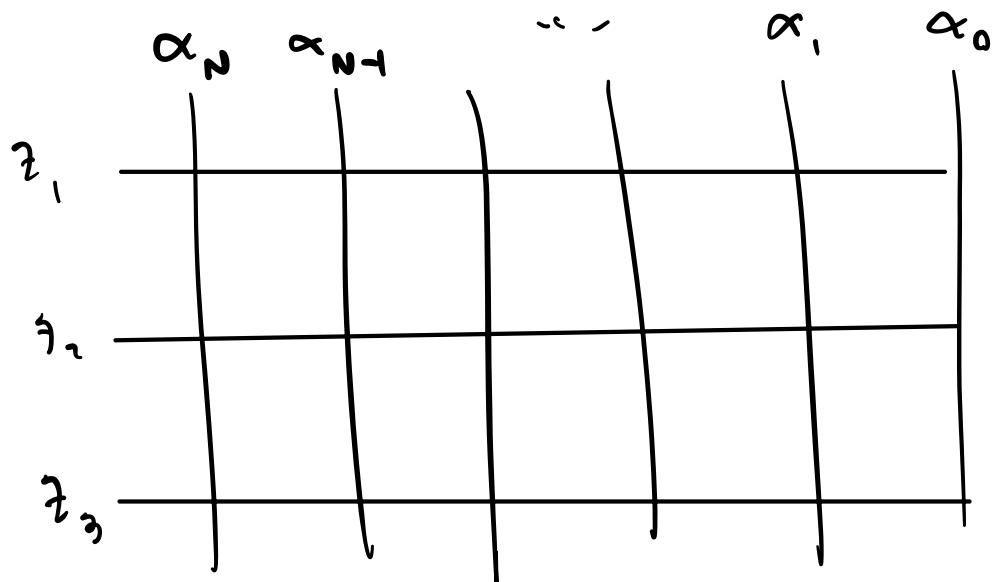


COLUMN PARAMETERS

HYBRID MODELS.



IN MANY CASES COLUMN PARAMETERS
CAN BE INTRODUCED FOR FREE
(LEADING TO (FOR EXAMPLE))

FACTORIAL SCHUR FUNCTIONS
DOUBLE SCHUBERT POLYNOMIALS.

CONSIDER WHEN THE BOLTZMANN WEIGHTS
COME FROM A PARAMETERIZED YANG-BAXTER
EQUATION.

Γ = A GROUP, \vee A VECTOR SPACE

$R, \Gamma \longrightarrow \text{END}(V \otimes V)$

such that in $\text{END}(V \otimes V \otimes V)$

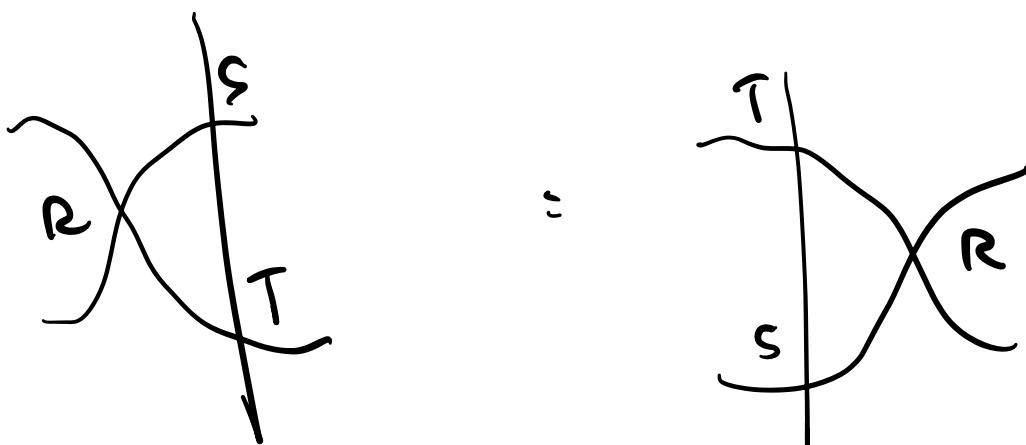
$$[[R(\gamma), R(\gamma S), R(S)]]=0$$

$$[[R, S, T]] =$$

$$(R \otimes I)(I \otimes S)(T \otimes I) - (I \otimes T)(S \otimes I)(I \otimes R)$$

