Lecture 1: Schubert Calculus

January 5, 2026

Course Objectives

This course will cover the combinatorics of Schubert polynomials, including the the-
ory of pipedreams, which can be described as solvable lattice models whose partition
functions are Schubert polynomials.

Schubert polynomials were invented by Lascoux and Schiitzenberger to describe
the cohomology of flag varieties. They have important two-variable versions related
to the equivariant cohomology called double Schubert polynomials. It was shown
by Billey and Bergeron that (double) Schubert polynomials can be expressed as
sums over combinatorial gadgets that are now called classical pipedreams, and an-
other class of pipedreams was introduced by Lee, Lam and Shimozono, called bump-
less pipedreams. Knutson and Udell then showed that the classical and bumpless
pipedreams can be combined into a unified theory, and other classes of pipedream
models were introduced by Knutson and Zinn-Justin. There has been quite a bit of
recent research activity in this area.

Motivation: Schubert Calculus

Schubert calculus can be defined as intersection theory for Grassmannians and Flag
Varieties.

Let n < N be positive integers. The Grassmannian Gr(n, N) can be defined as
the space of n-dimensional subspaces of CV. It is a smooth projective variety of
dimension (]X ) — 1 which come with a family of subvarieties called Schubert varieties.

A complete flag in C" is a set of subspaces

o=VycVic---CcV,=0C" (1)

where dim(V;) = ¢. The (complete) flag variety is the set of complete flags. It is a
smooth projective variety of dimension %n(n —1).
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We will not go into the geometric foundations of Schubert calculus, because our
subject matter will be in combinatorics, not algebraic geometry. Yet combinatorial
topics such as the Bruhat order on Weyl groups, the role of Demazure operators
originate in the geometry, so in this introductory lecture we will discuss the geometry
mostly without proofs. For proofs of the geometric results, see Fulton [4], Chapters 9
and 10.

If X is a manifold (such as a smooth projective variety) its cohomology ring
H*(X) is an associative superalgebra, meaning a graded ring whose multiplication
(cup product) satisfies

rUy = (_1)deg(w) deg®)y U .

If X is a smooth projective variety over C, its cohomology ring may contain elements
of odd degree. For example, an algebraic curve of genus ¢g has dim H'(X) = 2g. But
Grassmannians and Flag varieties are special since they have cellular decomposi-
tions in which the cells are algebraic varieties. This has the consequence that the
cohomology is all in even dimensions, and so the cohomology ring is commutative.

Let us see how this works for Fl(n). First we note that G = GL(n,C) acts
transitively on the flags, and the stabilizer of a standard flag (in which V; is the
vector space spanned by the standard basis vectors ey, - - - , ;) is the Borel subgroup
B of upper triangular invertible matrices. So Fl(n) = G/B. Let W = S,, be the
Weyl group, embedded in G as the group of permutation matrices. We have the
Bruhat decomposition

G = U BwB (disjoint) .
weW
Consequently we have
Fli(n) = | J X°(w)
weW
where X°(w) = BwB/B.

Recall that W has a length function ([2, 3]). Let s1,--- , s,—1 € W be the simple
reflections. These are the generators s; = (i,7 + 1) in cycle notation. If w € W
then ¢(w) is the smallest integer k such that we may write w = s;, ---s;,; such a
shortest expression is called reduced. Then X°(w) is homeomorphic to the affine
space CH®) = R2/w)  There is an important partial order < on W called the Bruhat
order such that the closure of X°(w) is

X(w) = X°(y).

ysw

If y < wthen £(y) < ¢(w), so X (w) has a dense open set X°(w) that is an affine space
of real dimension 2¢(w). This decomposition implies that H*(X, Z) is a free Z-module
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spanned by the classes [X (w)]. The degree of the class [X (w)] is dim(X) — 2¢(w).
The spaces X (w) are called Schubert varieties, and the X°(w) are open Schubert
varieties.

Alternatively, let B~ be the “opposite” Borel subgroup of lower triangular ma-
trices. Then we may define Q°(w) = B~wB/B. Its closure is

Qw) = J ().

yzw

Let wy be the longest Weyl group element. We have woBw,' = B~ so in the
action of G on Fl(n) the element wy maps 2°(w) to X°(wow). The length of wow
is dim(X) — ¢(w) where dim(X) = £(wy) = 3n(n —1). So Q°(w) has codimension
¢(w) and the degree of [Q°(w)] = [X°(wow)] = 2¢(w). The dual classes [Q(w)] are
perhaps a better set of generators since the degree is the length of /(w).

Now the ring H*(F1(n)) has another description (due to Borel) which represents
it as a polynomial ring Clzy, - - - , 2] modulo an ideal. To describe this, we interpret
elements of Fl(n) as flags (1). Then V;/V;_; is a line bundle on Fl(n) and its first
Chern class z; € H*(Fl(n)). These generate H*(Fl(n)) and indeed we have the fol-
lowing description of the kernel of the resulting homomorphism from the polynomial

ring.

Theorem 1 (Borel [1]) We have H*(Fl(n)) = Clxy, - - - ,x,|/I where I is the ideal
generated by symmetric polynomials with zero constant term.

One can ask for polynomials &,, € Clzy,---,x,] whose images in H*(Fl(n))
correspond to the classes [2(w)]. These are the Schubert polynomials of Lascoux and
Schiitzenberger. We will not define them today, but will study them at length in
later lectures.

