
Lecture 1: Schubert Calculus

January 5, 2026

Course Objectives

This course will cover the combinatorics of Schubert polynomials, including the the-
ory of pipedreams, which can be described as solvable lattice models whose partition
functions are Schubert polynomials.

Schubert polynomials were invented by Lascoux and Schützenberger to describe
the cohomology of flag varieties. They have important two-variable versions related
to the equivariant cohomology called double Schubert polynomials . It was shown
by Billey and Bergeron that (double) Schubert polynomials can be expressed as
sums over combinatorial gadgets that are now called classical pipedreams , and an-
other class of pipedreams was introduced by Lee, Lam and Shimozono, called bump-
less pipedreams. Knutson and Udell then showed that the classical and bumpless
pipedreams can be combined into a unified theory, and other classes of pipedream
models were introduced by Knutson and Zinn-Justin. There has been quite a bit of
recent research activity in this area.

Motivation: Schubert Calculus

Schubert calculus can be defined as intersection theory for Grassmannians and Flag
Varieties.

Let n < N be positive integers. The Grassmannian Gr(n,N) can be defined as
the space of n-dimensional subspaces of CN . It is a smooth projective variety of
dimension

(
N
n

)
−1 which come with a family of subvarieties called Schubert varieties .

A complete flag in Cn is a set of subspaces

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn (1)

where dim(Vi) = i. The (complete) flag variety is the set of complete flags. It is a
smooth projective variety of dimension 1

2
n(n− 1).
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We will not go into the geometric foundations of Schubert calculus, because our
subject matter will be in combinatorics, not algebraic geometry. Yet combinatorial
topics such as the Bruhat order on Weyl groups, the role of Demazure operators
originate in the geometry, so in this introductory lecture we will discuss the geometry
mostly without proofs. For proofs of the geometric results, see Fulton [4], Chapters 9
and 10.

If X is a manifold (such as a smooth projective variety) its cohomology ring
H∗(X) is an associative superalgebra, meaning a graded ring whose multiplication
(cup product) satisfies

x ∪ y = (−1)deg(x) deg(y)y ∪ x.

If X is a smooth projective variety over C, its cohomology ring may contain elements
of odd degree. For example, an algebraic curve of genus g has dimH1(X) = 2g. But
Grassmannians and Flag varieties are special since they have cellular decomposi-
tions in which the cells are algebraic varieties. This has the consequence that the
cohomology is all in even dimensions, and so the cohomology ring is commutative.

Let us see how this works for Fl(n). First we note that G = GL(n,C) acts
transitively on the flags, and the stabilizer of a standard flag (in which Vi is the
vector space spanned by the standard basis vectors e1, · · · , ei) is the Borel subgroup
B of upper triangular invertible matrices. So Fl(n) = G/B. Let W = Sn be the
Weyl group, embedded in G as the group of permutation matrices. We have the
Bruhat decomposition

G =
⋃
w∈W

BwB (disjoint) .

Consequently we have

Fl(n) =
⋃
w∈W

X◦(w)

where X◦(w) = BwB/B.
Recall that W has a length function ([2, 3]). Let s1, · · · , sn−1 ∈ W be the simple

reflections. These are the generators si = (i, i + 1) in cycle notation. If w ∈ W
then ℓ(w) is the smallest integer k such that we may write w = si1 · · · sik ; such a
shortest expression is called reduced . Then X◦(w) is homeomorphic to the affine
space Cℓ(w) ∼= R2ℓ(w). There is an important partial order ⩽ on W called the Bruhat
order such that the closure of X◦(w) is

X(w) =
⋃
y⩽w

X◦(y).

If y < w then ℓ(y) < ℓ(w), so X(w) has a dense open set X◦(w) that is an affine space
of real dimension 2ℓ(w). This decomposition implies thatH∗(X,Z) is a free Z-module
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spanned by the classes [X(w)]. The degree of the class [X(w)] is dim(X) − 2ℓ(w).
The spaces X(w) are called Schubert varieties , and the X◦(w) are open Schubert
varieties.

