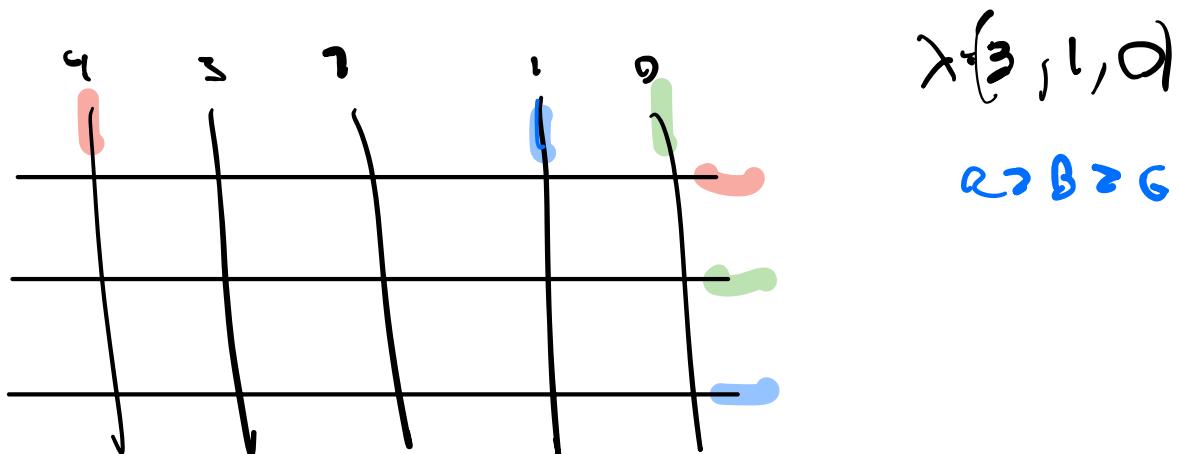


OPEN AND CLOSED MODELS CONTINUED

LAST TIME WE SAW HOW YANG-BAXTER EQUATION CAN LEAD TO RECURSIONS INVOLVING DOMAZURE OPERATORS



→ PUT COLOR C_{n-i} AT $\lambda_i + n - i$
 (DECREASING FROM LEFT TO RIGHT
 RIGHT BOUNDARY COLORS ARE VARIABLE
 AND DETERMINE A PERMUTATION ω

$C_{\omega^{-1}(n-i)}$ IN i -TH ROW

$\omega = (23)$ IN EXAMPLE.

$$a(z_i, z_{i+1}) \mathbb{Z}(S_{\lambda, \omega}(z)) =$$

$$b(z_i, z_{i+1}) \mathbb{Z}(S_{\lambda, \omega}(z)) +$$

$$c(z_i, z_{i+1}) \mathbb{Z}(S_{\lambda, \omega}(z)) .$$

REPLACE $z \rightarrow 1-z$ $z_i \leftrightarrow z_{i+1}$

$$\mathbb{Z}(S_{\lambda, \omega}(z)) = \frac{c(z_{i+1}, z_i) \mathbb{Z}(S_{\lambda, \omega}(-z)) - a(z_{i+1}, z_i) \mathbb{Z}(S_{\lambda, \omega}(1-z))}{-b(z_{i+1}, z_i)}$$

$$a(z, \omega) = \beta \begin{pmatrix} + & + \\ + & \times \\ + & + \end{pmatrix}$$

$$b(z, \omega) = \beta \begin{pmatrix} \text{blue} & \text{red} \\ \text{red} & \text{blue} \end{pmatrix} = \text{const} \times (z - \omega)$$

