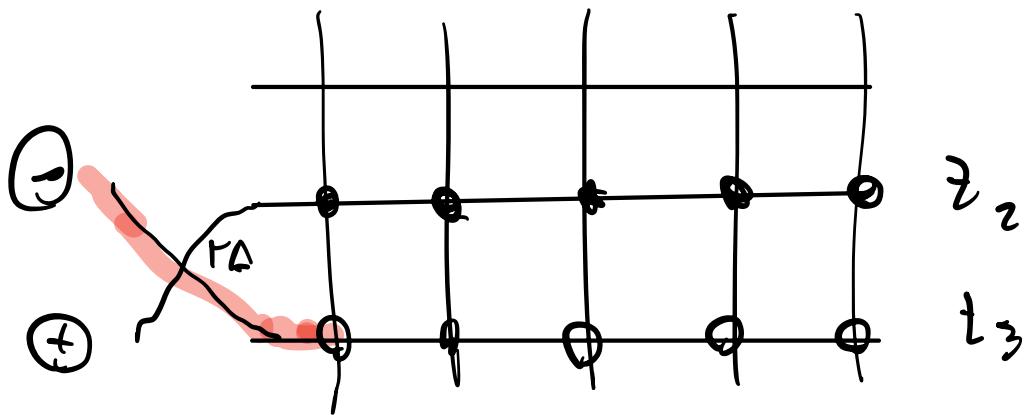
WE CAN CHANGE EVERY STATE OF G^Γ

INTO A STATE OF A HYBRID MODEL.

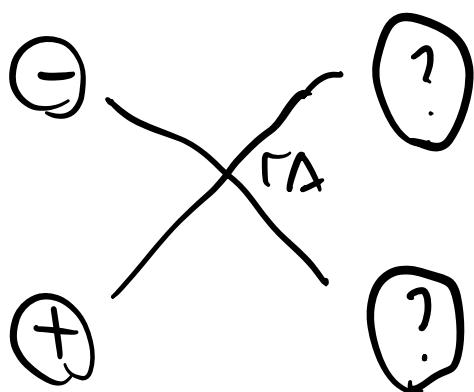


a_1	a_2	b_1	b_2	c_1/d_1	c_2/d_2
z_j	z_i	0	$z_i - z_j$	z_i	z_j
z_i	z_j	0	$z_i - z_j$	z_i	z_j
$-z_i$	$z_i - z_j$	z_i	z_i	z_i	z_j
$z_i - z_j$	z_j	z_j	z_j	z_j	z_i

use
THIS
RNN.



OBSERVE GIVEN SPINS

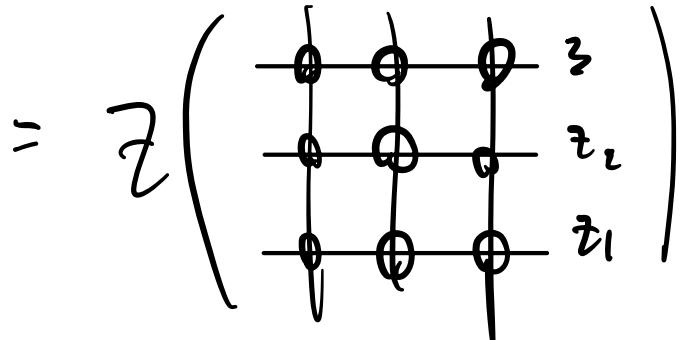


$$Z \left(\begin{array}{c} \text{Diagram of a 3D Ising lattice with spins and a magnetic field} \end{array} \right) = z_2 z_3 \left(\begin{array}{c} \text{Diagram of a 2D Ising lattice with spins and a magnetic field} \end{array} \right)$$

$$\text{TRAN} \quad \text{||} \quad Z \left(\begin{array}{c} \text{Diagram of a 3D Ising lattice with spins and a magnetic field} \\ z_2, z_3, z_1 \end{array} \right) = z_2 z_3 \left(\begin{array}{c} \text{Diagram of a 2D Ising lattice with spins and a magnetic field} \\ z_1, z_2, z_3 \end{array} \right)$$

$$= z_2 z_3 \left(\begin{array}{c} \text{Diagram of a 2D Ising lattice with spins and a magnetic field} \\ z_1, z_2, z_3 \end{array} \right)$$

IF WE REPEAT THE PROCESS WE CAN
 MOVE A LAYER TO THE TOP, GO BACK
 AND CHANGE ANOTHER 1 LAYER, REPEAT.



AFTER $\frac{1}{2}n(n-1)$ SUCH OPERATIONS.