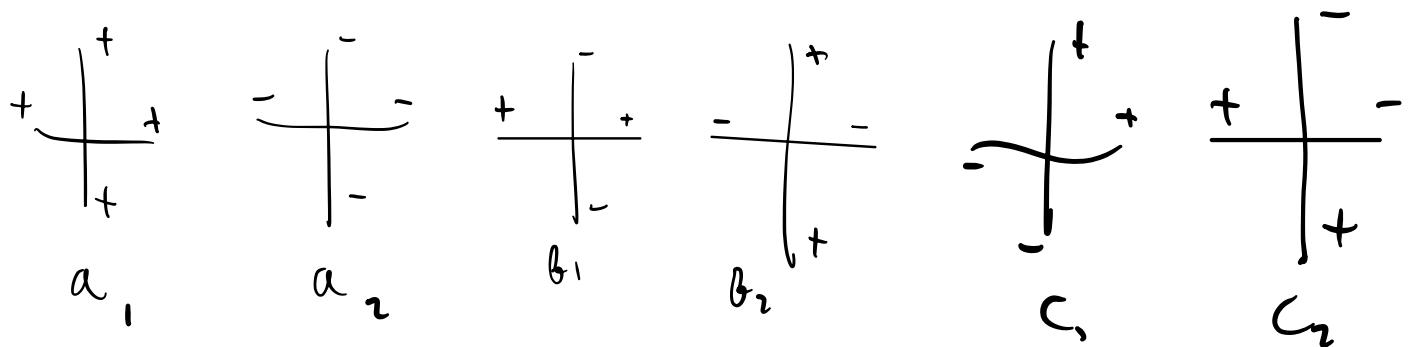
EQUIVALENT TO A YBE:

$$[[R, S, T]] = 0$$



EXAMPLE 1: (BAXTER)

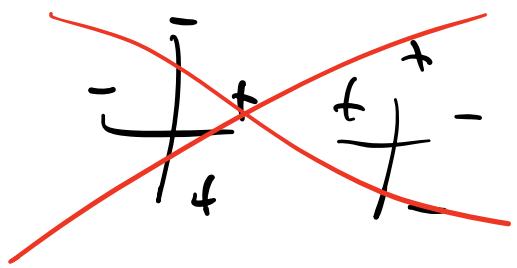
LET US FIX Δ AND CONSIDER
BOLTZMANN WEIGHTS;



"FIELD-FREE" $a_1 = a_2 = a$

$$b_1 = b_2 = 0$$

$$c_1 = c_2 = c$$



$$\Delta(\theta) = \frac{a^2 + b^2 - c^2}{2ab}$$

THEOREM (BAXTER) IF S, T ARE GIVEN

$\Delta(S) = \Delta(T) = \Delta$ THERE EXISTS R WITH

$$[[R, S, T]] = 0 \quad \text{AND} \quad \Delta(R) = \Delta.$$

WE CAN THEN FIND A MAP

$$R : \mathbb{C}^{\times} \rightarrow \text{End}(V \otimes V)$$

V = 2-DIM'L WITH BASIS v_+, v_-
SUCH THAT

$$S = R(\gamma\delta), \quad T = R(s)$$

FOR $\gamma, \delta \in \mathbb{C}^{\times}$.

ADDED AFTER THE LECTURE. SEE NOTE THM 3.10,

$$(a, b, c) = \left(\frac{1}{2}(xq - (xq)^{-1}), \frac{1}{2}(x - x^{-1}), \frac{1}{2}(q - q^{-1}) \right).$$

USE THESE WEIGHTS FOR $R(x)$

SIX - VM NOT ASSUMING FIELD FREE

EXAMPLE 2: THE WEIGHTS ARE
CALLED FREE-FERMIONIC IF

$$\alpha_1, \alpha_2 + \beta_1, \beta_2 = c_1, c_2 ,$$

THEOREM: IF S, T ARE FREE-FERMIONIC
THERE IS ALWAYS AN R SUCH THAT

$$[R, S, T] = 0$$

(FELDKRÖF,
(KOREPIN, BRUBAKER - BUMP - FRIEDBERG))

Moreover \mathbb{M}_k is a PYBE

$$\Gamma = GL(2, \mathbb{C}) \times \mathbb{C}^\times$$

WHOSE IMAGE IS EXACTLY THE FREE
FERMIONIC CASE.