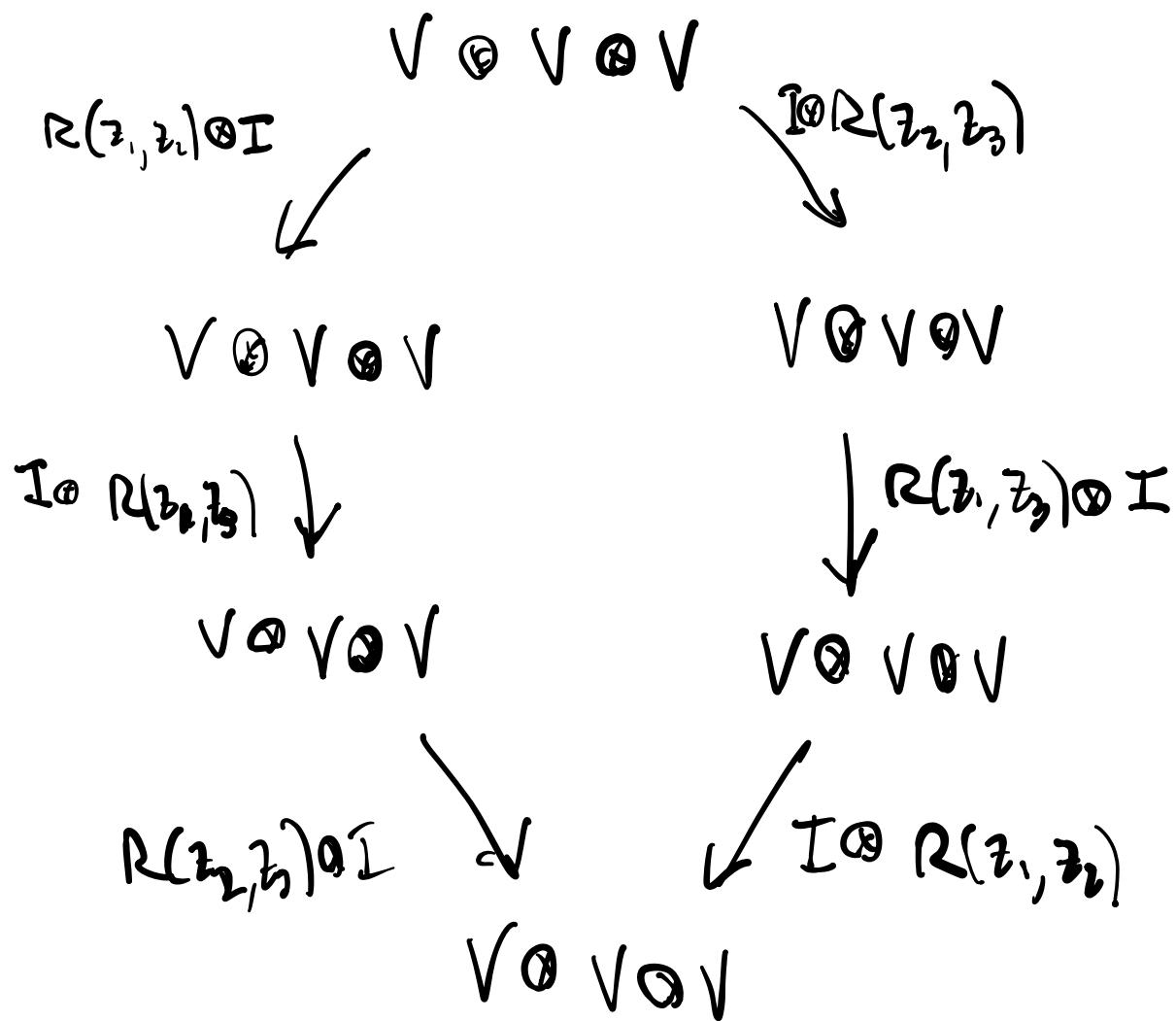
$$c(z, \omega) = \beta \begin{pmatrix} \text{red} & \text{red} \\ \text{blue} & \text{blue} \end{pmatrix}$$