Schur polynomials

Let A = (Aq,---,\,) be a partition. The symmetric polynomial

Ai+n—j
det(z;’
SA(I‘l’ PR ’l’n) pr (z—n_])

det(z]™7)

is called a Schur polynomial. The denominator is a Vandermonde determinant and
equals [[;_;(x; — x;). If A is regarded as a dominant weight for GL(n), and x, is the



character of the corresponding irreducible representation, the Weyl character formula
implies
xa(9) = salz1, 7+, 2n)
where z; are the eigenvalues of g € GL(n,C). Also by the Weyl character formula,
the s, are an orthonormal basis for the ring Clzy, - -, z,]%" of symmetric functions
with respect to the inner product derived from Haar measure on the compact sub-
group U(n) C GL(n,C). See Macdonald [7] or the last part of Bump [3] for more
information about Schur polynomials.
Special Schur functions are the complete symmetric functions

hy = E Ly =0 Ty,

1< Sk

and the elementary symmetric functions

€ = E CL’ZIZE%

11 <o <tp

These are Schur polynomials: hj, = sy and ey = s¢») where (k) is the partition
(k,0,---,0) and (1¥) = (1,---,1,0,---,0) with exactly k 1’s. It is assumed for e
that £ < n.

The Littlewood-Richardson rule and Pieri’s formula

The Littlewood-Richardson coefficients ¢, are the multiplicative structure constants
on the ring of symmetric polynomials with respect to the Schur basis. Thus

_ v
SxSu, = E v
1%

The coefficients cf,, have a combinatorial description that is slightly hard to state, but
a special case, retro-historically called Pieri’s rule is worth stating explicitly here.
Let YD(X) be the Young diagram of A. If YD(A) C YD(v) and the set theoretic
difference YD(v) — YD(A) is called a skew shape and denoted v/\. We say v/ is a
horizontal strip of length k if YD(rv) — YD(A) does not have more than one box in
any given column, and if |v| — |\| = k. Vertical strips are defined similarly.

Now take p = (k), that is, the partition (k,0,0,---), so s, = hi. Then Pieri’s
formula states that

, | 1 if v/Xis a horizontal strip of length k,
Nk T 1 0 otherwise.



So

syhy = E Sy
1%

where the sum is over v such that /X is a horizontal strip of length k. There is a
dual Pieri formula:
S\C = Z Sy

where now the sum is over v such that v/\ is a vertical strip of length k.

The Jacobi-Trudi identity

Another formula worth mentioning is the Jacobi-Trudi identity. For convenience
define hy = 0 if k£ < 0. Then the Jacobi-Trudi identity asserts that

h’)q h’)\l-i-l h’)q +2

. d hAQ*l h’)\g h)\2+1
Sy = det hys—2 hy,—1 hy,

If = X is the conjugate partition we also have

€ Cur+1  Cuy+2
hu2 -1 hMQ €ua+1

sy = det h/l3*2 hu2,1 Cuz

Proofs of the Pieri and Jacobi-Trudi identities may be found in Macdonald [7] or the
last part of Bump [3].

Grassmannians

We have explained how Schubert polynomials (which we have not yet defined) the
intersection theory of Flag varieties

A similar more classical result describes the cohomology of Grassmannians. Let
N =n+ k. Then Gr(n,N) = G/P where P is the maximal parabolic subgroup of
GL(n,C) consisting of elements with the block matrix form

(glg)v A€GL(r), D eGL(k).

5



Now by the Bruhat decomposition for parabolic subgroups

G/p= |J Buw'P
wE(SnXSk)/SN

Now we may choose the representative w of minimal length in its coset. The choice
of w™! instead of w here is good for the combinatorial point of view. Then

w(l) <w(2) <--- <wn), wn+1)<wn+2)<---<wn+k). (2

This w has a unique descent at n. A permutation with a unique descent is called
Grassmannian. Given a Grassmann permutation satisfying this condition we may
associate a partition A = (Ay,--- , \,) by

A=k +i—wli).

Lemma 1 This relationship gives a bijection between Grassmann permutations sat-
isfying (2) and those partitions whose Young diagram fits in an n X k rectangle.

Proof The condition on A means that A has < n parts and that \; < k. We leave
this as an exercise for the reader. O

Now the intersection theory on Grassmannians is a historical topic due to Schu-
bert, Pieri and Giambelli. Schubert cycles can be defined as with flag varieties: let
0, be the closure of B_w™'P/P, where w is now a Grassmann permutation satisfying
(2). If X is the corresponding partition, we may alternatively denote o, as oy.

Theorem 2 (Pieri) We have

O')\O'(k) = ZO’,,

where the sum is over v such that YD(v) is contained in a k x n rectangle, and v/\
is a horizontal strip of length k.

The analog of the Jacobi-Trudi identity is also true, and in this context is called
the Giambelli formula.
Theorem 3 The cohomology ring H*(Gr(n, N)) is isomorphic to the ring Clay, - - -, 2,]%"
modulo an ideal I that is spanned as a vector space by the Schur polynomials sy for
partitions that do not fit in an n X k rectangle. In this isomorphism oy +— .



Proof This follows from Borel’s computation of the cohomology, though this exact
formulation appeared later. O

This shows that the multiplicative structure of symmetric functions with the
Schur polynomial basis exactly mirrors the cohomology of Gr(n, N). Lascoux and
Schiitzenberger recognized the importance of finding polynomials in Clxy,-- -, z,)]
that could play the role of Schur polynomials in this more general context. These
are the Schubert polynomials [5, 6].
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