QUANTUM GROUPS;

EXAMPLE 1: $U_q(\mathfrak{sl}_2)$

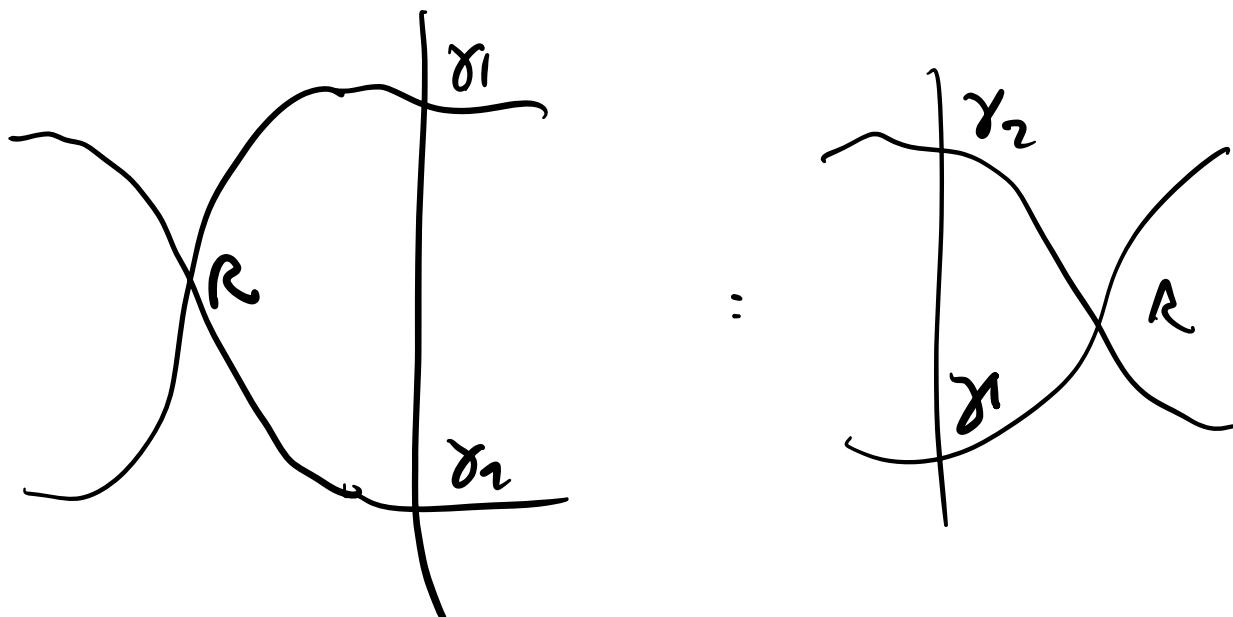
EXAMPLE 2: $U_q(\mathfrak{sl}(1|1))$.

FREE-FERMIONIC

TOKUYAMA WEIGHTS ARE FREE-FERMIONIC.