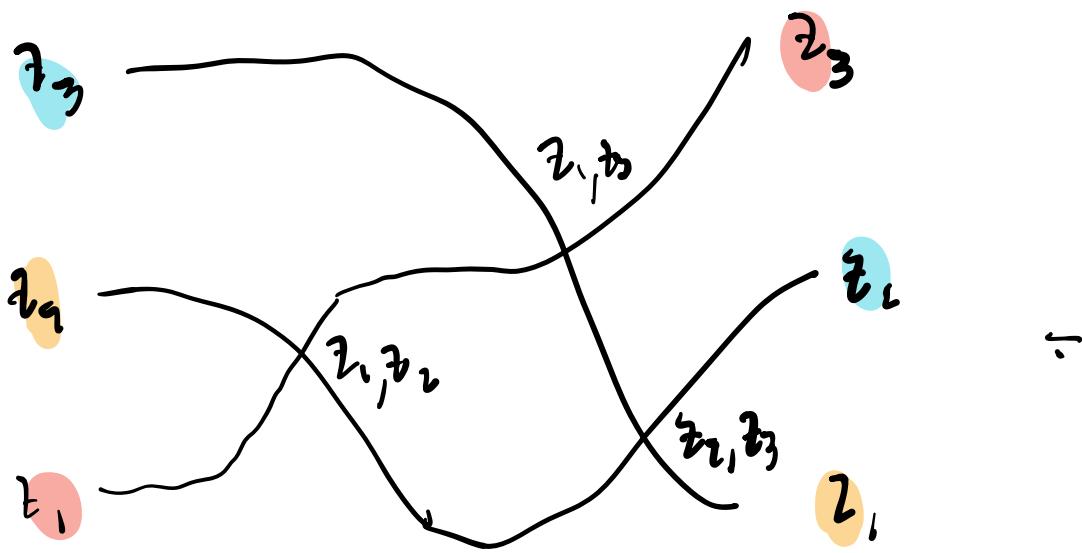
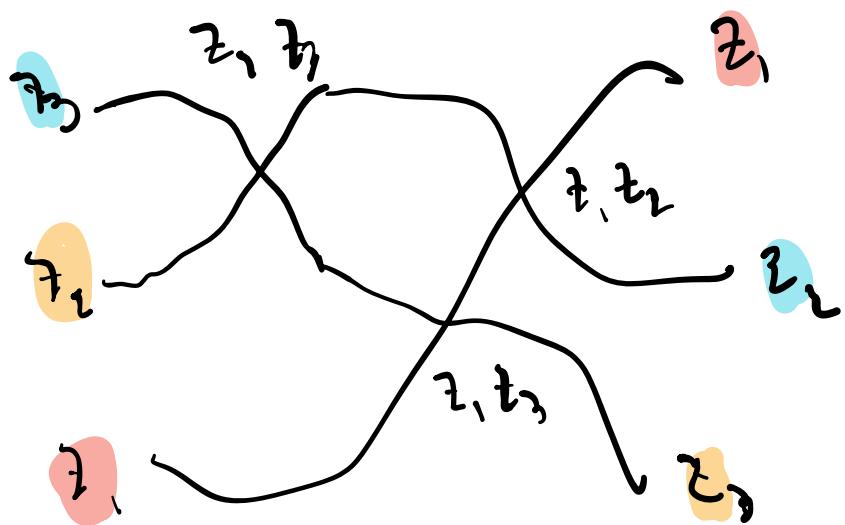
THE R MATRIX IS AN ENDOMORPHISM

OF $V \otimes V$

V = FREE - VECTOR SPACE

ON THE SET OF SPINS





THE EQUIVALENCE OF THESE TWO
INTERPRETATIONS OF Y.B.E. ARE
IN SECTION 1.6 OF NOTES.