IN SCHUR POLYNOMIALS AND THE YANG-BAXTER
 EQUATION (BRUBAKER, BUMP, FRANZENBERG)

Delta Ice						
Boltzmann weight	z_i	$z_i(t_i + 1)$	1	$z_i t_i$	1	1
Delta- Delta R-ice						
Boltzmann weight	$t_i z_i + z_j$	$z_j(t_j + 1)$	$t_j z_j - t_i z_i$	$z_i - z_j$	$(t_i + 1)z_i$	$z_i + t_j z_j$
Gamma- Delta R-ice						
Boltzmann weight	$t_i t_j z_j - z_i$	$(t_j + 1)z_j$	$t_i z_j + z_i$	$t_j z_j + z_i$	$(t_i + 1)z_i$	$z_i - z_j$
Delta- Gamma R-ice						
Boltzmann weight	$z_i - z_j$	$(t_i + 1)z_i$	$t_j z_i + z_j$	$t_i z_i + z_j$	$(t_j + 1)z_j$	$-t_i t_j z_i + z_j$

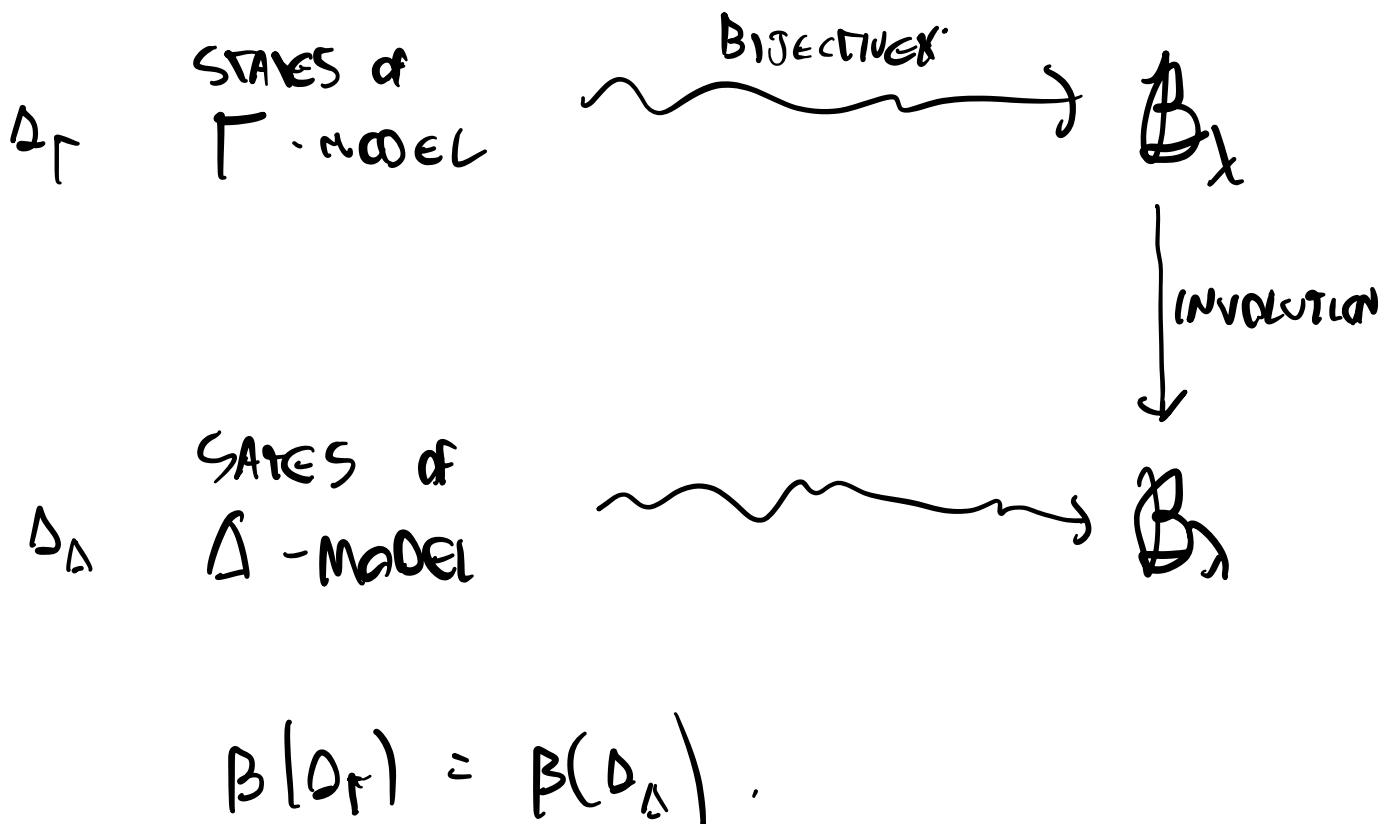
Gamma Ice						
Boltzmann weight	1	z_i	t_i	z_i	$z_i(t_i + 1)$	1
Gamma- Gamma- R-ice						
Boltzmann weight	$t_j z_i + z_j$	$t_i z_j + z_i$	$t_i z_j - t_j z_i$	$z_i - z_j$	$(t_i + 1) z_i$	$(t_j + 1) z_j$

THIS SAME ARGUMENT IS GIVEN WITH
MORE GENERAL WEIGHTS ($t_i = -q$)

IN BBF WYL GROUP MDS
(ANNALS OF MATHEMATICS STUDIES)
EVEN MORE GENERAL PARTITION FUNCTIONS
ARE CONSIDER.

$\phi = 0$ MODEL CAN BE
WITHOUT α_i

STATEMENT CAN BE RELATED TO
CRYSTAL.



FOR THIS CASE THE INVOLUTION CAN BE
USED BUT NOT IN MORE GENERAL CASES.