WE CAN CHOOSE $\gamma_1, \dots, \gamma_n \in \Gamma$

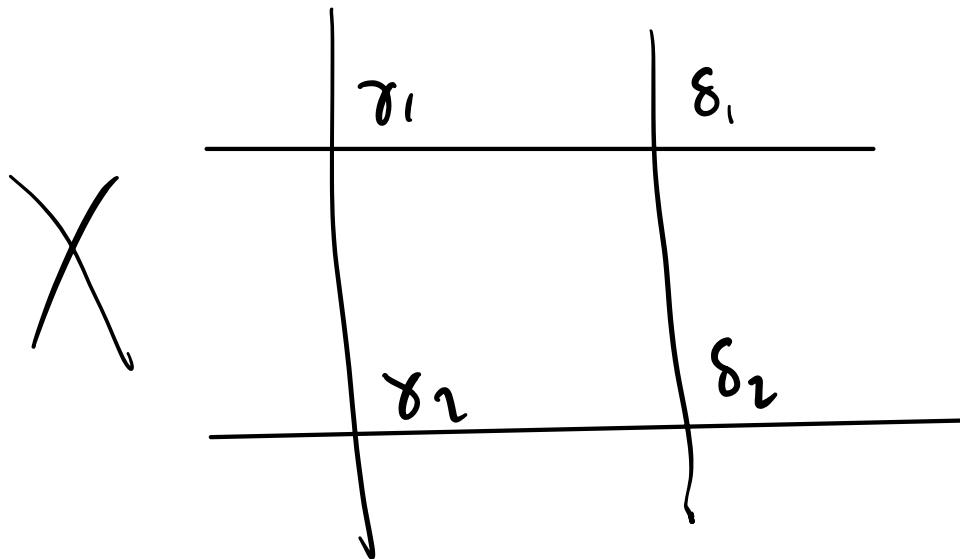
AND ASK FOR AN R-MATRIX
THAT WILL MAKE TRAIN ARGUMENT



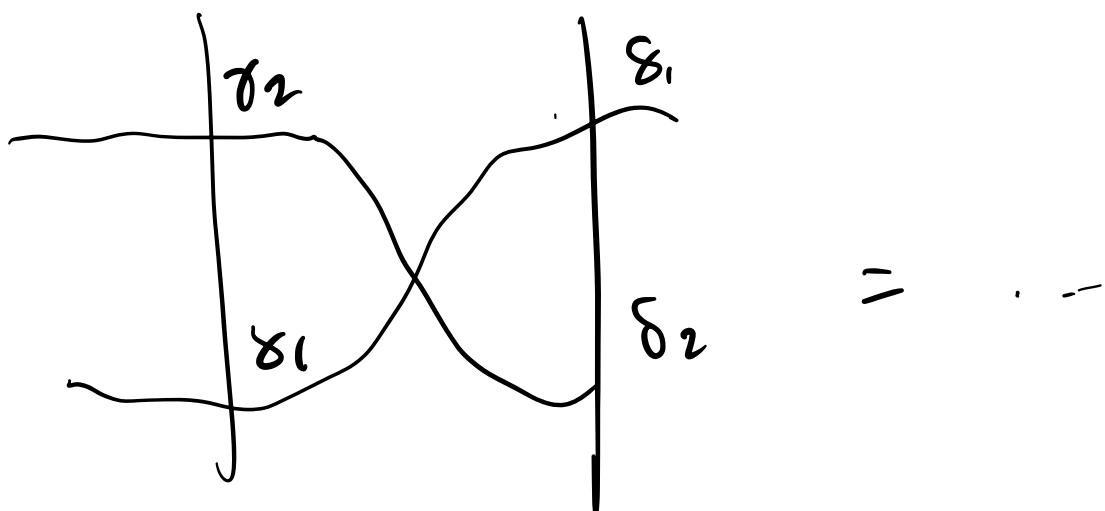
$$\gamma_1 = R \cdot \gamma_2$$

(IN Γ , POSSIBLY
NONABELIAN)

$$R = \gamma_2 \gamma_1^{-1}$$



TO REPEAT THE OPERATION



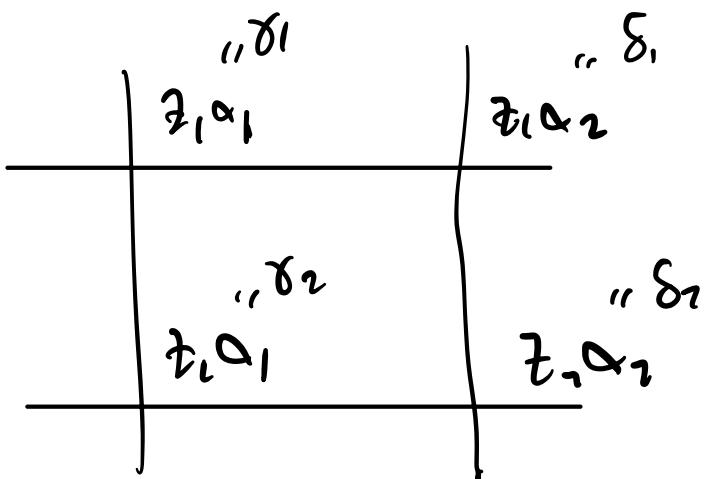
NEED $\gamma_1 \gamma_2^{-1} = \delta_1 \delta_2^{-1}$.