ON FRIDAY WE CONSIDERED OPEN MODELS. THE ABOVE FORMALISM GIVES

IF $\Delta_n w > 0$

$$Z(S_{\lambda, \Delta_n w}) = {}^P \overset{\circ}{\partial}_n Z(S_{\lambda, w})$$

REMEMBER $\overset{\circ}{\partial}_n = (Z^{\alpha_n} - 1)^{-1} (1 - \Delta_n)$

SATISFY BRAID RELATION SO

$$\overset{\circ}{\partial}_w = \overset{\circ}{\partial}_{i_1} \cdots \overset{\circ}{\partial}_{i_n}$$

$$\Delta = \Delta_{i_1} \cdots \Delta_{i_n}$$

$$Z^P D Z^{-P} = {}^P D \quad Z^P \Delta_i Z^{-P} = Z^{\alpha_i}$$

$${}^P \overset{\circ}{\partial}_n = (Z^{\alpha_n} - 1)^{-1} (1 - Z^{\alpha_n} \Delta_n)$$

$$Z(S_{\lambda,1}) = 2^{\lambda + \rho}$$

BY INDUCTION

$$Z(S_{\lambda,w}) = 2^{\rho} \underbrace{\partial_w^0 Z^{\lambda}}_{\text{DEGENERATE ATOM}}$$

$$D_{\lambda}(z) = \sum_{w \in W} \partial_w^0 Z^{\lambda}$$

THIS HAS AN ANALOG FOR THE CRYSTAL

$$B_{\lambda} = \text{CRYSTAL OF SYMT OF SHAPE}$$

$$\sum_{w \in W} Z^{\omega(\tau)} = D_{\lambda}(z)$$

THIS IS A SUM OVER STATES OF
THE $q=0$ TOKUYAMA MODEL.

THM (BRUBAKER, BUCUMAS, BUMP, GUSTAFSSON)

THE STATES OF THE OPEN MODEL ARE

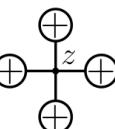
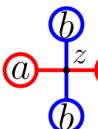
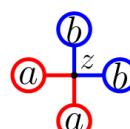
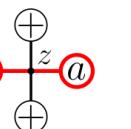
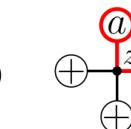
IN BIJECTION WITH A SUBSET

$B_{\lambda}^0(w)$

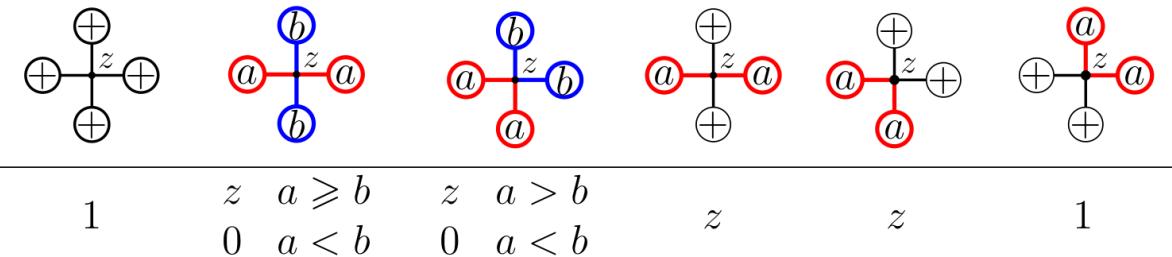
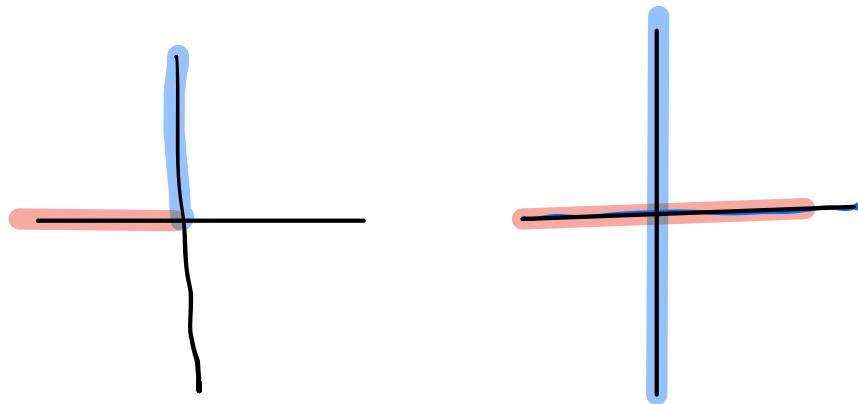
CALLED A DEMAZURE ATM.