Alternatively, let B− be the “opposite” Borel subgroup of lower triangular ma-
trices. Then we may define Ω◦(w) = B−wB/B. Its closure is

Ω(w) =
⋃
y⩾w

Ω◦(y).

Let w0 be the longest Weyl group element. We have w0Bw−1
0 = B− so in the

action of G on Fl(n) the element w0 maps Ω◦(w) to X◦(w0w). The length of w0w
is dim(X) − ℓ(w) where dim(X) = ℓ(w0) =

1
2
n(n − 1). So Ω◦(w) has codimension

ℓ(w) and the degree of [Ω◦(w)] = [X◦(w0w)] = 2ℓ(w). The dual classes [Ω(w)] are
perhaps a better set of generators since the degree is the length of ℓ(w).

Now the ring H∗(Fl(n)) has another description (due to Borel) which represents
it as a polynomial ring C[x1, · · · , xn] modulo an ideal. To describe this, we interpret
elements of Fl(n) as flags (1). Then Vi/Vi−1 is a line bundle on Fl(n) and its first
Chern class xi ∈ H2(Fl(n)). These generate H∗(Fl(n)) and indeed we have the fol-
lowing description of the kernel of the resulting homomorphism from the polynomial
ring.

Theorem 1 (Borel [1]) We have H∗(Fl(n)) ∼= C[x1, · · · , xn]/I where I is the ideal
generated by symmetric polynomials with zero constant term.

One can ask for polynomials Sw ∈ C[x1, · · · , xn] whose images in H∗(Fl(n))
correspond to the classes [Ω(w)]. These are the Schubert polynomials of Lascoux and
Schützenberger. We will not define them today, but will study them at length in
later lectures.

Schur polynomials

Let λ = (λ1, · · · , λn) be a partition. The symmetric polynomial

sλ(x1, · · · , xn) =
det(x

λj+n−j
i )

det(xn−j
i )

is called a Schur polynomial . The denominator is a Vandermonde determinant and
equals

∏
i<j(xi−xj). If λ is regarded as a dominant weight for GL(n), and χλ is the
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character of the corresponding irreducible representation, the Weyl character formula
implies

χλ(g) = sλ(z1, · · · , zn)
where zi are the eigenvalues of g ∈ GL(n,C). Also by the Weyl character formula,
the sλ are an orthonormal basis for the ring C[x1, · · · , xn]

Sn of symmetric functions
with respect to the inner product derived from Haar measure on the compact sub-
group U(n) ⊂ GL(n,C). See Macdonald [7] or the last part of Bump [3] for more
information about Schur polynomials.

Special Schur functions are the complete symmetric functions

hk =
∑

i1⩽···⩽ik

xi1 · · · xik

and the elementary symmetric functions

ek =
∑

i1<···<ik

xi1 · · ·xik .

These are Schur polynomials: hk = s(k) and ek = s(1k) where (k) is the partition
(k, 0, · · · , 0) and (1k) = (1, · · · , 1, 0, · · · , 0) with exactly k 1’s. It is assumed for ek
that k ⩽ n.

The Littlewood-Richardson rule and Pieri’s formula

The Littlewood-Richardson coefficients cνλµ are the multiplicative structure constants
on the ring of symmetric polynomials with respect to the Schur basis. Thus

sλsµ =
∑
ν

cνλµsν .

The coefficients cνλµ have a combinatorial description that is slightly hard to state, but
a special case, retro-historically called Pieri’s rule is worth stating explicitly here.
Let YD(λ) be the Young diagram of λ. If YD(λ) ⊂ YD(ν) and the set theoretic
difference YD(ν)− YD(λ) is called a skew shape and denoted ν/λ. We say ν/λ is a
horizontal strip of length k if YD(ν) − YD(λ) does not have more than one box in
any given column, and if |ν| − |λ| = k. Vertical strips are defined similarly.