WHAT I CAN DO IS CHOOSE

$$z_1, \dots, z_n \in \Gamma$$

$$\alpha_1, \dots, \alpha_n \in \Gamma$$

$$\gamma_i = z_i \alpha_i$$

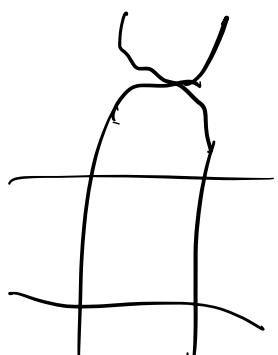


$$\gamma_2 \gamma_1^{-1} \cdot \cancel{\gamma_2 \alpha_1 \alpha_1^{-1} \gamma_1^{-1}} = \delta_2 \delta_1^{-1}$$

I CAN REPEAT THE TRAIN ARGUMENT.

BONUS: WITH THIS CHOICE

WE ALSO GET VERTICAL FBE



a_1	a_2	b_1	b_2	c_1	c_2
1	z_i	0	$z_i + \alpha_j$	z_i	1

BY THIS METHOD WE CAN INTRODUCE
COLUMN PARAMETERS INTO THE $g=0$
TOKUYAMA MODELS. (Even $g \neq 0$.)

$$Z(S_\lambda(z; \alpha)) = Z^P D_\lambda(z; \alpha)$$

WHERE $D_\lambda(z; \alpha)$ IS SYMMETRIC IN z ,

NOT SYMMETRIC IN α .

"ASYMPTOTICALLY SYMMETRIC"

IF I FIX A PERMUTATION OF α

$$D_\lambda(z; \omega\alpha) = D_\lambda(z; \alpha)$$

PROVIDED $n = \# \text{ Rows}$ IS LARGE
DEPENDING ON ω .

1 EXPLAINED IN LECTURE 1

SCHUR POLYNOMIALS ARE RELATED
TO CLASSES OF SCHUBERT VARIETIES

IN $H^*(\text{GRASSMANNIAN}) \cong$ SYMMETRIC POLY

IDEAL

THE FACTORIAL SCHUR POLYNOMIALS
CORRESPOND TO EQUIVARIANT COHOMOLOGY.

$$\lambda = (\lambda_1, \dots, \lambda_n, 0, \dots, 0)$$

$$D_\lambda(z_1, \dots, z_n, 1, \dots, 1) =$$

$$\Delta_\lambda(z_1, \dots, z_n)$$

Δ

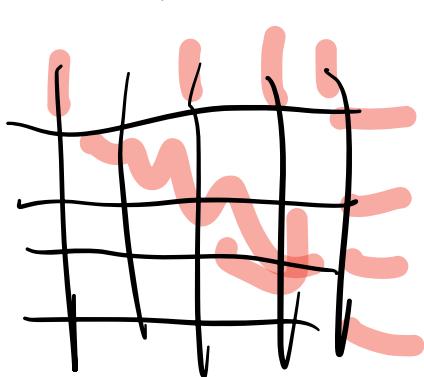
a_1	a_2	b_1	b_2	d_1	d_2
$z_i + \alpha_j$	1	$-\alpha_j$	1	1	z_i

THESE IS A SECOND TYPE OF MODEL

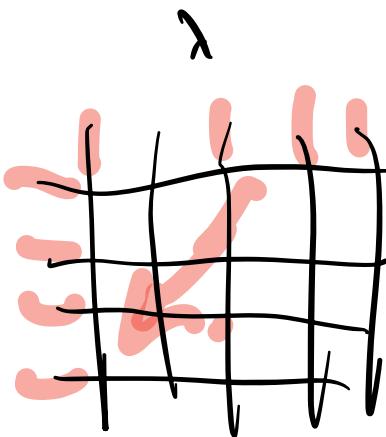
$$S_\lambda^{\Gamma}(z, \alpha) = q = 0 \quad \text{TOKUYAMA MODEL.}$$

$$S_\lambda^{\Delta}(z, \alpha) \text{ IS SIMILAR}$$

BUT PATHS MOVE DOWN AND TO THE LEFT. SO WE MODIFY THE BOUNDARY CONDITIONS:



Γ



Δ

IN BOTH CASES

PVT - SPINS AT SAME $\lambda_i + n - n$ LOCATIONS
ON TOP.

THEOREM:

$$\mathbb{Z}(S_\lambda^\Gamma(z; \alpha)) = \mathbb{Z}(S_\lambda^\Delta(z; \alpha)).$$

WE CAN USE TBC TO PROVE
THIS. THESE IDEAS
WHEN WE DISCUSS KNUUTSON-UDELL
HYBRID MODELS FOR PIPE DREAMS.