THE ARGUMENTS USING VBG DON'T
QUITE PROVE BUT THEY DO SHOW
THIS PREDICTS RIGHT PARTITION FN

$\mathbb{Z}^P \otimes_w^0 \mathbb{Z}^P$.

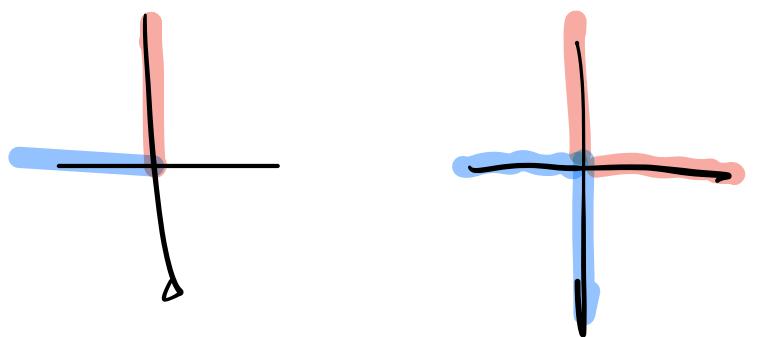
Open T-weights					
					
1	z	$a \geq b$	0	$a > b$	z
	0	$a < b$	z	$a < b$	
			z	z	1

Closed T-weights



OPEN

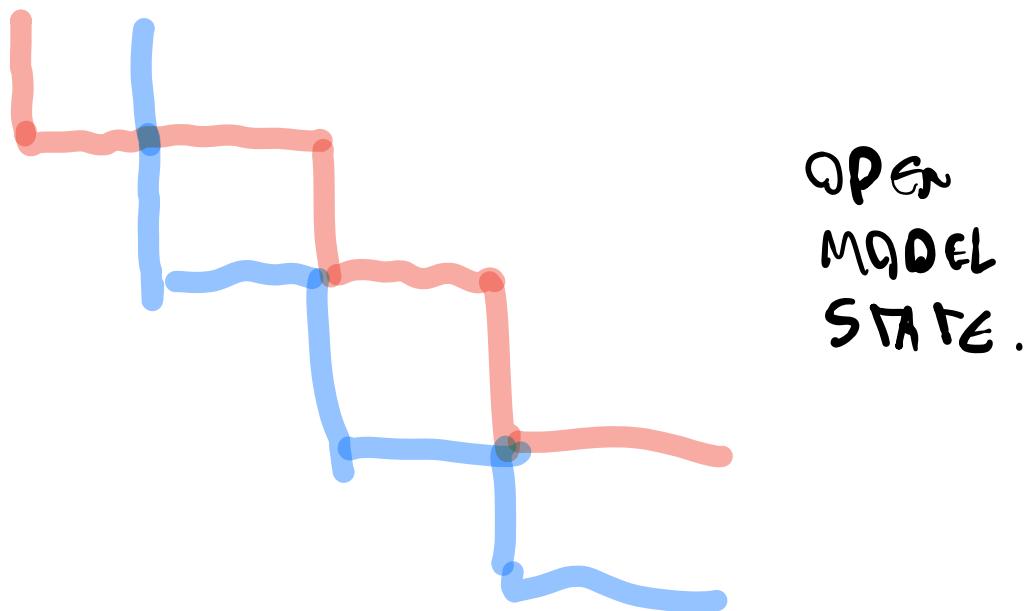
R ? B



FORCES.