Now take µ = (k), that is, the partition (k, 0, 0, · · · ), so sµ = hk. Then Pieri’s
formula states that

cνλ,(k) =

{
1 if ν/λ is a horizontal strip of length k,
0 otherwise.
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So
sλhk =

∑
ν

sν

where the sum is over ν such that ν/λ is a horizontal strip of length k. There is a
dual Pieri formula:

sλek =
∑
ν

sν

where now the sum is over ν such that ν/λ is a vertical strip of length k.

The Jacobi-Trudi identity

Another formula worth mentioning is the Jacobi-Trudi identity . For convenience
define hk = 0 if k < 0. Then the Jacobi-Trudi identity asserts that

sλ = det


hλ1 hλ1+1 hλ1+2 · · ·
hλ2−1 hλ2 hλ2+1 · · ·
hλ3−2 hλ2−1 hλ3 · · ·
...

...
...

 .

If µ = λ′ is the conjugate partition we also have

sλ = det


eµ1 eµ1+1 eµ1+2 · · ·

hµ2−1 hµ2 eµ2+1 · · ·
hµ3−2 hµ2−1 eµ3 · · ·

...
...

...

 .

Proofs of the Pieri and Jacobi-Trudi identities may be found in Macdonald [7] or the
last part of Bump [3].

Grassmannians

We have explained how Schubert polynomials (which we have not yet defined) the
intersection theory of Flag varieties

A similar more classical result describes the cohomology of Grassmannians. Let
N = n + k. Then Gr(n,N) ∼= G/P where P is the maximal parabolic subgroup of
GL(n,C) consisting of elements with the block matrix form(

A B
0 D

)
, A ∈ GL(r), D ∈ GL(k).
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Now by the Bruhat decomposition for parabolic subgroups

G/P =
⋃

w∈(Sn×Sk)/SN

Bw−1P.

Now we may choose the representative w of minimal length in its coset. The choice
of w−1 instead of w here is good for the combinatorial point of view. Then

w(1) < w(2) < · · · < w(n), w(n+ 1) < w(n+ 2) < · · · < w(n+ k). (2)

This w has a unique descent at n. A permutation with a unique descent is called
Grassmannian. Given a Grassmann permutation satisfying this condition we may
associate a partition λ = (λ1, · · · , λn) by

λi = k + i− w(i).

Lemma 1 This relationship gives a bijection between Grassmann permutations sat-
isfying (2) and those partitions whose Young diagram fits in an n× k rectangle.

Proof The condition on λ means that λ has ⩽ n parts and that λ1 ⩽ k. We leave
this as an exercise for the reader. 2

Now the intersection theory on Grassmannians is a historical topic due to Schu-
bert, Pieri and Giambelli. Schubert cycles can be defined as with flag varieties: let
σw be the closure of B−w

−1P/P , where w is now a Grassmann permutation satisfying
(2). If λ is the corresponding partition, we may alternatively denote σw as σλ.

Theorem 2 (Pieri) We have

σλσ(k) =
∑

σν

where the sum is over ν such that YD(ν) is contained in a k × n rectangle, and ν/λ
is a horizontal strip of length k.

The analog of the Jacobi-Trudi identity is also true, and in this context is called
the Giambelli formula.

Theorem 3 The cohomology ring H∗(Gr(n,N)) is isomorphic to the ring C[x1, · · · , xn]
Sn

modulo an ideal I that is spanned as a vector space by the Schur polynomials sλ for
partitions that do not fit in an n× k rectangle. In this isomorphism σλ ←→ sλ.
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Proof This follows from Borel’s computation of the cohomology, though this exact
formulation appeared later. 2

This shows that the multiplicative structure of symmetric functions with the
Schur polynomial basis exactly mirrors the cohomology of Gr(n,N). Lascoux and
Schützenberger recognized the importance of finding polynomials in C[x1, · · · , xn]
that could play the role of Schur polynomials in this more general context. These
are the Schubert polynomials [5, 6].
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