CONCLUSION: IF LARGER COLOR COMES IN FROM LEFT, THEY MUST CROSS.
IF SMALLER COLOR COMES IN FROM LEFT MAY NOT CROSS.

WHAT HAPPENS IF TWO PATHS CROSS
SEVERAL TIMES



FOR CLOSED MODEL :

IF $\Delta_i w \geq w$ THEN

$$Z(S_{\lambda, \Delta_i w}) = {}^P \partial_i Z(S_{\lambda, w})$$

$$\text{So } Z(S_{\lambda, w}) = {}^P \underbrace{\partial_w Z}_{\text{DERIVATIVE}}^P$$

CHARACTER.

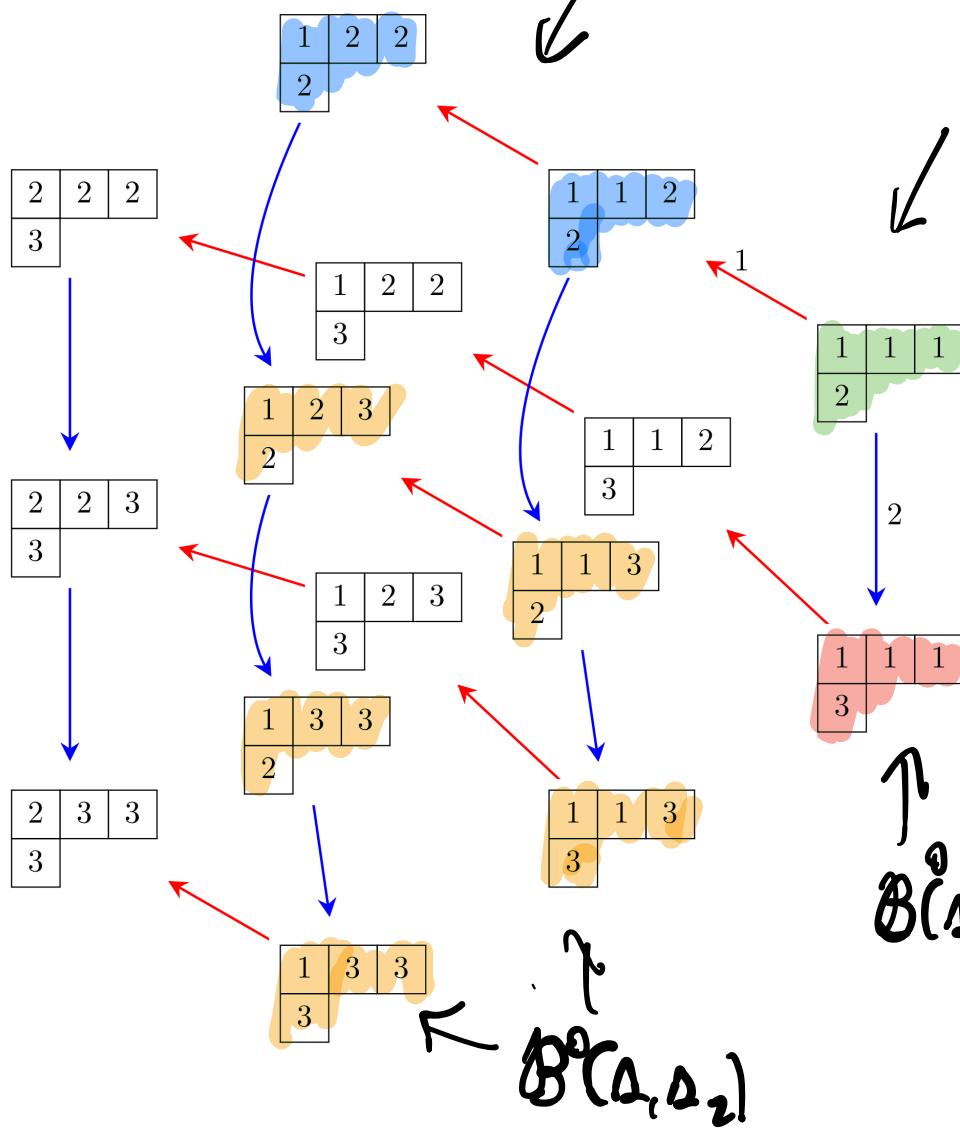
$$\partial_\omega \mathbb{Z}^\lambda = \sum_{B_\lambda(\omega)} \mathbb{Z}^{\text{wt}(\tau)}$$

↑
DEMATERIAL
CRYSTAL.

$$\partial_\omega = \sum_{y \leq \omega} \partial_y^0$$

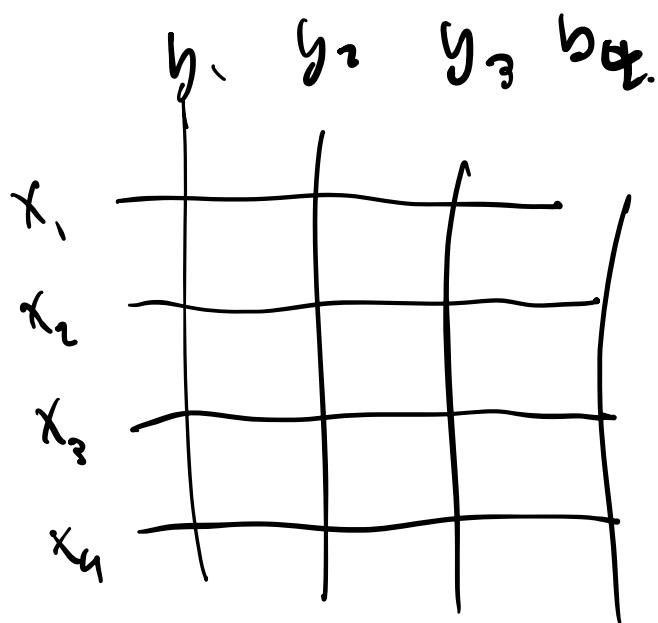
$$B^0(\Delta_1)$$

$$B_\lambda(1) = B^0(1)$$



THEOREM (YINCI/ YANG) THE STATES
OF THE CLOSED MODE ARE BIJECTION
WITH A PERIODIC CRYSTAL.

PARAMETERIZED YANG-BAXTER EQUATIONS
NATURALLY LEAD TO INTRODUCTION OF
COLUMN PARAMETERS



PARAM-YBE; Γ A GROUP

$$R: \Gamma \rightarrow \text{END}(V \otimes V)$$

$$[[R(z_1, z_2), R(z_1, z_3)], R(z_2, z_3)] = 0$$

IF $R, S, T \in \text{END}(V \otimes V)$

$[R, S, T] =$

$$(R \otimes I)(I \otimes S)(T \otimes I) - (I \otimes T)(S \otimes I)(I \otimes R)$$

WE CAN CHOOSE $x_i \in \Gamma$, $y \in \Gamma$

CHOOSE THE BOLTZMANN WEIGHTS

$$T_{i,j} = R(x_i, y_j)$$

a_1	a_2	b_1	b_2	c_1	c_2
1	z_i	0	$z_i + \alpha_j$	z_i	1

a_1	a_2	b_1	b_2	d_1	d_2
$z_i + \alpha_j$	1	$-\alpha_j$	1	1	z_i

HERE ARE TWO EXAMPLES

$$z_i = \text{Row}$$

$$\alpha_j = \text{COLUMN.}$$

THIS WILL GIVE TWO SYSTEMS
WITH SAME PARTITION FUNCTION AND
INTERESTING STORY THAT PREFIGURES
A PHENOMENON IN PIPEREAMS ONLY.